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ABSTRACT 
 
 

 

In our day-to-day life we encounter with different forms of wavesi. One such wave is 

shallow water waves which has the property of soliton. John Scott Russell was first to 

observe this phenomenon. In 1895, Diederik Korteweg and Gustav de-Vries derived the 

non-linear wave equation that depicts the shallow water waves. This non-linear 

differential equation is known as KdV equation. In this paper, we basically focused on 

finding the numerical solution of KdV equation and complex modified KdV equation. 

The paper is divided into six chapters. Chapter 1 contains the history of solitary waves 

and solitons. Brief introduction is given on KdV, differential quadrature method and 

multidomain. Chapter 2 has all necessary details about the KdV equation, its derivative, 

applications, etc. Chapter 3 includes different methods of differential quadrature for 

finding the weighting coefficients. In chapter 4, numerical experiments are carried out for 

KdV equations. Here, we considered two test problems to demonstrate the accuracy and 

efficiency of the proposed method. The results are presented in Tables and Figures. 

Chapter 5 include the numerical experiment for complex modified KdV equation. Here 

also we consider two test problems to show the accuracy and efficiency of our proposed 

method. Finally chapter 6 contains the conclusion part of this paper. 

 
KEY WORDS: KdV equation, complex modified KdV equation, differential quadrature 

methods, multidomain, quintic B-spline 
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Chapter 1

INTRODUCTION

In our surrounding, we encounter different forms of waves like sound waves, water

waves, tidal waves, magnetic waves, electric waves and many more. Their physical

appearance along with their propagation has always interested researchers for last

150 years . Here, we have consider shallow water waves that appear on the canal

water, occur due to small disturbance in the water surface.

1.1 History of Solition

The shallow water waves are the solitary waves that show the property of the solitons

i.e they retain their shape even if they collide with other similar waves. The soliton

phenomenon was first described in 1834 by John Scott Russell (1808 − 1882) who

observed a solitary wave in the union canal in Scotland. He produced the phenomenon

in a wave tank and named it the Wave of Translation. Here his original text as he
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1.1. HISTORY OF SOLITION Chapter 1

described is as follows

“I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped - not so the mass of water in

the channel which it had put in motion; it accumulated round the prow of the vessel

in a state of violent agitation, then suddenly leaving it behind, rolled forward with

great velocity, assuming the form of a large solitary elevation, a rounded, smooth and

well-defined heap of water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on horseback, and

overtook it still rolling on at a rate of some eight or nine miles an hour, preserving

its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the

windings of the channel. Such, in the month of August 1834, was my first chance

interview with that singular and beautiful phenomenon which I have called the Wave

of Translation”[1].

Russell did extensive experiments in his laboratory where he build a water tank to

replicate the phenomenon in order to study more carefully. While doing so Russell

have obtained the following results[26]

• Solitary waves are long shallow water waves of permanent form, hence he de-

duced that they exist, this is his most significant result.

• The speed of propagation c, of a solitary wave in a channel of uniform depth h

is given by c2 = g(h+ η), where η is the amplitude of the wave and g the force

due to gravity.

However, the significance was seen after a century later. In an numerical study by

Fermi, Pasta and Ulam (1955) they discovered soliton[2]. They were studying the
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1.2. SOLITARY WAVE AND SOLITON Chapter 1

heat transfer problem also known as FPU problem by a nonlinear springs connected

with 1D lattice. They thought energy will be equally shared in lattice in the initial

state, but no such thing was observed rather the system returned to its initial state

recurrently. Later, in 1965 Zabusky and Kruskal looked into the FPU problem and

derived an asymptotic description of oscillations of unidirectional[2, 3] waves propa-

gation that reduced to KdV equation. Then, the numerical study shows the existence

of types of solitary waves which behaves like particles just like photon, electron. So,

they called such solitary waves as solitons.

1.2 Solitary Wave and Soliton

A solitary wave is a non-linear and localized wave which propagates without change of

its properties(shape, velocity, etc)[26]. In 19th century, Solitary wave first came into

notice in hydrodynamics[3, 4]. The name ‘solitary wave’ was suggested by John Scott

Russell. It arises from a balance between non-linear and dispersive effects. Mostly in

solitary waves the width depends on the amplitude.

Where as soliton is a solitary wave that behave like ‘particle’. It

was Zabusky and Kruskal[4] who named a solitary wave with the particle property as

‘soliton’. Soliton represents permanent form of a wave. It is localized like a solitary

wave so that it decays or approaches a constant value at infinity. It is stable and

retains its shape even after collisions with other similar waves. Solitons are the solu-

tions of many weakly, non-linear dispersive, partial differential equations describing

physical systems.
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1.3. FPU RECURRENCE Chapter 1

1.3 FPU Recurrence

In 1954 , the phenomenon of recurrence in non-linear system was first observed by

Fermi, Pasta and Ulam[8]. They studied the thermalization process of a solid[5]. The

idea was to observe the non-linear interaction that leads to the energy equipartition

between large number of degree of freedom in the mechanical chain[46]. Instead of the

energy equipartition they observed that after a time a recurrence to the initial data

was achieved. This recurrence phenomenon was known as Fermi-Pasta-Ulam(FPU)

problem[8, 46]. There are many theoretical and experimental proves that shows the

existence of the FPU recurrences. Few were discussed here. Ermoshin(et.al)[6], stud-

ied the quantum mechanical wave-packet revivals and the cases of recurrence in cou-

pled and uncoupled oscillators were also demonstrated. Ruban[7], studied the two-

dimensional free-surface potential flows of incompressible fluid over a constant depth

and gravity. And showed the FPU recurrence in the system. Kuznestsov[8] does a nu-

merical study on one-dimensional NLSE (Non-Linear Schrödinger Equation). They

explained the FPU recurrence in NLSE and shown that the FPU recurrence takes

place not only for condensate but for cnoidal wave too. Shmid and et.al studied

the coupled blood pressure dynamics and heart electrical dynamics[9]. They demon-

strated the FPU recurrence in electrical activity of the heart. FPU spectra shows

different states of cardiovascular system. A comparative study proved that the FPU

spectra can be useful for diagnostics and also for evaluation of the therapeutic ar-

rangements results.
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1.4. THE KDV EQUATION Chapter 1

1.4 The KdV Equation

In sec(1.1), we discussed about the history of solitary wave which was described by

Scott-Russell. Many investigations were undertaken by different mathematicians and

physicists like by Airy (1845), Stokes (1847), Boussinesq (1871, 1872) and Rayleigh

(1876) in an attempt to understand this phenomenon. Then in 1895, Diederik Ko-

rteweg and Gustav de-Vries derived a non-linear wave equation which is known as

KdV equation that was named after them and was mathematically represented as[1],

ux(x, t) + ξupux(x, t) + µuxxx(x, t) = 0 (1.1)

where p, ξ and µ are the real positive parameters. The non-linear term upux causes the

steeping of the wave form and the dispersive term uxxx make the wave form spread.

Now, these two parts give rise to solitons, which represents waves of permanent form.

Thus we can say that KdV equation is the most simplest form of non-linear partial

differential equation that can be used in studying of solitary waves or solitons.

1.5 Differential Quadrature Method(DQM)

Now-a-days, Differential Quadrature Methods are widely used numerical approxima-

tion techniques to solve the initial and boundary value problems. When compared

with other numerical methods like FDM(Finite Difference methods), FEM(Finite

Element Methods) etc. Differential Quadrature Method(DQM) shows excellent nu-

merical results in terms of accuracy and efficiency [10]. With few mesh points only

we can get high-precise solutions, convergence rate is good and also it requires less
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1.6. MULTI-DOMAIN DIFFERENTIAL QUADRATURE METHOD Chapter 1

computational space[10, 11]. DQMs was first introduced by Bellman et al.(1971, 1972)

[10]. Now, we will go into little detail of differential quadrature methods of different

orders. Differential Quadrature Method is defined as approximation to derivatives

of a function with respect to a coordinate direction which is expressed as a linear

weighted sum of all the functional values at all the mesh points along that direction.

The differential quadrature method was taken from the idea of integral quadrature.

It was first proposed by Bellman and his associates in 1972.

The mathematical representation of differential quadrature[10] was given by

f (p)
x =

N∑
j=1

W
(p)
ij f(xj), i = 1, 2, 3, ......., N (1.2)

where f
(p)
x is the pth order derivative of the function f w.r.t the variable x and W

(p)
ij

are the weighting coefficients. The main work here is to determine the weighting coef-

ficients which can be done by using function approximation methods. DQM is based

on polynomial approximation because of which the differential quadrature relating

to it known as Polynomial-Based Differential Quadrature (PDQ). This methods are

used in analysing the numerical solutions of the time dependent partial differential

equations. And out these methods most widely used methods are Lagrange based

differential quadrature method and Fourier based differential quadrature methods.

1.6 Multi-domain Differential Quadrature Method

Since, differential quadrature approximation is based on polynomial approximations.

So it is easy to carry out any problem of one-dimension using differential quadra-

ture method. But, most of the engineering problems are of multi dimensions i.e
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1.7. OBJECTIVES Chapter 1

two-dimensional or three-dimensional or more. So, we need to extend differential

quadrature approximation from one-dimension to higher-dimension. In order to do

so, Shu(1991) gave a suggestion that one-dimensional polynomial based differential

quadrature can be extended to multi-dimensional forms if the domain is regular i.e

a rectangular domain or spherical domain. Now, the multidomain technique[10] is

used in which the computational domain is decomposed into several sub domains.

Then each sub domain generated local grid points and local differential quadrature

technique is applied in the same manner as in a single domain case. The neighbouring

subdomains got the information through the interface.

We will go deep into each topic in the successive chapters and its

involvement in our work

1.7 Objectives

• To approximate the numerical solutions of one-dimensional KdV equation and

complex modified KdV equation.

• Using Differential Quadrature Method as the tool to solve the system of equa-

tions.

• To introduce multi-domain differential quadrature, to find the weighting coeffi-

cients.

10



Chapter 2

THE KORTEWEG-de

VRIES(KdV)EQUATION

In this chapter we will discuss about the the KdV equation in detail. As we know

John Scott Russell was first to describes the solitary wave in 1834. Later many inves-

tigation were done to understand the phenomenon, then in 1895 Diederik Korteweg

and Gustav de-Vries gave the partial differential equation which depicts the model of

the solitary wave[1, 26]. Here, the main focus is given on the derivation of KdV equa-

tion, few conservation laws, area of applications, its different forms and theoretical

review of Korteweg-de Vries equation.
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2.1. DERIVATION OF KDV EQUATION Chapter 2

2.1 Derivation of KdV Equation

In this section, we presented the derivation of KdV equation. We considered a two

dimensional hydrodynamic wave problem. In figure 2.1 , we can see a solitary wave

is moving along the x-axis. At rest, height of water is h, the height of solitary wave

is a and the length of solitary wave is l. From the following assumptions we can get

a wave equation of KdV type.

• A 2-dimensional problem, independent of z-axis.

• Mass density of water is constant.

• Irrotational flow of water.

• Boundary conditions:

1. No flow of water across the river bed.

2. No flow of water across the free surface.

3. Pressure should be constant at the free surface.

• Neglecting the viscosity.

• 1. If h� l

2. If a� h

• The waves move in one direction i.e along the x-axis.

By considering our first assumption, the velocity of the fluid can presented in the

form of

−→v (x, y, t) =

(
u(x, y, t)

v(x, y, t)

)
12



2.1. DERIVATION OF KDV EQUATION Chapter 2

Figure 2.1: Schematic view of geometry of KdV equation

From our second assumption, the equation of mass conversation

∂p

∂t
+∇.(ρ−→v ) = 0

can be simplified as

0 = ∇.−→v = ux + vy (2.1)

From our third assumption, the velocity potential is given as

∇×−→v =
−→
0 ⇒ −→v = ∇ϕ

u = ϕx, v = ϕy

(2.2)

From eqn(2.1) and eqn(2.2) we get the Laplace’s equation

∆ϕ = ϕxx + ϕyy = 0 (2.3)

The above equation gives a nonlinear equation at its boundary. From fourth(1)

assumption, ∀ x and t the velocity component v vanishes at y = 0 for all x and t, we

13



2.1. DERIVATION OF KDV EQUATION Chapter 2

get

v(x, 0, t) = ϕy(x, 0, t) = 0 (2.4)

The free water surface whose boundary condition is not fixed but evolves in time,and

so it is called free boundary problem. The equation for free water surface is given by

y = η(x, t) ≡ h+ q(x, t)

Again from fourth(2) assumption mass element remains constant, hence the coordi-

nate is given by

y(t) = η(x(t), t)

Taking t-derivatives we get,

v =
dy

dt
=
∂η

∂x
u+

∂η

∂t

or

ϕy =
∂η

∂x
ϕx +

∂η

∂t
(2.5)

Last boundary condition i.e the fourth(3) assumption where pressure p is kept con-

stant gives the conservation of momentum which is called as Navier-Stokes’s equations

or the Euler’s equation for an ideal fluids given as

d−→v
dt
≡ ∂−→v

∂t
+ (−→v .∇)−→v = −1

ρ
∇p−

(
0

g

)

14



2.1. DERIVATION OF KDV EQUATION Chapter 2

where p is the fluids’s and g is the gravitational acceleration.

As 1
2
∇(−→v .−→v ) = (−→v .∇)−→v +−→v × (∇×−→v ) and from eqn(2.2), we get

∂

∂t
∇ϕ+∇(

1

2
|−→v |2) +∇(

p

ρ
+ gy) =

−→
0

and hence

ϕt +
1

2
(∇| → v|)2 +

p

q
+ gy = C

From fourth(3) assumption we take p = p0 at the free surface and differentiating w.r.t

x, we get

ut + uux + vvx + gηx = 0 (2.6)

Let us expand the velocity potential into a power series w.r.t y,

ϕ(x, y, t) = Σ∞n=0y
nϕn(x, t)

Since in eqn(2.3) the velocity potential satisfies Laplace’s equation, hence we get

∂2

∂x2
ϕ = Σ∞n=0y

n ∂
2

∂x2
ϕn(x, t)

∂2

∂x2
ϕ = Σ∞n=2n(n− 1)yn−2ϕn(x, t)

= Σ∞n=0(n+ 2)(n+ 1)ynϕn+2(x, t)

For ϕn where nεN , we have the recurrence relation as

∂2

∂x2
ϕn(x, t) + (n+ 2)(n+ 1)ϕn+2(x, t) = 0

15



2.1. DERIVATION OF KDV EQUATION Chapter 2

From eqn(2.4) the boundary condition gives

0 =
∂

∂y
ϕ(x, y, t)|y=0 = Σ∞n=1ny

n−1ϕn(x, t)|y=0 = ϕ1(x, t)

Hence from the above equation, we get

n = 0 :
∂2

∂x2
ϕ0 + 2.1.ϕ2 = 0

n = 1 :
∂2

∂x2
ϕ1 + 3.2.ϕ3 = 0

⇒ ϕ3(x, t) = 0

n = 2 :
∂2

∂x2
ϕ2 + 4.3.ϕ4 = 0

n = 3 :
∂2

∂x2
ϕ3 + 5.4.ϕ5 = 0

⇒ ϕ5(x, t) = 0

Thus all odd ϕn vanishes and the even ϕn can be expressed as even x-derivatives of

ϕ0 i.e

ϕ(x, y, t) = Σ∞n=0y
2n (−1)n

(2n)!
(
∂

∂x
)2nϕ0(x, t) (2.7)

From sixth assumption we considered the parameters

α ≡ a

h
� 1, β ≡ h2

l2
� 1

which are assumed to be magnitude of same order and analyze the problem with

asymptotic limit α, β → 0. Now transforming the variables and equations into a

16



2.1. DERIVATION OF KDV EQUATION Chapter 2

dimensionless form, we denote all the variables into small letters and substituting as

x→ lx

y → hx

t→ l

c
t

q → aq

ϕ→ gla

c
ϕ

where

c ≡
√
gh

denotes a typical velocity. It can be shown equal to the velocity of linear water

waves in the lowest order of approximation. The units which we choose are different

because of two dimensionless quantities α and β. So, choosing any other units except

the present ones we get different asymptotic limit of the wave equation. So, after the

transformation, the dimensionless equation of the free surface is given by

y = η(x, t) = 1 + αq(x, t) (2.8)

Eqn(2.5) equals to

ϕy = qxϕx + qt

Substituting the variables we get,

gla

c

1

h
ϕy =

a

l

gla

c

1

l
qxϕx +

ac

l
qt

17



2.1. DERIVATION OF KDV EQUATION Chapter 2

Multiplying l
ac

, we get

1

β
ϕy = αqxϕx + qt (2.9)

Transforming eqn(2.6) into dimensionless form , we have

ϕxt+ αϕxϕxx+
α

β
ϕyϕyx+ qx = 0 (2.10)

The dimensionless form of the power series expansion of ϕ in eqn(2.7), we have

ϕ(x, y, t) = Σ∞n=0y
2n (−1)n

(2n)!
βn(

∂

∂x
)2nϕ0(x, t) (2.11)

= ϕ0(x, t)− β

2
y2ϕ0xx(x, t) +

β2

24
y4ϕ0xxxx(x, t)∓ · · · (2.12)

Let w(x, t) ≡ ϕ0x(x, t). Substituting eqn(2.12) in eqn(2.9) and eqn(2.10) and by using

eqn(2.8), we have the asymptotic form

wx + qt + α(qw)x −
β

6
wxxx = O2 (2.13)

wt + qx + αw(w)x −
β

2
wxxt = O2 (2.14)

where O2 is term for quadratic and higher order in α and β. considering the constant

terms only, eqn2.13 and eqn(2.14) reduces to

wx = −qt, wt = −qx

Differentiating above equation we get w.r.t x we get

wxx = −qtx = −qxt = wtt (2.15)

18



2.1. DERIVATION OF KDV EQUATION Chapter 2

and for q

qxx = qtt (2.16)

These are 1-dimensional linear wave equations for w and q with dimensionless wave

velocity 1. This confirms the physical meaning of typical velocity c. The solutions of

eqn(2.15) and eqn(2.16) are known as travelling wave trains which are of the form

w(x, t) = f(x± t), q(x, t) = F (x± t)

with arbitrary functions f and F . From seventh assumption q is travelling to right,

so q(x, t) = F (x− t). As

wx = f ′(x± t) = −qt = F ′(x− t)

wt = ±f ′(x± t) = −qx = −F ′(x− t)

By our assumption, the consistent solutions of eqn(2.15) and eqn(2.16) are of the

form

w(x, t) = f(x− t), f(ξ) = F (ξ) + C

the constant C vanishes as q and w vanishes for |ξ| → ∞, so we have

w(x, t) = q(x, t) = F (x− t) (2.17)

Eqn(2.13) and eqn(2.14) represents two coupled nonlinear partial differential equa-

tions. By using qxt = qtx we can decoupled these equations but it leads to second

order time derivative whereas KdV is of first order. So, we substitute eqn(2.17) in

eqn(2.13) and eqn(2.14). For which we can use w = q and wt = −wx in the first order

terms of the difference between eqn(2.13) and eqn(2.14) to get a more symmetric

19



2.1. DERIVATION OF KDV EQUATION Chapter 2

relation of the form

wt − qt +
α

2
qqt −

β

3
qxxt = wx − qx +

α

2
qqx −

β

3
qxxx (2.18)

here we replaced the term O2 with 0. We get the equation of the form

∂

∂x
G(x, t) =

∂

∂x
G(x, t)

where

G(x, t) = w − q +
α

4
q2 − β

3
qxx

Let the general solution be G(x, t) = g(x + t). As the difference between w − q is of

linear order O(α, β), we can write

w = q − α

4
q2 +

β

3
qxx + αg1(x+ t) + βg2(x+ t)

According to our seventh assumption, the disturbance αg1(x + t) + βg2(x + t) that

travels to the left vanishes.So, g1 = g2 = 0 Thus substituting w = q − α
4
q2 + β

3
qxx

in eqn(2.13) or eqn(2.14)and using w = q and wt = −wx in the first order terms we

obtain

qt + qx +
3α

2
qqx +

β

3
qxxx = 0 (2.19)

This is a modified KdV equation due to the term qx but this term will disappear if

we consider q → q +C. But the problem in our transformation is that it is unreal as

C = O(α−1) will be large and it may violate the boundary conditions. Hence we have

the modified KdV equation (2.19) that admits one soliton solutions of the hyperbolic

secans form.
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2.2 Conservation Laws of KdV Equation

We know KdV equation has infinitely many conservation laws. Here, we discuss about

the three basic conservation laws of the equation. For which we considered three basic

quantities.

• Mass =
∫∞
−∞ udx

• Momentum =
∫∞
−∞ u

2dx

• Energy =
∫∞
−∞(1

2
ux − u3)dx

Now, by using the KdV equation of the form,

ut + (3u2 + uxx)x = 0 (2.20)

For the conservation of mass,

∫ ∞
−∞

udx = constant

Thus, it proves conversation of mass. Now, multiplying and integrating eqn(2.10) by

2u and integrating, we get

d

dx

∫ ∞
−∞

u2 + 4

∫ ∞
−∞

u3
xdx+ 2

∫ ∞
−∞

uuxxxdx = 0
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Assuming u→ 0 and ux → 0 as |x| → ∞ the above equation reduced to

d

dt

∫ ∞
−∞

u2dx = −4u3
x|∞−∞ − 2

∫ ∞
−∞

uduxx

= −2uuxx|∞−∞ + 2

∫ ∞
−∞

uxuxxdx

= (u2
x)x|∞−∞

= 0

⇒ ∫ ∞
−∞

u2dx = constant

Thus, conservation of momentum is proved. Again, multiplying 6u2 with eqn(2.10)

and integrating we get,

2
d

dt

∫ ∞
−∞

u3dx+ 9

∫ ∞
−∞

u4
4 + 6

∫ ∞
−∞

u2uxxxdx = 0

Since, we already assumed u→ 0 and ux → 0 as |x| → ∞, we get

d

dt

∫ ∞
−∞

u3dx = −6

∫ ∞
−∞

u2dxx

= −6uuxx|∞−∞ + 12

∫ ∞
−∞

uuxuxxdx

= 6

∫ ∞
−∞

udu2
x

= −6

∫ ∞
−∞

u3
xdx

(2.21)

Now, differentiating eqn(2.10),we get

uxt + 6u2
x + 6uuxx + uxxx = 0
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Multiplying 2ux with above equation we get,

d

dt

∫ ∞
−∞

u2
xdx = −12

∫ ∞
−∞

u3
xdx− 6

∫ ∞
−∞

udu2
x − 2

∫ ∞
−∞

uxduxxx

= −6

∫ ∞
−∞

u3
xdx+ 2

∫ ∞
−∞

uxxuxxxdx

= −6

∫ ∞
−∞

u3
xdx+ u2

xx|∞−∞

= −6

∫ ∞
−∞

u3
x

(2.22)

From eqn(2.11) and eqn(2.12), we get,

d

dt

∫ ∞
−∞

(u3
x − 2u2)dx = 0

⇒
∫ ∞
−∞

(
1

2
u3
x − u2)dx = constant

Thus, conversation of energy is proved.

2.3 Application Area

With the remarkable discovery of KdV equation and its soliton property opens the

gateway to investigate other physical phenomena. KdV equation has approximately

describes the evolution of long, one-dimensional waves including: Shallowwater with

weakly nonlinear restoring forces, long internal waves in a density-stratified ocean, ion

acoustic waves in a plasma, acoustic waves on a crystal lattice, nonlinear evolution of

plasma waves, for propagation of transverse waves in a molecular chain, generalised

elastic solid, travelling waves, double homoclinic orbit, even now travelling waves of

tsunami and red spot of Jupiter can be explained by the KdV equation[25]. KdV
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plays important role in the development of soliton theory that had lasting impact

on today’s researches. The theory allows us to study the waves in canals, surface

waves near beaches and even under the ocean surface. Soliton solution always inter-

ested researchers from the background of oceanography and geophysics. Few of its

applications were discussed below.

Internal solitons in the ocean

The internal solitons[25, 26] were seen in the seas in the far east, are very large and

dangerous for humans. Even in Andaman sea, these waves were experienced by areas

of oil drilling machines. Photos from satellites confirmed that surface waves of vary

low amplitude were generated by an internal surface wave resonance mechanism.

The presence of such waves supports the theory of kdv internal solitons. Similarly,

observations of large amplitude waves were seen in the Sulu sea of southwestern side

of Philippines. Many studies shown the presence of oceanic internal solitons in the

strait of Messina, Gulf of California etc. These large amplitude waves are weekly

non-linear and are of long wavelength that can be described by KdV and the KdV

theory indeed gives an excellent explanation of all their features.

Nonlinear Acoustics of Bubbly Liquids

One of the best application of KdV is that its application on the Propagation of non-

linear acoustic waves in liquids with gas bubbles[25]. Even for small concentration

of gas bubbles they have incredible acoustic properties. The bubble theory of liquids

modelled as two co-existing continua and there is a difference between prediction
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or observation for pure liquid or gas phase. And this prediction or observation of

the liquid with gas bubble concentration produces finite number of solitons with no

shock-like features under appropriate circumstances.

Magma Flow and Conduit Waves

KdV theory is not confined to only mathematics and physics instead it plays incred-

ible role in several areas of geophysics[25, 26]. Like in conduit flows, buoyant fluid

introduced below the layer of greater viscosity, rises through a conduits was created

with buoyancy and viscous shear stress which balances the study flow of fluid in

a conduit of uniform area. Any variation in the rate of supply generates balanced

lumps of conduit waves that propagates upward. And it was thought such diffusion

free conduit wave transport magma from Earth’s interior to the surface due to which

hot spots and volcanic island chains were formed. Though its study is far beyond

the reach of the KdV limit but the properties of KdV helps in understanding the

experiment like the way they were conducted and the inferences.

Another Phenomenon of geophysics, where KdV plays a role is

compaction-driven flow in which buoyant melt is forced through deformable porous

crystalline matrix on the Earth’s mantle and corresponds to the viscous liquid outside

to a conduit. These solitary waves are called magmons[25] but collision between two

magmons is not confined to phase shifts only. Magmons are different from conduit

waves as they do not transport matters, rather the particles of the fluid experiences

a finite displacement in the passage of a magmons whereas in conduit solitary waves,

transportation of matter takes place through mantle of the earth with negligible

diffusion. It has been assumed that in every 500 million years, the occurrence of
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single solitary wave would double the magma flux to the Earth’s surface which was

produced by steady flow in the same conduit.

Jupiter

Till dated, the best application of KdV theory was in understanding the GRS(Great

Red Spot)[25] features of South Equatorial Disturbances, the Dark South Tropical

Streak, the White Oval and South Tropical Disturbances. The atmospheres of rapidly

rotating planetary objects, the linear waves modes are highly dispersive westward-

propagating Rossby waves. The long waves travels with highest velocity and are

weakly dispersive in nature that leads to a KdV type cubic dispersion. Such wave

can preserve for longer period of time, for which the vertical structures should be

anticyclonic. This anticyclonic circulation can be observe on the planets like Jupiter,

Saturn and Neptune. The vertical structure of the non-linear approximation is fea-

tured by KdV. So, by KdV theory we can explain various occurrences that happened

in planetary atmospheres.

Plasma physics

KdV play important role in plasma physics also[25]. Plasma waves were seen in

hydromagnetics and in ion-acoustic waves in a cold plasma. Ion-acoustic waves gives

the first experimental evidence of cylindrical KdV solitons. The cylinder containing

plasma was excited by providing bias voltage across the plasma sheath. We can

observe soliton like structure from both direction of the axis when input signals are

given by the speed of soliton increases in comparing to the speed of ion-acoustic
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low-frequency speed. Though, integrable study of cylindrical KdV was done but the

experimental test of plasma is difficult and are of high cost. The two non-linear

weakly waves are not integrable so we need to consider only one way waves for a

period such that CKdV gave the diverging waves because of creation of plasma at

the inner radius of the cylinder and creating these diverging waves on the surface of

water is difficult.

Tsunami

The most recent application of KdV equation is understanding the evaluation and

propagation of waves of tsunami[25−27]. A tsunami is a very long ocean wave caused

by an underwater earthquake, a submarine, volcanic eruption or may be due to land

slide. As KdV equation is used to describe shallow water waves of long wavelength

and small amplitude. So, it was assumed that the propagation of tsunami waves are

along single direction. That can be shown by KdV equation as KdV equation can be

elevated and travels faster with amplitude. For future research scientist can show 3D

tsunami wave can be studied using this.

The periodic wave solution were used by coastal engineers to study sediment move-

ment, erosion of sandy beaches and other costal occurrences. Even in atmospheric

science this model helps to study the inertia-gravity waves, vortex interactions and

Rossby waves.
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2.4 Different Forms of KdV Equation

As we have discussed in chapter 1 about the Korteweg de-Vries(KdV) Equation, its

history and its implications too. Here, we gave some of its important forms.

Modified Korteweg de-Vries(MKdV) Equation

The modified korteweg de-vries equation has numerous applications. Like MKdV

appears in plasma and even in pulse travelling solution[15]. This problems even aries

while evaluating long-time nonlinear wave equation[16]. And the modified Korteweg

de-Vries eqaution is given as

ut + 6u2ux + uxxx = 0, xεR

Complex Korteweg de-Vries(CKdV) Equation

In various field of physics and mathematics, complex KdV equation appears. Mostly,

in non-linear optics context of solitons and in plasma physics. While studying the

solitons through optical fibers, this equation of cKdV was seen. Even in Sasa-

Satsuma equation, the propagation of solitons through optical fibers also gives cKdV

equation[22− 24]. The general equation is given by

wt + a|w|mwx + bwxxx = 0
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where q represents complex variable and x and t are independent variables. And a

and b are real valued constants.

Complex Modified Korteweg de-Vries(CMKdV) Equation

As nature has shown various phenomena relating to partial differential equations like

plasma waves, propagation of transverse waves in a molecular chain model[18] and

a generalized elastic solid. Because of which researchers deal such problems with

complex modified KdV equation. The complex modified Korteweg de-Vries equation

is given as

∂w(x, t)

∂t
+ α

∂(|w(x, t)|2w(x, t))

∂x
+
∂3w(x, t)

∂x3
= 0

where w is complex valued function of the spatial coordinate x and the time t, α is a

constant parameter.

Coupled Korteweg de-Vries Equation

The coupled KdV equation[12− 14] are studied due to its significance importance in

theoretical physics and other scientific applications. Interest in couple KdV equation

arises because of soliton’s property after collision. As it is easy to distinguish between

two KdV solitons before and after collision but at the time of interaction of the

two solitons it creates some confusions. To clarify such confusions coupled KdV

equation were introduced and studied. Some examples where coupled KdV were

involved are singularity analysis of prolongation technique for developing new coupled

KdV equation and spectral problem with three potentials for developing hierarchy of
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coupled KdV equation. We can see different types of coupled KdV equation. Like,

∂tuk + ∂x[
uk
2

N∑
j=1

uj + ∂2
xuk] = 0, k = 1, 2, ...., N

For N > 1, this system of coupled equations gives a symmetrical multi component

KdV equation. Again, the system equations

rt = −rxxx +
7

4
rrx + ssx −

5

4
(rs)x

st = −sxxx +
5

4
rrx +

7

4
ssx − 2(rs)x

and

rt = −rxxx − 3rrx − 3wwx

st = −sxxx − 3ssx − 3wwx

wt = −wxxx −
3

2
(rw)x −

3

2
(sw)x

represents the hierarchy coupled KdV equation. And again considering two-layer fluid

model, we get systems of equation

q1t + Jψ1, q1 + βψ1x = 0

q2t + Jψ2, q2 + βψ2x = 0

where

q1 = ψ1xx + ψ1yy + F (ψ2 − ψ1)

q2 = ψ2xx + ψ2yy + F (ψ1 − ψ2)
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and

Ja, b ≡ axby − bxay

This equations help in deriving coupled KdV equation by Multiple scale-approach.

KdV was originally derived to explain the shallow water waves in rectangular channels

with constant depth. However, by doing some modification and extension in the

original equation we can modelled them to explain and help in understanding of the

waves like ion-acoustic wave, hydrodynamic waves in plasma, acoustic waves on a

crystal lattice and many more.

2.5 Summary of Theoretical review

The most common water waves that we encounter normally are waves at the beach

that caused because of action of wind or tides, waves by throwing stones on the pond,

by a ship or by the raindrops in river. Such water waves are known as shallow water

waves or solitary waves because of their soliton properties. This solitons acts like a

particle and shows similar behaviour as a particle. The mathematical model of such

waves is represented by Korteweg-de Vries (KdV) equation and we already discussed

about KdV equation in previous sections. There are numerous experiments that were

conducted and studied by researchers that concluded this property. Now, we will go

a little further into the details of theory of this equation, how it may fits in our topic.

Thus, we want to know whether differential quadrature and multi-domain in KdV

equation gives better results or results similar to previous ones or not.

Some of the previous papers like Saka[17] used cosine expansion

based differential quadrature method to find the numerical solution of KdV equation.
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And the result shows that CDQM gives more accurate solution with only few discrete

points. So, this can be used as alternative numerical method to find accurate result of

any differential equation. Korkmaz and Dağ[18]used cosine expansion based differen-

tial quadrature method to evaluate the numerical approximation results of CMKdV

equation. The results shows high accuracy results. Including that the cost of compu-

tation comparing to others is very low. Korkmaz[19]again studied numerical solution

of KdV equation by using Lagrange polynomial based differential quadrature(PDQ)

and cosine expansion based differential quadrature(CDQ) methods. The numerical

approximation results of KdV equation comparing with both the quadrature methods

shows that CDQ gave the best results with high accuracy, better memory storage and

less computational cost.

Ma and Sun[20] applied a Legendre-Petrov-Garlerkin Chebyshev

Collocation method on nonlinear problem like Korteweg-de Vries equation along with

multidomain decomposition. Though they did not get the required results but still

constructing such method with multidomain technique is very interesting. Pavoni[21]

used Chebyshev Collocation algorithm for the numerical approximation of Korteweg-

de Vries equation along with single and multidomain decomposition method. The

method seems to be very natural. The flexibility nature of multidomain method

makes it easier for the differential equation problem to be very accurate near the

discrete points where solution can be obtained more precisely.

Thus in this paper we want to use differential quadrature method along

with multidomain decomposition technique to study the numerical approximation of

Korteweg-de Vries (KdV) equations. And compare its results and nature with results

of other numerical techniques.
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Chapter 3

DIFFERENTIAL QUADRATURE

METHODS

In this chapter, we will be discussing about the different methods of differential

quadrature and their recurrence formulas for determining the weighting coefficients.

3.1 Lagrange Based Differential Quadrature

In this method, Lagrange interpolating polynomials are used as base functions. Let

us consider a set of Lagrange interpolating polynomial as[10, 29]

rk(x) =
M(x)

(x− xk)M (1)(xk)
, k = 0, 1, 2, ........N (3.1)
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where

M(x) = (x− x0)(x− x1)...(x− xN)

and

M (1)(xk) =
N∏

l=0,l 6=k

(xl − xk)

constitutes an N + 1 dimensional vector space and used as the test function for

determining the weighting coefficients. After doing some calculations and using dif-

ferential quadrature approximation given in eqn(1.2), the weighting coefficients of the

first order derivatives are given by

aij =
M (1)(xi)

(xi − xj).M (1)(xj)
, i 6= j, i, j = 1, 2, 3, ........N (3.2)

For determining the diagonal weighting coefficients, the test function gk(x) = 1 is

chosen from the set of test functions gk(x) = xk, k = 0, 1, ....., N . So the diagonal

weighting coefficients are given by

N∑
j=1

aij = 0 or aii = −
N∑

j=1,j 6=i

aij , i = j (3.3)

Similarly, the weighting coefficients for second order derivatives are given by

bij = 2aij[aij −
1

(xi − xj)
] , i 6= j (3.4)

and
N∑
j=1

bij = 0 or bii = −
N∑

j=1,j 6=i

bij , i = j (3.5)
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And the Recurrence Formulaes for weighting coefficients of higher order derivatives

are given by

wij = m[wm−1
ii aij −

w
(m−1)
ij

(xi − xj)
] , i 6= j, m = 2, 3, .....N − 1 (3.6)

and
N∑
j=1

w
(m)
ij = 0 or w

(m)
ii = −

N∑
j=1,j 6=i

w
(m)
ij , i = j (3.7)

3.2 Fourier Expansion Based Differential Quadra-

ture

Here fourier series expansion is used for the approximation of f(x), which is of the

form[48]

f(x) = c0 +

N/2∑
k=1

(ckcoskx+ dksinkx)

Now, f(x) constitutes a (N + 1) dimensional vector space. In linear vector space

there are two typical sets of base vectors, which are used in the formulation of FDQ

1, cosx, sinx, cos2x, sin2x, ...., cos(Nx/2), sin(Nx/2)

and

sk(x) =
S(x)

q(xk)sin
x−xk

2

, k == 0, 1, ...., N

where

S(x) =
N∏
k=0

sin
x− xk

2
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q(xi) =
N∏

k=0,k 6=i

sin
xi − xk

2

So after some calculations, the weighting coefficients of first order derivative are de-

termined by

aij =
q(xi)

2sin
xi−xj

2
q(xj)

, j 6= i (3.8)

and by using the base vector 1, we get

N∑
j=1

aij = 0 or aii = −
N∑

j=1,j 6=i

aij , i = j (3.9)

Similarly, the weighting coefficients for second order derivative are given by

bij = aij[2aij − cot
xi − xj

2
], j 6= i (3.10)

and
N∑
j=1

bij = 0 or bii = −
N∑

j=1,j 6=i

bij , i = j (3.11)

3.3 Cosine Expansion Based Differential Quadra-

ture

Here fourier series expansion is used for the approximation of an even function f(x),

which is of the form[10, 17]

f(x) = d0 +
N∑
k=1

dkcoskx
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Now, in a linear vector space of N + 1 dimension, two typical sets of base vectors are

used to determine the CDQ

Ck(x) = cos(kx), k = 0, 1, 2, ......, N

and

Ck(x) =
C(x)

P (xk)(cosx− cosxk)
, k = 0, 1, 2, ....., N

where

C(x) =
N∏
k=0

(cosx− cosxk)

P (xi) =
N∏

k=0,k 6=i

(cosxi − cosxk)

after doing some calculations and using eqn(1.2), we get the first order weighting

coefficients of CDQ as

aij =
−P (xi)sin(xi)

(cosxi − cosxj)P (xj)
, j 6= i (3.12)

and
N∑
j=1

aij = 0 or aii = −
N∑

j=1,j 6=i

aij, i = j (3.13)

Similarly, weighting coefficients for second order derivative are given by

bij = aij(
2sinxi

(cosxi − cosxj)
) + 2aii + cotxi, j 6= i (3.14)

and
N∑
j=1

bij = 0 or bii = −
N∑

j=1,j 6=i

bij, i = j (3.15)
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And for the higher order derivative weighting coefficients are given by

w
(3)
ij = 3w

(1)
ij (w

(2)
ii −

1

3
+ w

(1)
ii cotxi +

cosxi
cosxi − cosxj

) +
3sinxi.w

(2)
ij

cosxj − cosxj
, i 6= j (3.16)

3.4 Sine Expansion Based Differential Quadrature

Here fourier series expansion is used for the approximation of an odd function f(x),

which is of the form[10]

f(x) =
N∑
k=1

dkcoskx

Now, in a linear vector space of N + 1 dimension, two typical sets of base vectors are

used to determine the SDQ

Sk(x) = sin(kx), k =, 1, 2, ......, N

and

Sk(x) =
sinxCk(x)

sinxk

where

Ck(x) =
C(x)

P (xi)(sinx− sinxi)

where

C(x) =
N∏
k=1

(sinx− sinxi)

P (xi) =
N∏

k=1,k 6=i

(sinxi − sinxk)
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after doing some calculations and using eqn(1.2), we get the first order weighting

coefficients of SDQ as

aij =
−P (xi)sin

2xi
(cosxi − cosxj)sinxj.P (xj)

, j 6= i (3.17)

and

aii = c
(1)
i (xj) + cotxi, (3.18)

Similarly the second order weighting coefficients are given by

bij = aij(
2sinxi

(cosxi − cosxj)
+ 2aii + cotxi, j 6= i (3.19)

and

bii = C
(2)
i (xi) + 2cotxi.C

(1)
i (xi) i = j (3.20)

And for the higher order derivative weighting coefficients are given by

w
(3)
ij = 3a

(1)
ij (bii −

1

3
+ aiicotxi +

cosxi
cosxi − cosxj

) +
3sinxi.b

(2)
ij

cosxj − cosxj
, i 6= j (3.21)

Here, we can see that eqn(3.12) and eqn(3.17) are slightly different but eqns(3.14)

and (3.16) are exactly same as eqn(3.19) and (3.21). Thus, the second and higher

order derivatives of both the cosine and sine expansion based differential quadrature

methods uses the same formulae for the computation of weighting coefficients for i 6= j

and the diagonal weighting coefficients (i = j) are computed by different formulations.
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3.5 Quintic B-Spline

In this section, we will be discussing about the basis function i.e Quintic B-Spline

to determine the weighting coefficients for the differential quadrature. Now, consider

Qm(x) be the quintic B-splines with knots xi where uniformly distributed N grid

points are chosen as a = x1 < x2 < · · · · ·· < xN = b on the real axis. Then,

the splines Q−1, Q0, Q1, · · · · ·, QN+2 form the basis functions defined over [a, b]. The

quintic B-spline is given by the following recurrence relationship[28, 29]:

Qm(x) =
1

h5



(x− xm−3)5 , [xm−3, xm−2)

(x− xm−3)5 − 6(x− xm−2)5 , [xm−2, xm−1)

(x− xm−3)5 − 6(x− xm−2)5 + 15(x− xm−1)5 , [xm−1, xm)

(xm+3 − x)5 − 6(xm+2 − x)5 + 15(xm+1 − x)5 , [xm, xm+1)

(xm+3 − x)5 − 6(xm+2 − x)5 , [xm+1, xm+2)

(xm+3 − x)5 , [xm+2, xm+3)

0 , otherwise

(3.22)

where h = xi − xi−1 for all i. Each quintic B-spline have six elements, in order to

cover each element with six quintic B-splines. The value of Qm(x) and its derivatives

are given in the Table 3.1. We reduces the stated problem to the derivative of the

fifth order B-spline with unknown coefficients. And the weighting coefficients are

determined by five banded Thomas algorithm for penta-diagonal systems. Now using

quintic B-spline as test function in differential quadrature methods eqn 1.2, we get
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Table 3.1: Qm(x)and derivatives at the grid points

x xm−3 xm−2 xm−1 xm xm+1 xm+2 xm+3

Qm 0 1 26 66 26 1 0

Q
′
m 0 5

h
50
h

0 −50
h

−5
h

0

Q
′′
m 0 20

h2
40
h2

−120
h2

40
h2

20
h2

0

Q
′′′
m 0 60

h3
−120
h3

0 120
h3

60
h3

0

Q
′′′′
m 0 120

h4
−480
h4

720
h4

480
h4

120
h4

0

the following equation i.e,

∂(p)Qm(xi)

∂x(p)
=

m+2∑
j=m−2

w
(p)
ij Qm(xj), i = 1, 2, 3, · · ··, N,m = −1, 0, 1, · · ·, N + 1, N + 2

(3.23)

Now, arbitrary choice of i leads to a system algebraic equations,



Q−2,−4 Q−2,−3 Q−2,−2 Q−2,−1 Q−2,0

Q−1,−3 Q−1,−2 Q−1,−1 Q−1,0 Q−1,1

. . . . . . . . . . . .

QN+1,N−1 QN+1,N QN+1,N+1 QN+1,N+2 QN+1,N+3

QN+2,N QN+2,N+1 QN+2,N+2 QN+2,N+3 QN+2,N+4





w
(p)
i,−4

w
(p)
i,−3

...

wpi,N+3

wpi,N+4


= Ψ

(3.24)

whereQi,j meansQi(xj) and Ψ =

[
∂(p)Q−2(x(i))

∂x(p)
, ∂

(p)Q−1(xi)

∂x(p)
, · · · · · · , ∂

(p)QN+1(xi)

∂x(p)
, ∂

(p)QN+2(xi)

∂x(p)

]T
.

The weighting coefficients w
(p)
i,j can be determined by using eqn(3.24) . The eqn(3.24)

has N + 5 equations and N + 9 unknowns. In order to solve eqn(3.24) we required

additional four equations
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∂(p+1)Q−2(xi)

∂x(p+1)
=

0∑
j=−4

w
(p)
i,j Q

′

−2(xj)

∂(p+1)Q−1(xi)

∂x(p+1)
=

1∑
j=−3

w
(p)
i,j Q

′

−1(xj)

∂(p+1)QN+1(xi)

∂x(p+1)
=

N+3∑
j=N−1

w
(p)
i,j Q

′

N+1(xj)

∂(p+1)QN+2(xi)

∂x(p+1)
=

N+4∑
j=N

w
(p)
i,j Q

′

N+2(xj)

By using the functional values of quintic B-spline at the grid points and eliminating

w
(p)
i,−4, w

(p)
i,−3, w

(p)
i,N+3, and w

(p)
i,N+4 from the system. We obtained a system of algebraic

equation having five-banded coefficient matrix of the form

Mw = Ψ (3.25)
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where

M =



37 82 21

8 33 18 1

1 26 66 26 1

1 26 66 26 1

. . . . . . . . . . . .

1 26 66 26 1

1 26 66 26 1

1 18 33 8

21 82 37



and w =



w
(p)
i,−2

w
(p)
i,−1

...

w
(p)
i,j−2

w
(p
i,j−1)

w
(p
i,j)

w
(p
i,j+1)

w
(p)
i,j+2

...

w
(p)
i,N+1

w
(p)
i,N+2


The non-zero entries of the load vector Ψ are given by

Ψ−2 =
1

30
(−5Q

(p)
−2(xi)− hQ(p+1)

−2 (xi) + 40Q
(p)
−1(xi) + 8hQ

(n+1)
−1 (xi))

Ψ−1 =
1

10
(5Q

(p)
−1(xi)− hQ(p+1)

−1 (xi))

Ψm−2 = Q
(p)
m−2

Ψm−1 = Q
(p)
m−1

Ψm = Q(p)
m

Ψm+1 = Q
(p)
m+1

Ψm+2 = Q
(p)
m+2

ΨN+1 =
1

10
(5Q

(p)
N+1(xi)− hQ(p+1)

N+1 (xi))

ΨN+2 = − 1

30
(5Q

(p)
N+1(xi) + hQp+1

N+2(xi)− 40Q
(p)
N+1(xi) + 8hQ

(p+1)
N+1 (xi))

(3.26)
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The above equations can be solved by using Thomas algorithm at each grid points xi,

i = 1, 2 · · ·N and we can get all the weighting coefficients w
(p)
i,j , for i, j = 1, 2, · · ·N ,

p = 1, 2, · · ·N − 1. Here, we calculated the weighting coefficient of first order i.e w
(1)
i,j

at each grid points xi, using eqn(3.25) and the above load vectors. As KdV equation

involved third order derivative. So, we calculated the weighting coefficients of third

order derivative i.e, w
(3)
i,j at the grid points xi using the eqn(3.25) and eqn(3.26).

3.6 Multidomain PDQ Method

As we know from the above section differential quadrature methods carried problems

that involves simple domains. So, it requires computational domains to be regular

so that the the boundary could be a mesh line. And if the boundary is curved, then

applying differential quadrature method will be difficult. So, in order to overcome

this difficulties two approaches were made[10, 48],

• Multi-Domain Approach:- In this approach, the whole domain is decomposed

into several subdomains and differential quadrature discretization method is

applied in each subdomain.

• Coordinate Transformation Approach:- In this approach, the irregular domain

in the cartesian coordinate is transformed into the regular domain in the curvi-

linear coordinate system and the problems in the cartesian system are trans-

formed into appropriate forms in the curvilinear system. Then the numerical

computations are performed on the curvilinear coordinate system.
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We will discuss a little further about multidomain differential quadratue method.

Shu(1991)was the first to proposed the Multi-domain differential quadrature method[10]

to simulate incompressible flows past a backward facing step and a square step. Then

in 1992 Shu and Richards applied it to stimulation of driven cavity flows on a multi

instruction , multi data-stream computer. In 1998 Shu, Chew and liu used it in the

stimulation of flows in the Czochralski crystal growth, Shu and Chew in waveguide

analysis with rectangular boundaries, Zhong and He in computation of Poisson and

Laplace equations and in structural and vibration analysis.

Now in Multi-Domain DQ Method the computational domain of a problem is rep-

resented by Ω and the boundary by Γ. Here, the multi domain method decomposes

the domain Ω into several subdomains and each subdomain generated a local mesh

and differential quadrature method is applied in same way as in single domain. Now

through interface of subdomains the information were exchanged. Now there are two

type of interfaces : patched and overlapped.

• Patched Interface→ In the interface as in Figure3.1, Γij is the interface between

two subdomains Ωi and Ωj. Here, the main equation is not applied along the

interface rather continuity condition is enforced. Main thing to let the function

and its normal derivative to be continuous at the interface. Mathematically,

this continuity condition can be given as

f(xiN) = f(xjI)onΓij

fn(xiN) = fn(xjI)onΓij

where f(xiN) and f(xjI) represent the value of the function at the interface of

the i-subdomain and j-subdomain respectively and whereas, fn(xiN) and fn(xjI)
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the value of the first order derivatives of w.r.t n at the interface.

Figure 3.1: Topology of a patched interface

• Overlapped Interface → In this interface as in Figure3.2, subdomain ABCD

overlapped subdomain EFGH. The right boundary of the subdomain Ωi,BC is

the interior of subdomain Ωj and the left boundary of the subdomain Ωj, EH

is the interior of subdomain Ωi.

Figure 3.2: Topology of an overlapped interface

Here, we considered the Multidomain pseudo-spectral method[29, 30]. Suppose PNI

be the space for all algebraic polynomials up to degree N on the [−1, 1]. The multido-

main polynomial based differential quadrature(MD PDQ) method for the equation
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θu = F where θ is the differential operator. Now, we need to find uεPNI for which

(θu− F )(ηj)η = 0, ηj = −cos(jΠ
N

), j = 0, 1, 2, ......, N (3.27)

satisfying the boundary conditions. We subdivided the whole solution domain Ix =

[a, b] into M uniform subintervals i.e In = [xnL, x
n
R], Ix = [a, b] =

⋃M
n In. Without the

loss of generality, we consider the length of each subinterval as l = b−a
M+(1−M)(1−cos(Π/N))/2

.

In this domain decomposition method, we overlap intervals In i.e the first two quadra-

ture points of In+1 coincide with last two quadrature points of In. And in each

subdomain In, we got θun = F where un is the solution over the nth interval.

In order to use the weighting coefficients of differential quadrature on

any arbitrary interval In = [xnL, x
n
R] we use the mapping η : [xnL, x

n
R]→ [−1, 1] defined

as η(x) = 2
xnR−x

n
L
x− xnR+xnL

xnR−x
n
L

that maps coordinate x onto η. So, for the derivatives, we

have

∂pun(x)

∂xp
= (

2

xnR − xnL
)p
∂pun(η)

∂ηp

So, the weighting coefficient of the pth order derivative is given as

W p
[0;N,0;N ] = (

2

l
)p(w

(p)
ij )(N+1)(N+1) (3.28)

Now, for global satisfaction of the equations. For this we did element-wise construc-

tion basing on the summation of the local element matrices to form their global

representations. Now by interpolating the function u to any arbitrary position in the

interval Ix = [a, b] with the new grid points given by

xj = x′0, · · · , x′N−1 = x2
0, x
′
N = x2

1, · · · , xnN−1 = xn+1
0 , · · · , xMN
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where xnj = 1
2
η(xn−1

j ) + l
2

+ xN−1
n−1 . Let us assume that un = un+1 on the boundary of

the overlapping domain, the functional value of u at the grid points can be given by

ψ̃ = [ũ1
0, · · · , ũ1

N−1, ũ
2
1, · · · , ũnN−1, · · · , ũMN−1, ũ

M
N−1]T

where ũnj = u(xnj ). Thus the functional values of the derivatives u at the grid points

xj is given by ψ̃(p) = W̃
(p)
[0;k,0;k]ψ̃ where

W̃
(p)
[0;k,0;k] =



w̃
(1)
[0,0] .. w̃

(1)
[0,N ]

. . .

w̃
(1)
[N−1,0] .. w̃

(1)
[N−1,N ]

. . .

w̃
(n)
[1,0] .. w̃

(n)
[1,N ]

. . .

w̃
(n)
[N−1,0] .. w̃

(n)
[N−1,N ]

. . .

w̃
(M)
[1,0] .. w̃

(M)
[1,N ]

. . .

w̃
(M)
[N−1,0] .. w̃

(M)
[N−1,N ]



(3.29)

where [ψ̃]
(n)
ij = [W (p)]ij and the remaining components of the matrix W̃

(p)
[0;k,0;k] with

k = M(N − 1) + 1 are zero.
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NUMERICAL EXPERIMENTS

4.1 Implementation of MD-PDQ to KdV equation

In this section, we consider KdV equation of the form[31]

ut + ξuux + µuxxx = 0 (4.1)

as our governing equation which represents one-dimensional nonlinear KdV equation

of shallow water waves. Where u = u(x, t), ξ and µ are the positive parameters. We

discritize eqn(4.1) by forward finite difference and Crank-Nicolson,

un+1 − un

4t
+ ξ

(uux)
n+1 + (uux)

n

2
+ µ

(uxxx)
n+1 + (uxxx)

n

2
= 0 (4.2)
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Now by using Rubin and Graves linearization technique[47], we linearize the non-

linear terms so we obtain

un+1 − un

4t
+ ξ

unun+1
x + unxu

n+1

2
+ µ

(uxxx)
n+1 + unxxx

2
= 0

⇒ 2un+1 + ξ4tunxun+1 + ξ4tunun+1
x + µ4tun+1

xxx = 2un − µ4tunxxx (4.3)

Let us define some terms to use in eqn(4.3) as

Ani =
N∑
j=0

w̃
(1)
ij u

n
j ,

Bn
i =

N∑
j=0

w̃
(3)
ij u

n
j

where Ani and Bn
i are the first order and third order derivative approximations of func-

tion u at the nth degree on xi (i = 0, 1, 2, ...., N) points respectively. Now substituting

this terms in eqn(4.3) we get,

(2 + ξ4tAni + ξ4tw̃(1)
ii u

n
i + µ4tw̃(3)

ii )un+1
i

+
N∑

j=0,j 6=i

(ξ4tw̃(1)
ij u

n
i + µ4tw̃(3)

ij )un+1
j = 2un − µ4tCn

i , i = 0, 1, ...., N (4.4)

4.2 Implementation of DQM to KdV equation

In this section, we consider the KdV equation (4.1) and discritize it by using dif-

ferential quadrature approximation(1.2). Now applying the boundary conditions
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u(a, t) = g1(t), u(b, t) = g2(t), tε(0, T ] and initial condition,

u(x, 0) = f(x), a� x� b

we obtain ordinary differential equation of the form

du(xi)

dt
= −ξu(xi, t)

N−1∑
j=2

w
(1)
ij u(xj, t)− µ

N−1∑
j=2

w
(3)
ij u(xj, t) +B(u), i = 2, 3, · · · , N − 1

(4.5)

whereB(u) = −ξu(xi, t)[w
(1)
i1 g1(t) + w

(1)
iN g2(t)]− µ[w

(3)
i1 g1(t) + w

(3)
iN g2(t)].

The weighting coefficients w
(1)
ij and w

(3)
ij are determined by (3.28). Eqn(4.5) is solved

by using RK4 method, since it has advantages of high accuracy, stability and low

memory storage. The accuracy of the method is measured by using L∞ error norm,

L∞ = |U exact − Unum|∞ = maxj|U exact
j − Unum

j |

As we know there are infinite numbers of conversation laws[32] for KdV equation. And

these conservation need to be remain constants during the propagation to show the

efficiency of the numerical scheme. So, we have considered the first three conversation

quantities,

C1 =

∫ a

b

Udx

C2 =

∫ a

b

U2dx

C3 =

∫ a

b

(U3 − 3µ

ε
U2
x)dx
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4.3 Result and Discussion

4.3.1 Single Soliton

The soliton solution of KDV equation is of the form[17]

U(x, t) = 3csech2(Ax−Bt+ F )

The above equation represents a single soliton with velocity εc , A = 1
2

√
εc
µ

and

B = εcA. The exact solution at t = 0 is taken as initial condition and U(0, t) = 0

and U(2, t) = 0 as boundary conditions. Considering the parameters ε = 1, µ =

4.84× 10−4, c = 0.3, F = −6, we applied our present method MD-PDQ to the given

equation and the results thus obtained are tabulated in Table 4.1. In Table.4.1, we

presented L∞ error norm at different times up to t = 2. Evolution of single soliton at

different time were also shown in Figure4.1. Error norm of the single soliton at t = 2

is depicted in Figure4.2. The maximum error norm is found to be very small and all

the three invariants are conserved very well. To show the efficiency of our present

MD-PDQ method, we used QBDQM and CDQM with the same parameters and the

numerical results are tabulated in Table 4.2 and Table 4.3 respectively. Comparison

of error with other numerical techniques is shown in Table 4.4.
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4.3.2 Interaction of two solitons

The interaction of two solitons solution of KdV equation is given by[33]

U(x, t) = 12
3 + 4cosh(2x− 8t) + cosh(4x− 64t)

[3cosh(x− 28t) + cosh(3x− 36t)]2

The exact solution at t = 0 is taken as initial condition. Considering the parameters

ε = 1, µ = 1. The computational domain is [−15, 15] × [−0.3, 0.3]. We applied

QBDQM and CDQ methods to the given equation and the results thus obtained are

tabulated in Table 4.5 and Table 4.6 respectively. In both the tables we presented L∞

and invariants at different times up to t = 0.3. Interaction of two solitons at different

times i.e t = −0.3, −0.1, 0.1 and 0.3 were also shown in Figure4.3. The maximum

error norm is found to be very small and all the three invariants are conserved very

well. To show the efficiency of QBDQM and CDQM, maximum error is compared

with earlier numerical methods in Table 4.7.

For KdV equation, the accuracy result of MD-PDQ is less because of the space domain

[0, 2] as it is very small. Therefore, partitioning of the domain into subdomains leads

to large numerical value of the weighting coefficients because of the factors α = 2/l

where l = b−a
M+(1−M)(1−cos(Π/N))/2

. Though it gave better results in comparing to earlier

methods as in Table 4.4.
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COMPLEX MODIFIED

KORTEWEG-de VRIES

EQUATION

In this chapter, we will be discussing about the complex modified KdV(CMKdV)

equation and applying our present method; MD-PDQ method on the equation to

approximate its numerical solution. Now, CMKdV has many applications in Science

like it prposed the model for evolution of nonlinear plasma waves[42], describes the

propagation of transverse waves in a molecular chain model[43] and in generalized

elastic solid[44, 45].

The complex modified Korteweg-de Vries equation is a nonlinear partial differential

equation which is of the form ,

ut + uxxx + α(|u|2u)x = 0 (5.1)
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where u is a complex valued function of the spatial coordinate x and the time t,

α is real parameter and subscripts t and x denote differential w.r.t time and space

respectively. We decompose u into real and imaginary parts,

u(x, t) = r(x, t) + is(x, t) (5.2)

where i =
√
−1. Substituting eqn(5.2) in eqn(5.1) yields a couple of modified

Korteweg-de Vries(MKdV) equations

rt + rxxx + α[(r2 + s2)r]x = 0 (5.3)

st + sxxx + α[(r2 + s2)s]x = 0 (5.4)

Now rearranging the above two equations we get,

rt = −rxxx − α[2rssx + (3r2 + s2)rx], (5.5)

st = −sxxx − α[2rsrx + (3s2 + r2)sx] (5.6)

where r(x, t) and s(x, t) are real functions.
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5.1 Implementation of MD-PDQ to KdV equation

In this section, we discitize the equations(5.5) by using forward finite difference and

Crank-Nicolson,

rn+1 − rn

4t
+ α[3

(r2rx)
n+1 + (r2rx)

n

2
+

(s2rx)
n+1 + (s2rx)

n

2

+ 2
(rssx)

n+1 + (rssx)
n

2
] +

(rxxx)
n+1 + (rxxx)

n

2
= 0 (5.7)

Now by using Rubin and Graves linearization technique[47], we linearize the non-

linear terms thus we obtained

2rn+1 +4t[rn+1
3x + 3α((r2)nrn+1

x + 2rnrnxr
n+1
x ) +α((s2)nrn+1

x + 2snrn+1
x + 2snrnxs

n+1)

+ 2α(rn+1snsnx + rnsn+1snx + rnsnsn+1
x )] = 2rn +4t[−rn3x + 3α(r2)nrnx

+ α(s2)nrnx + 2αrnsnsnx] (5.8)

Let us define some terms to use in eqn(5.8)

Ani =
N∑
j=0

w̃
(1)
ij r

n
j ,

Bn
i =

N∑
j=0

w̃
(3)
ij r

n
j ,

Cn
i =

N∑
j=0

w̃
(1)
ij s

n
j ,

Dn
i =

N∑
j=0

w̃
(3)
ij s

n
j
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where Ani and Bn
i are the first order and the third order derivatives approximation

of real function r(x, t) at the nth degree on xi (i = 0, 1, 2, ...., N) points respectively.

Similarly, Cn
i and Dn

i are the first order and the third order derivatives approximation

of function s(x, t) at the nth degree on xi (i = 0, 1, 2, ...., N) points respectively. Now

substituting this terms in eqn(5.8) we get,

[2 +4t(w̃(3)
ii + α(3(rni )2w̃

(1)
ii + 6rni A

n
i + (sni )2w̃

(1)
ii

+ 2sni C
n
i ))]rn+1

i +
N∑

j=0,j 6=i

4t(w̃(3)
ij + α(3(rni )2w̃

(1)
ij

+ (sni )2w̃
(1)
ij ))rj + [2α4t(sni Ani + rni C

n
i + rni s

n
i

w̃
(1)
ii )]sn+1

i + [
N∑

j=0,j 6=i

(2α4trni sni w̃
(1)
ij )sn+1

j ] = fni (5.9)

where fi = 2rni +4t[−Bn
i + α(3(rni )2Ani + (sni )2Ani + 2rni s

n
i C

n
i )].

With the same process we discritize eqn(5.6) and we get

sn+1 − sn

4t
+ α[3

(s2rx)
n+1 + (s2sx)

n

2
+

(r2sx)
n+1 + (r2sx)

n

2

+ 2
(srrx)

n+1 + (srrx)
n

2
] +

(sxxx)
n+1 + (sxxx)

n

2
= 0 (5.10)

Applying Rubin and Graves linearization technique[47] to linearize the non-linear

terms, we get

2sn+1 +4t[sn+1
3x + 3α((s2)nsn+1

x + 2snsnxs
n+1
x ) + α((r2)nsn+1

x + 2rnsn+1
x + 2rnsnxr

n+1)

+ 2α(sn+1rnrnx + snrn+1rnx + snrnrn+1
x )] = 2sn +4t[−sn3x + 3α(s2)nsnx

+ α(r2)nsnx + 2αsnrnrnx ] (5.11)
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Substituting the terms Ani , Bn
i , Cn

i and Dn
i in eqn(5.11) we get

[2 +4t(w̃(3)
ii + α(3(sni )2w̃

(1)
ii + 6sni C

n
i + (rni )2w̃

(1)
ii

+ 2rni A
n
i ))]sn+1

i +
N∑

j=0,j 6=i

4t(w̃(3)
ij + α(3(sni )2w̃

(1)
ij

+ (rni )2w̃
(1)
ij ))sj + [2α4t(rni Cn

i + sni A
n
i + sni r

n
i

w̃
(1)
ii )]rn+1

i + [
N∑

j=0,j 6=i

(2α4tsni rni w̃
(1)
ij )rn+1

j ] = gni (5.12)

where gi = 2sni +4t[−Dn
i + α(3(sni )2Cn

i + (rni )2Cn
i + 2sni r

n
i A

n
i )]

5.2 Implementation of DQM to KdV equation

Now, applying eqn(1.2) and boundary conditions to eqn(5.5) and eqn(5.6) we get

dri
dt

= −
N−1∑
j=1

w
(3)
ij rj − α[2risi

N−1∑
j=1

w
(1)
ij sj + (3r2

i + s2
i )

N−1∑
j=1

w
(1)
ij rj] (5.13)

dsi
dt

= −
N−1∑
j=1

w
(3)
ij sj − α[2risi

N−1∑
j=1

w
(1)
ij rj + (3s2

i + r2
i )

N−1∑
j=1

w
(1)
ij sj] (5.14)

i = 1, 2, · · · , N−1. The weighting coefficients w
(1)
ij and w

(3)
ij are determined eqn(3.28).

To solve eqn(5.13) and eqn(5.14) we use RK4 method due to its advantages. For

58



5.3. RESULTS AND DISCUSSION Chapter 5

CMKdVE, we consider three conserved quantities,

I1 =

∫ ∞
−∞

udx

I2 =

∫ ∞
−∞
|u|2dx '

N∑
j=1

hj|unj |2

I3 =

∫ ∞
−∞

(
α

2
|u|4 − |ux|2)dx ' [

N∑
j=1

hj
α

2
|unj |4 − (unx)2

j ]
1
2

where hj = xj − xj−1 and un denotes the numerical solution at nth time step, remain

constant in time[42]. The accuracy of the method is measured by using the maximum

error norm L∞ presented as

L∞ = ||U exact − Unum||∞ = maxj|U exact
j − Unum

j |

5.3 Results and discussion

5.3.1 Single Soliton

The solution of CMKdV equation of the form[18],

U(x, t) =

√
2c

α
sech[

√
c(x− x0 − ct)]exp(iθ)

represents a single solitary wave of amplitude
√

2c/α moving to right with velocity c.

We consider the parameters α = 2, θ = 0, c = 1, x0 = 0 in the computational domain

[−20, 40] at t = 0 and obtained the initial condition. We applied MD-PDQ method

to the equation and the maximum error norm is tabulated in Table 5.1. The error
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graph for single soliton is depicted in Figure5.1.

To show the efficiency of our present MD-PDQ method, we used QBDQM with the

same parameters and the numerical results are tabulated in Table 5.2. Comparison

of error with results of earlier numerical techniques is shown in Table 5.4.

5.3.2 Interaction of two Solitons

The interaction of two solitary waves with initial condition is give as[24],

U(x, 0) =

√
2c1

α
sech[

√
c2(x− x1)]exp(iθ1) +

√
2c2

α
sech[

√
c2(x− x2)]exp(iθ2)

where x1 = 25 and x2 = 50 are the initial positions of the two solitary waves respec-

tively in [0, 100]. We consider the parameters α = 2, c1 = 2, and c2 = 0.5. We applied

QBDQM methods to the given equation and the results thus obtained is tabulated

in Table 5.3.

For complex modified KdV equation, the accuracy result of MD-PDQ is more because

of the domain [−20, 40] which is large. As the number of grid points increases it gave

more better results than the previous methods as shown in Table 5.4.

60



Chapter 6

CONCLUSION

In this paper we implemented MD-PDQ method for the numerical solutions of KdV

equation and complex modified KdV equation. For comparing we also use QBDQM

and CDQM with same parameters. It can be observed from the results of the numer-

ical experiments that MD-PDQ gave more accurate results in less time in comparing

to other methods including QBDQM and CDQM. The performance and accuracy of

the present method is shown by calculating and comparing L∞ error norm with ear-

lier works. In Table 4.4 and Table 5.4, we compared our present method with some

earlier works, which shows that the present method produce more accurate numerical

solution of the KdV equation and complex modified KdV equation respectively than

previous methods. Three lowest invariants are calculated and are reported for both

test problems. The obtained invariants are acceptable when compared with some

earlier works. For high-dimensional non-linear KdV equations, the presented method

can be applied. So, MD-PDQ is a reliable one for getting the numerical solutions of

some physically important nonlinear problems.
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                             Table 4.1 : Error norms for Single Soliton for  ∆𝑡 = 0.001 

           K=91             K=136 

     N=10, M=10       N=10, M=15 

      Time        𝐿∞-error          𝐿∞-error 

         0               -              - 

        0.5      1.5276 × 10−6    2.6254 × 10−7 

        1.0 2.5323 × 10−6    4.7215 × 10−7 

        1.5      3.2232 × 10−6    5.32541 × 10−7 

        2.0       3.8236 × 10−6     7.2425 × 10−7 

 

 

 

                    

                                Figure 4.1 :  Propagation of single soliton at t=0 to t=2.  



 

 

 

                     

                        Figure 4.2 :  Error norm at t = 2 for ∆𝑡 =  0.0001 and step size, h = 0.01 

 

 

              Table 4.2 : Three invariants and error norm for single soliton for  h= 0.01 

    Time          C1        C2         C3      𝑳∞-error  

       0     0.144598   0.0867557   0.0468467           - 

      0.5     0.144599   0.0867557   0.0468482 9.02421 × 10−6 

      1.0     0.144598   0.0867557   0.0468496 1.36957 × 10−5 

      1.5     0.144597   0.0867558   0.0468546 3.02092 × 10−5 

      2.0     0.144596   0.0867558   0.0468547 6.94995 × 10−5 

      ∆𝑡 = 0.001 

 

             

             



 

 

 

              Table 4.3 : Three invariants and  error norm for a single soliton for h= 0.01 

Time C1 C2 C3 𝑳∞-error 

0 0.144598 0.0867575 0.0468456 0.000000 

1.0 0.144598 0.0867579 0.0468485 0.060957 

2.0 0.144598 0.086758 0.0468485 0.0552349 

                    ∆𝑡 = 0.0001 

 

 

                     Table 4.4 : Comparison of error for Single soliton at t=1.0 

    Methods      h        ∆𝑡        𝐿∞-error 

MD-PDQ(Present)    0.02      0.001   1.5273 × 10−6 

QBDQM(Present)    0.15       0.001    1.369 × 10−5 

CDQM(Present)    0.01       0.0001    6.095 × 10−5 

SCM*[34]    0.3       0.01    4.558 × 10−5 

MCB-DQM**[35]    0.01       0.001    106.9 × 10−5 

PDQ***[36]    0.02       0.001     274.5 × 10−5 

              *sinc collocation Method 

             **Modified cubic B-spline Differential Quadrature Method 

             *** Polynomial based Differential Quadrature 

 

 

 

 



 

 

 

     Table 4.5 : Three invariants and  error norm for interaction of two solitons for  h= 0.15 

Time        C1        C2    C3   𝑳∞-error 

 -0.3       12    47.9774 211.048    - 

 -0.1       12    47.9821 211.145  0.00120921 

  0.1       11.9998    47.9822 211.145  0.00137692 

  0.3       11.9999    47.9768 211.041  0.00245652 

            ∆𝑡 = 0.001 

 

 

        Table 4.6 : Three invariants and  error norm for interaction of two solitons for h=0.15 

  Time    C1     C2     C3   𝑳∞-error 

   -0.3    12 47.9953 211.173     - 

   -0.1    12 47.9965 211.131 0.00276263 

    0.1    12.0001 47.9965 211.153 0.00256739 

    0.3    12 47.9953 211.203 0.000318579 

           ∆𝑡 =0.00001 

      

                

  



 

 

 

  

  
                        

                   Figure 4.3 : Interaction of two solitons at t=-0.3, t=-0.1, t=0.1, t=0.3. 

                                                         

           

 

 

 

 

 



 

 

 

                         

                        Figure 4.4 :  Error norm at t = 0.3 for ∆𝑡 =  0.00001 and step size, h = 0.1 

 

                     Table 4.7 : Comparison of error for Interaction of two solitons at t=0.1 

        Methods         h           ∆𝑡        𝐿∞-error 

QBDQM(Present)      0.15        0.001   1.38 × 10−3 

CDQM(Present)      0.1        0.00001   2.57 × 10−3 

MBQI*[37]      0.1        0.00001   3.84 × 10−3 

MQQI**[38]      0.1        0.00001   7.74 × 10−3 

RBF(MQ)***[39]      0.1        0.00001   9.21 × 10−4 

RBF(IMQ)****[39]      0.1        0.00001    2.21 × 10−2 

            *Multilevel B-spline quasi-interpolation 

            **Multiquadric quasi-interpolation   ***Radial basis function (Multiquadrics)            

            ****Radial basis function(Inverse multiquadrics)  

 

       



 

 

 

 

              Table 5.1 : Three invariants and error norm for Single Soliton for ∆𝑡 = 0.001 

         K=326    

    N=10, M=40    

   Time       𝐿∞-error         I1        I2     I3 

      0          -     3.14159   2.00000 0.66667 

      4 2.7562 × 10−7   3.14158   1.99999 0.66667 

      6    3.6234 × 10−7   3.14158   1.99999 0.66667 

      8    4.7232 × 10−7   3.14157   1.99999 0.66667 

     10    6.1532 × 10−7   3.14157   1.99999 0.66667 

 

 

                 Table 5.2 : Three invariants and  error norm for a single soliton for h=0.2 

    Time         I1           I2           I3   𝐿∞-error 

      0      3.1416     1.99996     0.6666           - 

      1      3.14157     1.99995     0.66677 2.91873 × 10−6 

      2      3.1416     1.99995     0.66666 3.13024 × 10−6 

      3      3.1416     1.99995     0.66666 4.34549 × 10−6 

      4      3.1416     1.99995     0.66677 5.37757 × 10−6 

      5      3.1416     1.99996     0.66669 6.09012 × 10−6 

          ∆𝑡 = 0.001 



 

 

 

           

                            Figure  5.1 : Error norm at t = 2 for ∆𝑡 = 0.001 and step size h=0.2 

                                                           

  

 

                      Table 5.3 : Invariants of  interaction of two solitons at ∆𝑡 = 0.01 

  

 

 

 

 

 

 

 

 

                  

    Time        I1(Re)        I1(Im)          I2          I3 

       0     3.14158     3.14150      4.24079     2.11544 

       1       3.15585     3.15549      4.24096     2.11528 

       2     3.16348     3.16349      4.24097     2.1147 

       3      3.16876     3.16877      4.24118     2.11369 

       4     3.17403     3.17391      4.24149     2.11315 

       5      3.19474     3.19475      4.24182     2.10902 



 

 

 

                         Table 5.4 : Comparison of error  for single soliton at t = 5 

        Methods        h          ∆𝒕       𝑳∞-error 

MD-PDQ(Present)     0.15       0.001   3.1898 × 10−7 

QBDQM(Present)      0.2       0.001   6.09012 × 10−6 

QBCM*[41]      0.05       0.005   0.03056 × 10−3 

PGM**[47]      0.05       0.001 5.7 × 10−5 

FD***[48]      0.5       0.0125       0.4 × 10−5 

            *Quintic B-spline Collocation Method 

            **Petrov- Galerkin Method 

            ***Finite Difference scheme 

 

 

 

 

 

 


