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Abstract

The prediction of volatility in financial markets has been of immense interest among financial
econometricians. Using data collected at five-minute intervals, the present paper attempts to
model the volatility in the daily return of National Stock Exchange (NSE). This paper shows
that the Indian Stock Market experiences volatility clustering and hence GARCH-type models
predict the market volatility better than simple volatility models, like historical average, moving
average etc. It is also obsetved that the asymmetric GARCH models provide better fit than the
symmetric GARCH model, confirming the presence of leverage effect. Finally, the results show
that the change in volume of trade in the market directly affects the volatility of asset returns.
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1.0 INTRODUCTION

The magnitude of fluctuations in the
return of an asset is called its
volatility. The prediction of volatility
in financial markets has been of
immense interest among financial
econometricians. This interest is further
rekindled by Bollerslev et al. (1994)
when they established that financial
asset return volatilities are highly
predictable. It is true that unlike prices,

Volatilities are not directly observable
in the market, and it can only be
estimated in the context of a model.
However, Andersen et al. (2004)
concluded that by sampling intraday
returns sufficiently frequently, the
realized volatility (measured by simply
summing intra-day squared returns)
can be treated as the observed
volatility. This observation has
profound implication for financial
markets since,
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(a) The realized volatility provides a
better measure of total risk (value
at risk) of financial assets.

(b) It can lead to better pricing of
various traded options.

Later popular models of volatility
clustering were developed by Engle
(1982) and Bollerslev (1986). The
autoregressive conditional
heteroskedastic (ARCH) models
(Engle, 1982) and generalized ARCH
(GARCH) models (Bollerslev, 1986)
have been extensively used in
capturing volatility clusters in financial
time series. Bollerslev et al., (1996)
have confirmed the superiority of
GARCH-type models in volatility
predictions over models such as the
naive historical average, moving
average and exponentially weighted
moving average (EWMA). GARCH
models can replicate the fat tails
observed in many high frequency
financial asset return series, where
large changes occur more often than
a normal distribution would imply.

The Threshold GARCH model
(TGARCH) (Glosten et al., 1993) and
Exponential GARCH (EGARCH)
model (Nelson, 1991) are used to
predict conditional variance. Both E
GARCH and T GARCH give relatively
steady models as they do not explicitly
assume the conditional distribution.
Hence, it becomes useful in the
absence of user specific pre-sample

data. We have used all these three
models in the present study to predict
conditional variance.

Karmakar (2005) used conditional
volatility models to estimate
volatility of fifty individual stocks
and observed that the GARCH (1,1)
model provides reasonably good
forecast. The present paper
determines the best-fit mean model
for the index return, which is then
used in GARCH model specifications.
Krishnan (2010) in a working paper
used high frequency data for Indian
stock market and autoregressive
conditional hetroscedasticty models
in order to observe how larger and
smaller errors cluster together. In
his study he used SBI stock tick
prices and studied the cluster and
there after used SBI and TATA
stocks tick price to observe the
volatility cluster. However, none of
the studies, based on Indian stock
markets, attempted to fit a mean
equation for the stock return series
before modeling volatility of stock
returns. Apart from that, there was a
need to study the tick values of the
index, which serves as the aggregate
volatility estimator of the market. This
study has used the index and tried
to find out the microstructure effect,
half life period of the volatility with
TGARCH and EGARCH to find the
effect of asymmetry of the higher
frequency data.



2.0 DATA AND METHODOLOGY

The Indian
witnessed

capital market has
significant regulatory
changes since 1992 with the creation
of an independent capital market
regulator, the Securities and Exchange
Board of India (SEBI). Subsequent
changes (e.g., screen based trading,
derivatives trading, cycles etc.) have
further developed the market and
brought it in line with international
capital markets. Presently only two
exchanges in India, the NSE and the
BSE (Stock Exchange, Mumbai) provide
trading in the security derivatives.
We have used the most popular index
of the National Stock Exchange in
India, called S&P CNX NIFTY (Nifty)
to model the volatility in the Indian
capital market. The Nifty, a market
capitalization weighted index, is an
index of 50 scrips accounting for 23
sectors of the Indian economy.

The BSE, the oldest stock exchange in
India (and also in Asia), being in
existence for more than 100 years,
has been chosen for the study. In
the study, the sample contains a total
of 56,32,500 data points consisting of
the Nifty values at five-minute
intervals from 01 June 2000 through
30 January 2004. The choice of the
period is guided by the fact that a
lot of policy reforms in the Indian
securities market have been
implemented during this period. For
example, trading on index futures was
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allowed in India since June 2000.
High-frequency data have now become
a popular experimental bench for
analyzing financial markets (Dacorogna

et al, 2001).

High frequency data are direct
information from the market and are
a recent entrant to the world of
statistics. With a tick to tick data we.
get the microstructure of the markets
and are better able to see how they
vary from the traditional portrayal.
Traditional tools generally used daily
or weekly variability but were not
very useful in studying variability in
the time scales of seconds and minutes.
Hence, instead of using the daily
closing value of the index, this paper
uses the directly observable data. It
cannot be denied that very high
frequency data have microstructure
effect (e.g., how the data are
transmitted and recorded in the data
base). In order to avoid serious
microstructure biases and at the same
time reduce the measurement error
due to data generation at low
frequency; we have used data at
regularly spaced five-minute intervals
(Andersen et al, 2001). The present
papers uses index values rather than
stock prices and thus there are no
bid and ask prices. We have used the
last quoted value of the index at
five-minute intervals. The daily index
return is estimated using these five-
minute interval values. A large part
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of the data set, from June 01, 2000
through December 16, 2003, is used
to model volatility using various
established volatility models. The
remaining data set, from December
17, 2003 through January 30, 2004, is
used to test the efficacy of various
models using one-ahead volatility
forecasts.

Let,

ro,i=1,..,m,

denote log of price relatives at an
intra-day time-point i on day f, where
m, is the number of return
observations obtained by using prices
m times per day. Then daily return

on day t is calculated as

my

rf = ,_|rl'1"

Following Andersen et al,
(2001),

volatility (,V*)as the sum of squares

we define the daily realized

of returns collected at 5-minute
intervals:

m,

- 2
=2
i=l

Let §7 denote volatility forecast. One

can assess the accuracy of the daily
volatility forecasts under a model by
considering the simple
regressions (Andersen et al,
y, on &/ :

linear

2005) of

September, 2010

vy, =a+bd; +é,
Where

2

y, =V’ or 1’ and then
computing the coefficient of
determination pR2. The model with
the highest p? value may be treated
as the best model for predicting y,.
On the other hand, if the p2Value
turns out to be generally higher for
one choice of y,, then that choice
(V,3 orr’,) may be considered to be a
better measure of observed volatility.

In addition to the regression-based
framework, we have wused the
standard measures of predictive power
of a model-the root mean square error
(RMSE), the mean absolute error
(MAE), and the Theil-U statistic. These
are defined as follows:

RMSE = \/%2:':‘53 ~V2)?, MAE -
GRS,

_Z(szl

="'Zk 52—V, Theil -U =
=1

3.0 VOLATILITY MODELS

Random walk: The random walk
model is the simplest of the models
considered and it is given by
5 =6, +& where g is a white
noise series.

Historical Average: The historical
average model (Yu, 2002) is given by:

b _1 =l an
e el i



GARCH: The volatility model for the
roor ais said to follow a GARCH
(m, s) model 1986,

Bollerslev et al., 1994) if

_ 2 m 2 5 2
= 5.,8”5., =, +Z,—_|a5ar—r +Z}:|/}:5ﬁ T

(Bollerslev,

Where @, >0,2, 20,8, 20,
> e, + B) <1,

with @, = 0 fori > mand
B, =0forj >s,

And {8,} is a sequence of random
variables with mean 0 and variance 1,
which is often assumed to have a
standard normal or standardized
student-t distribution.

An exogenous explanatory variable
X, may be ‘included in the GARCH
model. For example, the GARCH(1,1)

model can be augmented as

2 2 2
a,=0£,0, =a,+aa,, + B0, +mX,

GARCH (1,1)
512 =a,+ alaf—l +ﬂ1‘5‘:2—1
follows. For this model the mean-

process

is done as

reverting form is given by

(@ -6%)=(a,+B)a}, =" )+u,~ Bu,.,
Where &6’ =a,/(1—a,—f3)is the
unconditional

long-run level of

volatility and u, =(a]—&7)is the
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volatility shock. The half-life of the
volatility is given by the formula
(Zivot and Wang, 2002):

1
Ly = In(E)/ In(a, + B,)-

4.0 RESULTS AND ANALYSIS

The sample kurtosis of 70.08 and
skewness of 6.92 indicate that the
distribution of daily volatility is not a
normal distribution. This is further
supported by the normality test
statistics in Table 2. The constructed
daily return series has an insignificant
mean (Table 1) of around 6.30% per
annum, using a standard 250-trading
days in a year. The negative skewness
of the return series usually. indicates
that there is at least one very large
negative return in the data, which is
what we observe in our case with
the minimum daily return being
-6.15%. The existence of excess
kurtosis also indicates that the daily
return series is not normal.

To test whether the daily return and
realized volatility series is stationary,
the augmented Dickey-Fuller (ADF)
statistic is calculated on the entire
sample and the results (Table 1) fail
to accept the unit root null hypothesis
at 1% level. The autocorrelation test
(Ljung-Box) for the realized volatility
series shows that (Table 2) the first-
order autocorrelation of volatility is
quite high, although we observed the
higher-order autocorrelations to
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generally diminishing (the numerical
results not presented here, for
brevity). However, autocorrelations up
to order four are statistically
significantly different from zero. This

demonstrates the evidence of volatility
clustering and hence any autoregressive
heteroskedastic volatility model should
be a better fit.

Table 1: Descriptive Statistics for the data

Series Mean Median Maximum Minimum Skewness Excess
ADF

Return 0.0252% 0.1045% 5.2994% -6.1585% -0.04670 1.6596

-12.01*

Volatility 0.0222% 0.0126%  0.5757% 0.0014% 6.9179 70.0842

-9.623*

*Significant at 1% level.

Table 2: Normality and Autocorrelation Test for Unconditional Volatility series

Test Model Test-statisticP-Value

Normality Jarque-Bera 192038.4 0.0000
Shapiro-Wilks 0.4471 0.0000

Autocorrelation Ljung-Box 302.6835 0.0000

In order to apply the GARCH-type
models, one needs to first identify
the best model for the mean equation
and then fit a model for variance
equation. We have applied various
models on daily returns to identify
the best-fit mean model. We have
used first 883 daily returns to model
the return series. A random walk
mean model without a drift shows
that the return series is non-normal
(Table 3, panel A). We have also
used a random walk model with a
drift. However, the intercept
coefficient is not different from zero.

In order to test whether the return
series is autocorrelated, we have used
a higher-order autoregressive model,
namely AR (25):

=@+ TPt + .t @5ty _ys + 4,

We observed that the Nifty series is
largely uncorrelated. However, we
find, from the AIC (Akaike
Information Criterion) values that a
moving average model, namely [MA
(1)], is a better fit. It may be noted
that neither the autoregressive nor
the moving average models contain
an intercept term.



To test whether the daily return and
realized volatility series is stationary,
the augmented Dickey-Fuller (ADF)
statistic is calculated on the entire
sample and the results (Table 1) fail
to accept the unit root null hypothesis
at 1% level. The autocorrelation test
(Ljung-Box) for the realized volatility
series shows that (Table 2) the first-
order autocorrelation of volatility is
quite high, although we observed the
higher-order autocorrelations to
generally diminishing (the numerical
results not presented here, for
brevity). However, autocorrelations up
to order four are statistically
significantly different from zero. This
demonstrates the evidence of volatility
clustering and hence any autoregressive
heteroskedastic volatility model should
be a better fit.

Table 3: Statistics for Mean Model
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In order to apply the GARCH-type
models, one needs to first identify
the best model for the mean equation
and then fit a model for variance
equation. We have applied various
models on daily returns to identify
the best-fit mean model. We have used
first 883 daily returns to model the
return series. A random walk mean
model without a drift shows that the
return series is non-normal (Table 3,
panel A). We have also used a random
walk model with a drift. However,
the intercept coefficient is not different
from zero. In order to test whether
the return series is autocorrelated, we
have used a higher-order
autoregressive model, namely AR (25):

r=0, + . + @t s +t Pysti_as + 4

Panel A: Normality and Autocorrelation Tests for in-sample Mean Return Series

Test Model Test-statistic p-value
Normality Jarque-Bera 155.01179 0.0000
Shapiro-Wilks 0.9684 0.0000
Autocorrelation Ljung-Box 27.0563 0.3531
Panel B: Test Results of Various mean Models
Model Coefficient tstatistic p-value AIC
Random walk with 0.0002 0.4561 0.648
Drift
AR(25) -4843.07
AR(1): AR term 0.0743 2.2135 0.0271
-5009.63
MA(1):MA-term -0.0755 -2.2499 0.0245
-5013.73
ARMA(1,1) -5009.21
AR-term -0.2527 -0.6122 0.5404
MA-term -0.3251 -0.8059 0.4203
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We observed that the Nifty series is
largely uncorrelated. However, we
find, from the AIC (Akaike
Information Criterion) values that a
moving average model, namely [MA
(1)], is a better fit. It may be noted
that neither the autoregressive nor
the moving average models contain
an intercept term.

After modeling the mean of the Nifty
return series, the Nifty volatility series
is modeled using various competing
GARCH models as described above.
The parameter estimates of various
GARCH models are given in Tables
41 and 4.2. The sizes of ARCH and
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GARCH parameters determine the
short-run dynamics of the resulting
volatility time series. Large GARCH
coefficient normally indicates
persistence of volatility and large
arch coefficient implies that volatility
is les persistent and more ‘spiky’.
The sum of arch and GARCH
coefficients in GARCH (1,1) model
for the Nifty is less than one
indicating that the variance process
is stationary. In fact, the GARCH
coefficient, though significant, is
relatively low and ARCH coefficient
high. This indicates that volatilities
do not ‘persist’ for long.

Table 4. 1 Parameter Estimates of Various GARCH Models

Panel A Parameter Estimates

Model Ccefficient | Value t-value p-valu AIC BIC
GARCH -5121.92 | -5102.78
(1,1) MA 0.1005 2.595 0.0048

Intercept 0.0000 4.589 0.0000

ARCH 0. 2338 6.306 0.0000

GARCH 0.6053 10.199 0.0000
E-GARCH -5137.22 | -5112.31
(1,1) MA 0.1146 3.053 0.0012

Intercept -2.2207 -5.594 0.0000

ARCH 0.3852 7.838 0.0000

GARCH 0.7780 17.905 0.0000

Gamma (y)-0.3717 | -5.293 0.0000
T-GARCH -5135.49 | -5111.60
(L)

MA 0.1079 2.749 0.0030

Intercept 0.0004 4.906 0.0000

ARCH 0.1122 4.063 0.0000

GARCH 0.5740 8.975 0.0000

Gamma(y) | 0.2528 3.954 0.0000
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P-GARCH
(L1)

GARCH
(1,1) With
Volume

E-GARCH
(1,1) with
Volume

T-GARCH
(1,1) With

Volume

p-GARCH
(1,1) With
Volume

MA
Intercept
ARCH
GARCH
Gamma (y)

MA
Intercept
ARCH
GARCH
Volume

MA
Intercept
ARCH
GARCH
Lev
Volume

MA
Intercept
ARCH
GARCH
Gamma(y)

Volume

MA
Intercept
ARCH
GARCH
Gamma
Volume

0.1052
0.0031
0.2065
0.6172
-0.4449

0.0954
0.0000
0.2524
0.5635
0.0001

0.1090
-2.4359
0.4012
0.7562
-0.3820
0.2345

0.1063
0.0000
0.1138
0.5405
0.2753
0.0001

0.0932
0.0033
0.2340
0.5565
(y)-0.4550
0.0044

2.92
5.030
7.13
10.51
-5.906

2.388
4.946
6.918
10.54
5.015

2.873
-6. 148
7.831
17.449
-5.441
2.339

2.622
5.258
4.457
9.279
4.339
4.548

2.479
6.022
7.546
10.226
-6.485
4.041

0.0018
0.0000
0.0000
0.0000
0.0000

0.0086
0.0000
0.0000
0.0000
0.0000

0.0021
0.0000
0.0000
0.0000
0.0000
0.0098

0.0044
0.0000
0.0000
0.0000
0.0000
0.0000

0.0067
0.0000
0.0000
0.0000
0.0000
0.0000

- D137.25

-5133.13

-5137.85

-5149.39

-5147.05

-5113.33

-5109.21

-5109.15

-5120.69

-5118.35
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Table 4.2 Pannel B Normality and Autocorrelation Test

Model JB Statistic | p-value Sti:?:tic p-value Sta]t;ils;tic"‘ p-value
38.48 0.0000 | 09849 | 0.2704 13.38 0.3420

g_ARCH(M) 35.27 00000 | 09864 | 05093 | 1793 | 01177
?ARCH(LU 35.56 00000 | 09848 | 02643 | 1740 | 0.1251
1(3%1;(;{1?:(:131) 34.74 0.0000 | 0.9866 0.5498 19.46 0.07801
GARCH (1,1) 40.04 0.0000 0.982 0.0325 14.69 0.2586
with volume
E’.GARCH (11) 87.30 0.0000 | 0.9859 0.4198 19.55 0.07613
with volume
T-GARCH
(1,1) With 36.86 00000 | 09829 | 007067 | 1921 | 0.083
Volume
P- GARCH 1,1)
with Volume 38.67 0.0000 | 09845 | 02178 23.25 0.0256

Note: JB stands for Jarque -Bera; SW for Shapiro-Wilk and LB stands for Ljung-Box.

LB statistics is for squared standard residuals.

In symmetric GARCH models, the
signs of the residuals (estimated
shocks) have no impact as we
consider only squared residuals ( af_{_)
in the GARCH equation. The negative
skewness in the return series (Tablel)
indicates the existence of leverage
effect and hence any asymmetric
GARCH model would be capable of
capturing such effect. The negative
(and significant) coefficient of leverage
in EGARCH confirms the leverage
effect.

However, when GARCH models are
augmented with exogenous variables
in the variance equation, TGARCH
(1,1) with volume as the exogenous

variable has given a better fit than
PGARCH(1,1). It may be noted that
all versions of the GARCH model use
only first-order autoregressive variance
and squared error terms. We have
tried with higher-order GARCH
models, but the results did not
improve.. The normality (Shapiro-Wilk)
and autocorrelation (Ljung-Box) tests
show that the conditional variances
(Table 4, Panel B) are normal and
uncorrelated. In other words, the
effect of hetroscedasticty in the
residuals has been controlled.

The GARCH(1,1) model in Table 4
(Panel A) reports that the conditional
volatility is stationary. Using the
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ARCH coefficient (0.2338) and the
GARCH coefficient (0.6053) of the
symmetric GARCH(1,1) model, the
half-life of variance is estimated as 4
days. This implies that volatility would
not persist for a long period. It may
be conjectured that frequent regulatory
interventions in the Indian capital
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markets have not allowed market
volatility to persist for long. Thus,
moving average model of volatility
prediction uses realized volatility of
the immediately past four days. These
results are presented in Table 5.
Results show that (Table 5, Panel A)
conditional volatility models better

Table 5: Evaluation Measures for Volatility prediction
Panel A: Correlation (r?) of general volatility forecast evaluation regression

Model e e
Random Walk 0.5007 0.3651
Historical Average 0.1413 0.2314
Moving Average 0.2170 0.3054
EWMA 0.3341 0.3515
GARCH 0.1464 0.3092
E-ARCH 0.3979 0.6074
T-GARCH 0.3685 0.5667
P-GARCH 0.3973 0.5667
GARCH Volume 0.1524 0.3163
E-GARCH Volume 0.3820 0.6189
T- GARCH Volume 0.3792 0.5859
-P-GARCH Volume 0.4289 0.6026
Pannel B: Standard Evaluation Measures
Model RMSE ( x 101) MAE ( x 102) Theil - U
Random Walk 0.5318
Historical Average 0.8378 0.5268 1.00
Moving Average 0.5137 0.5841 1.57
EWMA 0.4619 0.4507 0.96
GARCH(1,1) 0.5738 0.4161 0.86
E- GARCH (1,1) 0.3310 0.4448 1.07
T-GARCH (1,1) 0.3292 0.3757 0.62
P-GARCH (1,1) 0.3252 0.3509 0.61
GARCH Volume 0.5686 0.3758 0.61
E- GARCH Volume 0.3377 0.4322 1.06
T-GARCH Volume 0.3204 0.3788 0.63
P- GARCH Volume 0.3144 0.3446 0.60
0.3788 0.59
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predict actual volatility. In fact,
EGARCH (1,1) with volume as
exogenous variable has the Dbest
predictive power. It can also be
observed that R’ has significantly
improved for the same volatility
forecast when realized volatility V,: is
used in place of its poor cousin of
7";2' This result reiterates that even if
a researcher is interested in predicting
volatility over daily horizon, it is
always better to use v‘z as the proxy
for latent daily volatility (Andersen
et al., 2005).

Other standard measures (Table 5,
Panel B) show the superiority of
asymmetric GARCH models for
predicting volatility as compared to
historical average, moving average and
EWMA models. The prediction error
measures RMSE and Theil-U show that
the forecast error is minimum when
the PGARCH (1,1) model containing
the volume as an exogenous variable
in the variance equation model is used.
However, the MAE measure of
forecast error reports that the
TGARCH (1,1) model with volume as
an exogenous variable in variance
equation is a better predictor of one-
day ahead volatility. The Theil-U
statistic is a poor evaluator of
performance in our case as it treats
the random walk model as a
benchmark to compare the forecast
performance of other volatility models.
The poor forecasting ability of the

random walk model implies that the
market volatility is not a random walk
and hence can be conveniently
modeled. Results in Table 5 confirm
two distinct features of the Nifty: (a)
the 28 stylized fact of leverage effect
in volatility clustering, and (b) the
empirical evidence that greater the
volume of trade in the market, larger
is the market volatility.

It has been further observed that
where there is no asymmetric effect,
the standard GARCH models
dominate EGARCH, TGARCH and
non parametric models. The estimators
with t-distribution errors perform
slightly better than the normal fittings.
However, the non parametric models
provide the nearly identical results,
which disregard the innovation
distribution.

5.0 CONCLUSION AND FUTURE COURSE
OF ACTION

There have been attempts to model
and forecast stock return volatilities
in emerging markets. The present
paper attempted to model the volatility
in the index returns of the NSE, using
high frequency intra-day data covering
a period from June 2000 through -
January 2004. This paper has four
main findings:

(a) Existence of volatility clustering
in the Indian stock market;

(b) Evidence of leverage effect on
volatility;



() The change in volume of trade
positively  affecting
volatility.

market

The study has used intra-day data
over a period of about three and half
years. A longer period of study could
lead to different results. The paper
has not attempted to travel beyond
GARCH-type models to predict the
market volatility. The forecasting
performance of various volatility
models is gauged using standard
evaluation measures. It was observed
(Brooks and Persand, 2003) that
relative accuracies of the various
volatility models are highly sensitive
to the measure used to evaluate them.
While the parametric methods: model
the persistent, smoother aspects of
volatility, the nonparametric methods
model the highly nonlinear response
to large return shocks (Pagan and
Schwert, 1990). We intend to use
nonparametric methods in our future
research for modeling volatility.

From the study the following can be
the managerial learning (which have
been discussed earlier but put here
for better focus)

1. The empirical evidence points at
the fact that greater the volume of
trade in the market, larger is the
market volatility.

2. Half life of variance is 4 days
which implies that volatility does
not persist for a long period. This
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may be due to the fact that there
is frequent regulatory intervention
in the market; hence, market
volatility is not allowed to persist
for a long term. This may influence
the technical prediction done in the
market as most of them () depend
on moving average smoothing.
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