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Abstract 

 

The purpose of this work is to test the application of the Localized Differential Quadrature Method 

to Solitary wave solution problems, in particular for solving the Schrödinger equation. In chapter 

1 we begin with an overview of solitary waves, soliton, the Schrödinger equation and introduction 

to the Differential Quadrature method. In chapter 2 we give an overview of quantum mechanics, 

derive the cubic Schrödinger equation and discuss the basic conservation laws. Different types of 

Differential Quadrature methods are discussed in chapter 3 in detail. In chapter 4 the Cubic 

Schrodinger equation is solved by using Quintic B-Spline based differential quadrature method 

and Cosine based differential quadrature method. Similarly the coupled Schrodinger equation is 

solved in chapter 5 by using Quintic B-Spline based differential quadrature method. 
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1. Introduction  

Most of the physical phenomenon of the universe are governed by different type of waves such 

as sound waves, water waves etc. In pursue of understanding and unravelling the physical 

phenomenon of the universe we need to study the waves, the wave equation is an important 

mathematical tool for the description of waves. By studying these equations and determining 

the wave functions we can learn about the properties of the waves, properties of a particle. The 

Schrödinger Equation is one of the most famous and fundamental wave equation. 

 

1.1 Schrödinger Wave Equation 

The wave-particle duality was first reflected in Albert Einstein’s work, in which he proposed 

that the energy of a photon is directly proportional to its frequency. Louis de Broglie 

hypothesized that the wave-particle duality is true for all atomic and sub-atomic particles not 

only for the photons. He later proved the theory for electrons and showed that the electron 

forms some kind of standing waves. Erwin Schrödinger learned of de Broglie’s work and even 

before the experimental confirmation, he realized the significance of de Broglie‘s work and he 

was so much fascinated that he wrote to Einstein saying, ”I have been intensely concerned 

these days with Louis de Broglie’s ingenious theory. It is extraordinarily exciting, but still has 

some very grave difficulties.” 

 

Later, while Schrödinger was giving lecture in a seminar, a scholar asked him why there was 

no equation to show how de Broglie’s waves change with time, as there was for electromagnetic 

waves, if particles behaves as waves then they should satisfy some sort of wave equation. 

Schrödinger got to work and in two weeks proposed the three dimensional wave equation, 
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which he published in 1926. The equation was later named after him. Schrödinger himself 

describe the equation as follow: “The already mentioned Psi-function is now the means of 

predicting probability of measurement results. In it is embodied the momentarily attained sum 

of the theoretically based future expectation, somewhat as laid down in a catalog.” The 

Schrödinger equation is one of the most important and fundamental equation of the modern 

physics. The study of this equation plays an exceptional role in modern physics. The 

Schrödinger equation is a space-time partial differential equation, which describes the form of 

the probability waves that govern the motion of small particles, and it specifies how these 

waves are altered by external influences. It has been shown as a model of wide class of physical 

phenomena such as propagation of optical pulses, waves in water, waves in plasmas, 

electromagnetic waves etc. In mathematics, the Schrödinger equation and its variants are one 

of the basic equations that are studied in the field of partial differential equations, and has 

applications to geometry, to spectral and scattering theory, and to integrable systems. After the 

discovery the equation has been studied widely by researchers and has been interpreted in 

various mathematical forms. 

 

1.2 Solitary Waves and Solitons 

A solitary wave is a localized wave which maintains its coherence and its visibility through 

properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate 

with constant speed and constant shape. Whereas a soliton is a solitary wave packet which 

propagate at a constant velocity while maintaining its shape. Solitons are caused by a 

cancellation of nonlinear and dispersive effects in the medium (The term "dispersive effects" 

refers to a property of certain systems where the speed of the waves varies according to 

frequency). Solitons are the solutions of scattered class of weakly nonlinear dispersive partial 

differential equations describing physical systems [1]. 
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Story of solitary waves and solitons begins with John Scott Russell’s [2] visionary observation 

in the year 1834. In the canal of Edinburgh he was observing the motion of a boat which was 

rapidly drawn along a narrow channel by a pair of horse when the boat stopped it created a 

water front ( which he called a ‘wave of translation’) in the canal which started moving with a 

constant velocity and preserving its shape. He chased it and claimed that the wave was moving 

with a velocity around 9 miles per hour and the front was one to one and half feet high and 

about thirty feet in length. He lost the wave after following it for couple of miles in the windings 

of the canal. For more than a half of the century scientific community was sceptical about this 

non dispersive water wave. The debate continued till 1895, when two mathematicians 

Korteweg and de Vries [2] came up with an equation, known as KdV equation, for shallow 

inviscid fluids based on firm physical arguments. Their mathematical formulation showed the 

existence of such a wave and put an end to the controversy. Scott Russel tried to produce 

experimentally this type of waves in his laboratory and made the following important 

observations [2]. 

1. They are non-dispersive, i.e. maintain their shapes and size. 

2. The velocity of the wave if proportional to the amplitude. 

3. They break into smaller ones of with the above properties. 

4. Collisions of two or more such waves are like perfect elactic collisions. 

After merger the both waves again separate maintaining their original shapes and velocities. 

The 4th property distinguishes a Soliton from a solitary wave. The later collides inelastically 

and can lose energy. Solitons are stable bound states in classical and quantum field theories. 

For the existence of solitons one needs right amount of nonlinearity in the system. A weak 

nonlinear coupling does not limit the possibility of soliton, i.e. weak coupling does not 

necessarily mean a weak amplitude for a soliton. 
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1.3 FPU Recurrence 

We consider a linear chain of particles of with equal masses 𝐵 connected by elastic springs. 

The linear part of the force with a constant force 𝐹 gives the harmonic frequencies ƛ0 =

√2𝐹 𝐵  ⁄ for all particles. 

If we consider the case 𝐵 = 𝐹 = 1, the nonlinear force (only considering the quadratic case), 

the equation is given by 

 

       𝑥̈𝑛 = (𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1) + 𝛽[(𝑥𝑛+1 − 𝑥𝑛)
2 − (𝑥𝑛 − 𝑥𝑛−1)

2]                                  1.1 

 

Where 𝑥𝑛 represents the displacement of the nth particle from its original position and β 

represents the strength of nonlinear interactions between particles. In the case of normal 

nonlinear interaction mode, the equation of the motion is given by  

   

       𝑊𝑘
̈ + ƛ𝑘

2𝑊𝑘 = 𝛽∑ 𝑚𝑖𝑗
𝑁
𝑖,𝑗=1 𝑊𝑖𝑊𝑗                                                                1.2 

 

Where 𝑚𝑖𝑗 is the coefficient of the complicated dependence. Usually in this kind of oscillation, 

the energy spreads to higher harmonics but after certain oscillation period, the flow of the 

energy into other modes stops. After that the dynamics reverse and energy flow back into the 

first mode. In this reverse mechanism the energy is almost same, which implies that there is 

absence of thermalization [3, 4]. 

With an increase in the coefficients of nonlinearity the period of a recurrence decreases. The 

evolution of time does not leads to the energy equipartition, rather implicated the existence of 
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quasi-modes consisting of a number of linear modes. It is possible to reach numerically the 

initial state, unless the reversal time is relatively strong. 

 

 

1.4 Differential Quadrature Method 

The Differential Quadrature Method (DQM) is a numerical solution technique for initial and/or 

boundary value problems. Its ease to apply for getting numerical solutions of partial differential 

equations when compared with finite element methods makes the method preferable. DQMs 

was first introduced by Bellman et al. (1971, 1972) [5]. In this method a partial derivative of a 

function with respect to a coordinate direction is expressed as a linear weighted sum of all the 

functional values at all grid points along that direction. In 1972, Bellman provided two different 

methods to determine the weighting coefficients of first order derivative. The first method 

solves an algebraic equation system. In second method he uses a simple algebraic formulations, 

where the roots of the Legendre Polynomials are chosen as the coordinates of grid points. Thus, 

it is difficult to obtain the weighting coefficients. To improve the computation, Quan and Chang 

(1989) [6] used the Lagrange Interpolated polynomials as test functions and obtained recursive 

formulae to calculate the weighting coefficients of the first and second order derivatives. Shu 

[5] and Richards (1990) generalized all the current methods for determination of the weighting 

coefficients under the analysis of a high order polynomial approximation and the analysis of a 

linear vector space. The weighting coefficients of the first order derivative are determined by 

an algebraic formulation however the weighting coefficients of the second and higher order 

derivatives are determined by a recurrence relationship. The mathematical representation of 

differential quadrature is given by 

 

         𝑈𝑥
(𝑝)
= ∑ 𝐴𝑖𝑗

(𝑝)𝑁
𝑗=1 𝑈(𝑥𝑗), 𝑖 = 0,1. . . . , 𝑁      1.3 
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Where 𝑈𝑥
(𝑝)

is the 𝑝𝑡ℎ order derivative of the function U w.r.t the variable 𝑥 and 𝐴𝑖𝑗
(𝑝)

are the 

weighting coefficients of the 𝑝𝑡ℎ order derivatives. The most important work here is to 

determine the weighting coefficients which can be done by using function approximation 

method. There are two techniques to determine the weighting coefficients: 

• The first technique to obtain the weighting coefficient is by solving a system of algebraic 

equations. 

• The second technique to obtain weighting coefficient is by using algebraic formulation with 

grid points in Legendre polynomial. 

 

1.5 Objectives 

 

  To solve the cubic Schrödinger equation and the coupled Schrödinger equation. 

  To use the Differential Quadrature Methods as the tool to approximate the above 

equations. 

 To introduce the Quintic B-spline function as the test function, to find the weighting 

coefficients. 

 To compute the two basic conserved quantities. 

 Finally, determining the error by comparing the obtained results with the analytical 

solutions. 
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2. Schrödinger Equation 

2.1 The Duffing Oscillator 

The Duffing oscillator is a non-linear differential equation of second-order which represents 

certain model of damped and driven oscillators. The equation is given by  

        

         𝑥̈ + 𝛿𝑥̇ + 𝛽𝑥 + 𝜃𝑥3 = 𝜎𝐶𝑜𝑠(𝜔𝑡)        2.1 

 

Where the function  𝑥 = 𝑥(𝑡) represent the displacement at any time 𝑡, 𝑥̇ and 𝑥̈ represent the 

first and second order derivative of 𝑥 with respect to time 𝑡 respectively. 𝛿 controls the amount 

of damping, 𝛽 is the amount of linear stiffness, 𝜃 controls the amount of non-linearity in the 

restoring force, for 𝜃 = 0, Duffing equation describes a damped and driven simple harmonic 

oscillator, 𝜎 represent the amplitude of the periodic driving force; if the system is without a 

driving force, and 𝜔 represent the angular frequency of the periodic driving force [7, 8]. 

The Duffing oscillator differs from the forced and damped harmonic oscillator by the 

nonlinear 𝑡𝑒𝑟𝑚 𝜃𝑥3, which changes the dynamics of the system drastically. The equation 

represents the motion of a damped oscillator with a more complex potential than in simple 

harmonic motion. 

The Duffing equation is an illustration of a dynamical system that exhibits chaotic activity. 

However, the Duffing system indicates the jump resonance phenomenon in the frequency 

response that is a sort of frequency hysteresis characteristic. 

 

The Duffing oscillator represents the mass oscillations attached to a nonlinear spring and a 

linear damper. The restoring force provided by the nonlinear spring is then  𝛽𝑥 + 𝜃𝑥3. When 

𝛽 > 0  and 𝜃 > 0 , the spring is called a hardening spring. Conversely, if 𝜃 < 0 then it is a 
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softening spring (with 𝛽 > 0). Generally, the adjectives hardening and softening are considered 

with respect to the Duffing equation which depends on the values of 𝛽 and 𝜃 accordingly. 

 

We can reduce the number of parameters in the Duffing equation by two, through scaling. For 

example we can scale the excursion 𝑥 and 𝑡 as 𝑦 = 𝑥𝛽/𝜎 and 𝑇 = 𝑡√𝛽 . We assume 𝛽 to be 

positive, hence we arrive at 

          𝑦̈ + 2𝜂𝑦̇ + 𝑦 + 𝜏𝑦3 = 𝐶𝑜𝑠(𝜉𝑇)         2.2 

  

Where  𝜂 =
𝛿

2√𝛽
 ,        𝜏 =

𝜃𝜎2

𝛽3
        and       𝜉 =

𝜔

√𝛽
 

 

The dots indicates the derivatives with respect to 𝑇. We note that the solutions to the forced and 

damped Duffing equation can be described in terms of the three parameters (𝜀, 𝜂, 𝜉)and initial 

conditions 𝑦(𝑡0) and 𝑦̇(𝑡0). 

 

2.1.1 Undamped Oscillator 

Multiplication of  𝑢̇ on undamped and unforced Duffing equation and integrating we get [7, 8] 

1

2
𝑥̇2 +

1

2
𝛽𝑥2 +

1

4
𝜃𝑥4 = 𝐻                                                                                                                  2.3    

Where H is a constant whose value is determined by the initial conditions 𝑥(0) and 𝑥̇(0). 

We substitute 𝑥̇ = 𝑦 and we note that the system is Hamiltonian: 

𝑥̇ = +
𝜕𝐻

𝜕𝑦
, 𝑦̇ = −

𝜕𝐻

𝜕𝑥
           2.4 

With 

𝐻 =
1

2
𝑦2 +

1

2
𝛽𝑥2 +

1

4
𝜃𝑥4                         2.5 

The solution is bounded for positive value of β and θ. 

 



9 

 

2.1.2 Damped Oscillator 

Similarly as above, for the damped oscillator, we consider 

    𝑥̇ (𝑥̈ + 𝛿𝑥̇ + 𝛽𝑥 + 𝜃𝑥3) = 0                     

  

⇒
𝑑

𝑑𝑡
(
1

2
𝑥̇2 +

1

2
𝛽𝑥2 +

1

4
𝜃𝑥4) = −𝛿𝑥̇2                 

 

⇒
𝑑𝐻

𝑑𝑡
= −𝛿𝑥̇2 ≤ 0,                   2.6 

 

As 𝛿 ≥ 0for damping, the damped Duffing oscillator will end up at its stable equilibrium points 

without forcing. The points of stable and unstable equilibrium are at 𝛽𝑥 + 𝜃𝑥2 = 0. The 

equilibrium state is at 𝑥 = 0 if 𝛽 > 0and if 𝛽 < 0 and 𝜃 > 0 the stable equilibria are at  

 

𝑥 = √−𝛽
𝜃⁄        And         𝑥 = −√

−𝛽
𝜃⁄   . 

 

 

2.2 Perturbation Series Solution 

We consider a Duffing oscillator with small cubic nonlinearity and a harmonic driving force. 

Equation of motion is given by 

               𝑥̈ + 2𝜎𝑥̇ + 𝛽𝑥 + 𝜇𝑥2 = 𝐹𝑒𝑥𝑝(𝑖(𝜔𝑡 + 𝜙)) + 𝐶𝐶                                                        2.7 

Where, the complex conjugate of the preceding term is given by CC [9]. Since the use of 

complex forces and taking real part of the resulting solution presupposes linearity, therefore it 

is important to use a real driving force. We assume that 𝜇𝑥3 is small compared to the other 

terms of the equation (2.5) and look for solutions which are close to the corresponding solutions 

of the linear equation with  𝜇 = 0. Therefore it is natural to expand the solution into a 

perturbation series with respect to 𝜇 

 𝑥(𝑡) = ∑ 𝑥𝑖(𝑡)𝜇
𝑖∞

𝑖=0                                                                                                      2.8 
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Substituting the series (2.8) into the equation of the motion (2.7) and equating terms with the 

same powers of 𝜇 gives a hierarchy of linear and inhomogeneous equations which can be 

explicitly solved. This can be shown by induction that all functions with frequency  𝜔. 

Therefore they can be expanded into Fourier series, as follow [10] 

 

         𝑥𝑛(𝑡) = ∑ 𝑥𝑛𝑚𝑒
𝑖𝑚𝜔𝑡

𝑚∈ℤ                                                                                                     2.9 

        

Since 𝑥(𝑡) is a real function we can write 𝑥𝑛,−𝑚 = 𝑥̅𝑛𝑚 and we only need to consider non-

negative 𝑛,𝑚. 

 

By use of the computer algebra software it is possible to calculate a certain number of terms of 

the perturbation series, it is obvious that they will become more and more complex. We will 

only explicitly calculate the first few terms in order to see the underlying principle. 

𝜇0 𝑡𝑒𝑟𝑚𝑠: 

It is sufficient to re-derive the result of the linear problem, which gives,  

 𝑥0(𝑡) = 𝑥01𝑒
𝑖𝜔𝑡 + 𝐶𝐶   ,                                                                                         2.10a              

𝑥01 = ℎ(𝜔)𝐹𝑒𝑖∅  ,                                                                                                   2.10b 

 

 ℎ(𝜔) =
1

𝛽−𝜔2+2𝑖𝜎𝜔
                                                                                                  2.10c                     

 

𝜇1 𝑡𝑒𝑟𝑚𝑠: 

The cubic terms gives 

 𝜇(𝑥0 + 𝑥1𝜇 +⋯)3 = 𝜇𝑥0
3 + 𝒪(𝜇2) = 𝜇(𝑥01

3 𝑒3𝑖𝜔𝑡 + 3𝑥01
2 − 𝑥01𝑒

𝑖𝜔𝑡 + CC) +

                                                                                        𝒪(𝜇2).                 
                                 2.11 

 

Since the driving force is 𝒪(𝜇0), the 𝒪(𝜇1) of (2.7) are 
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𝑥̈1 + 2𝜎𝑥̇1 + 𝛽𝑥1 = −𝑥0
3 = −(𝑥01

3 𝑒3𝑖𝜔𝑡 + 3𝑥01
2 𝑥01̅̅ ̅̅ 𝑒

𝑖𝜔𝑡 + 𝐶𝐶) ,                                

1

 ℎ(𝜔)
𝑥11 = −3𝐹

3𝑒𝑖∅ℎ2(𝜔)ℎ(𝜔)̅̅ ̅̅ ̅̅ ̅   ,                 

𝑥11 = −3𝐹
3𝑒𝑖∅ℎ2(𝜔)ℎ(𝜔)̅̅ ̅̅ ̅̅ ̅   ,                                            2.12𝑎 − 𝑒                        

1

 ℎ(3𝜔)
𝑥13 = (−𝐹𝑒

𝑖∅ℎ2(𝜔))2  ,         

              𝑥13 = (−𝐹
3𝑒3𝑖∅ℎ3(𝜔))ℎ(3𝜔)  .        

                   

In equation (2.12𝑎) we note that the cube of the solution in 𝒪(𝜇0) approximation acts as a 

driving force for the next order approximation. Since 𝑥0  
3 contains the frequencies 𝜔and 3𝜔, 

implies that 𝑥1(𝑡) will contain terms with these frequencies. Both terms are proportional 

to 𝐹3, 𝐹 being essentially the amplitude of the driving force. Therefore the nonlinear term 

𝜇𝑢3produces a correction to the linear response of the oscillator with the same frequency as 

well as a correction with triple frequency (third harmonic generation) in the lowest order. Both 

terms could be split into a relative amplitude and a phase shift part, similar but more 

complicated than in the linear theory. 

𝜇2 𝑡𝑒𝑟𝑚𝑠:  

We conclude similar as above 

    𝑥̈2 + 2𝜎𝑥̇2 + 𝛽𝑥2 = −3𝑥0
2𝑥1 = −3(𝑥01𝑒

𝑖𝜔𝑡 + 𝐶𝐶)2 + (𝑥11𝑒
𝑖𝜔𝑡 + 𝑥13𝑒

3𝑖𝜔𝑡 + 𝐶𝐶)   

       
1

 ℎ(5𝜔)
𝑥25 = −3𝑥01

2 𝑥13                                                                                     

 𝑥25 = 35𝑒5𝑖∅ℎ5(𝜔))ℎ(3𝜔)ℎ(5𝜔)                           2.13 

……. 

It is not necessary to give more terms. We can note that the  𝒪(𝜇0)terms will contain the 

frequencies 𝜔, 3𝜔, 5𝜔 and the correction will be of order 𝐹5. We emphasize the above findings 

in order not to generate the wrong impression that a cubic nonlinearity would at most produce 
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3𝜔 terms proportional to 𝐹5. It seems fairly clear that the higher order corrections conclude all 

odd multiples of  3𝜔  and odd powers of  𝐹, on the contrary. 

 

 

 

2.3 Derivation of Schrödinger Equation 

The Lorentz model is a simple mechanical model to describe the linear response of matter to 

electromagnetic waves. The electrons in a piece of matter (insulator) are considered as classical 

harmonical damped oscillators subject to the driving force of the electromagnetic field. The 

resulting motion (oscillating) of the electrons produces a polarization density 𝐴 which 

determines the dielectric displacement 𝑆 and the dielectric function 𝜏(𝜔). A linear wave 

equation is derived from this. We will extend this model to a nonlinear oscillator one with a 

cubic nonlinearity 𝜇𝑥3(Duffing oscillator) and we will consider the resulting correction of 

lowest order to the linear wave equation. We will call this model the “Duffing-Lorentz model”. 

We first consider the microscopic Maxwell equations 

 

𝑐𝑢𝑟𝑙 𝐸 +
𝜕

𝜕𝑡
𝐵 = 0,        𝑑𝑖𝑣𝑆 = 0,                     2.14a 

 

            𝑐𝑢𝑟𝑙 𝐻 −
𝜕

𝜕𝑡
𝑆 = 0,         𝑑𝑖𝑣𝐵 =0,               2.14b 

  

And we assume the following results 

 

 𝐵 = 𝛾0𝐻 ,                         2.15a

  

   𝐵 = 𝜏0𝐸 + 𝐴(𝐸) .                      2.15b 

                                    

Taking the curl of equation (2.14𝑎) and using (2.14𝑏), (2.15𝑎) and (2.15𝑏) gives          

𝑐𝑢𝑟𝑙 𝑐𝑢𝑟𝑙 𝐸 = 𝛻(𝛻. 𝐸 − 𝛻𝐸)                     

        =
−𝜕

𝜕𝑡
𝛻 × 𝐵                                
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    =  −𝛾0
𝜕2

𝜕𝑡2
𝑆                    

   

         = −𝛾0(𝜏0Ё + Ä) .                                                2.16 

    

Next we take the special situation where the fields 𝐸 and 𝐴 points into 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 and 

depends only on 𝑥, 𝑦, 𝑧. Let us consider 

                      

   𝐸 = (
0
0

𝐸(𝑥, 𝑦, 𝑧)
) ,              𝐴 = (

0
0

𝐴(𝑥, 𝑦, 𝑧)
)                                                     2.17 

 

It follows that 𝛥. 𝛦 = 0 and 

 

   𝐸 = (

0
0

𝐸𝑥𝑥 + 𝐸𝑦𝑦
)                   2.18 

 

Hence equation (2.16) reduces to the scalar equation 

𝐸𝑥𝑥 + 𝐸𝑦𝑦 = 𝜏0Ё + Ä.                    2.19 

For an electron with mass 𝑀 and charge 𝑄, the Duffing-Lorentz model is given by 

 𝑀𝑧̈ + 2𝛤𝑧̇ + 𝑀𝛽𝑧 + ⋀𝑧3 = 𝑄𝑒𝑖𝜔𝑡Ẽ + 𝐶𝐶                          2.20 

We divide equation (2.20) by mass of the electron M and introduce a new parameters and we 

get,   

𝑧̈ + 2𝜎𝑧̇ + 𝛽𝑧 + 𝜇𝑧3 = 𝐹𝑒𝑖∅𝑒𝑖𝜔𝑡 + 𝐶𝐶                           2.21 

The nonlinear response to the harmonic driving force referring to the equations 2.12𝑎 − 2.12𝑒 

will be 

  𝑧(𝑡) = (𝐹𝑒𝑖∅ℎ(𝜔)𝑒𝑖𝜔𝑡 − 3𝜇𝐹3𝑒𝑖∅ℎ2(𝜔) − ℎ(𝜔)𝑒𝑖𝜔𝑡 −

                             𝜇𝐹3𝑒3𝑖∅ℎ3(𝜔)ℎ(3𝜔)𝑒3𝑖𝜔𝑡) + 𝐶𝐶 + 𝑂(𝜇2)                   2.22 

Which yields an electric dipole density 

𝐴 = 𝑄𝐾𝑧(𝑡),                             2.23 

Where K represent the constant electric density. 
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We consider the following Fourier components of E and A in the approximation with the 

frequencies 𝜔 and 3𝜔 therefore we have 

𝐸 = (𝐸1(𝑥, 𝑦)𝑒
𝑖𝜔𝑡 + 𝐸3(𝑥, 𝑦)𝑒

3𝑖𝜔𝑡) + 𝐶𝐶                         2.24a

   

𝐴 = (𝐴1(𝑥, 𝑦)𝑒
𝑖𝜔𝑡 + 𝐴3(𝑥, 𝑦)𝑒

3𝑖𝜔𝑡) + 𝐶𝐶                                    2.24b 

 

Hence equation (2.18) assumes the form 

𝐸1𝑥𝑥 + 𝐸1𝑦𝑦 = 𝛾0(𝜏0𝐸1 + 𝐴1)(−𝜔
2)                        2.25a 

    𝐸3𝑥𝑥 + 𝐸3𝑦𝑦 = 𝛾0(𝜏0𝐸3 + 𝐴3)(−9𝜔
2)                       2.25b 

Using  
𝑄𝐸1

𝑀
= 𝐹𝑒𝑖∅ and equations (2.22), (2.23) we obtain the following equations  

    

𝐴1 = 𝑄𝐾(
𝑄𝐸1

𝑀
ℎ(𝜔) − 3𝜇(

𝑄

𝑀
)3𝐸1ǀ𝐸1ǀ

2ℎ2(𝜔) − ℎ(𝜔))                       2.26a

             ≡
1

𝛾0
(𝑛1(𝜔)𝐸1 + 𝑛1(𝜔)𝐸1ǀ𝐸1ǀ

2)             2.26b 

𝐴3 = −𝜇(
𝑄𝐸1

𝑀
)3ℎ3(𝜔)ℎ(3𝜔) +

𝑄𝐸3

𝑀
ℎ(3𝜔)                                      2.26c 

 

We substitute equation (2.26𝑏) into (2.25𝑎) and we obtain the nonlinear wave equation 

𝐸1𝑥𝑥 + 𝐸1𝑦𝑦 = −𝜔
2 ((𝜏0𝛾0 + 𝜂1(𝜔))𝐸1 − 𝜂3(𝜔)𝐸1ǀ𝐸1ǀ

2) .             2.27 

We substitute its solution into equation (2.26b) then equation (2.25a) assumes a linear 

inhomogeneous wave equation for the 3𝜔 component of the electromagnetic wave. Coming 

back to the equation (2.27) we consider the ansatz of a modulated plane wave in 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

with an amplitude envelope  

𝐸1(𝑥, 𝑦) = 𝜓(𝑥, 𝑦)exp (−𝑖𝑟𝑥)                2.28a 

And we obtain  

 

𝐸1𝑥 = (𝜓𝑥 − irψ)exp (−𝑖𝑟𝑥) ,                         2.28b 
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𝐸1𝑥𝑥 = (𝜓𝑥𝑥 − 2ir𝜓𝑥 − 𝑟
2ψ)exp (−𝑖𝑟𝑥) ,              2.28c 

 

𝐸1𝑥𝑥 = 𝜓𝑥𝑥exp (−𝑖𝑟𝑥)                 2.28d 

 

Hence from equation (2.27) we have 

(𝜓𝑥𝑥 + 𝜓𝑦𝑦 − 2ir𝜓𝑥 − 𝑟
2ψ) exp(−𝑖𝑟𝑥) = −𝜔2 ((𝜏0𝛾0 + 𝜂1(𝜔))ψexp (−𝑖𝑟𝑥) ) −

                                                                                               𝜔2𝜂3(𝜔)ψǀψǀ
2exp (−𝑖𝑟𝑥)                  2.29 

Using the “thin beam approximation”  

 

𝜓𝑥𝑥 ≪ 𝜓𝑦𝑦                           2.30 

And  

 

𝜔2 = 𝜏0𝛾0𝑟
2                    2.31 

 

We have the wave equation 

 

−2𝑖𝑟𝜓𝑥 + 𝜓𝑦𝑦 + 𝜔
2𝜂1(𝜔)𝜓 + 𝜔

2𝜂3(𝜔)ǀψǀ
2𝜓 = 0               2.32 

 

Using the transformation  

 

𝜙 = 𝜓exp (−𝑖𝑐𝑥) ,                   2.33 

 

And putting  2𝑟𝑐 = 𝜔2𝜂1(𝜔). We made the 𝜔2𝜂1, (𝜔)𝜓 term vanish and we arrived at a cubic 

Schrödinger equation of the following form 

−2𝑖𝑟𝜙𝑥 + 𝜙𝑦𝑦 + 𝜔
2𝜂3(𝜔)ǀϕǀ

2𝜙 = 0                2.34 

Equation (2.34) is equivalent to the standard form of the cubic Schrödinger equation (CSE) 

which is given by 

−𝑖𝜙𝑡 +
1

2
𝜙𝑥𝑥 + 𝜉ǀ𝜙ǀ

2𝜙 = 0                  2.35 

Here we note that these transformations assumes that 𝜂1(𝜔) and 𝜂3(𝜔) are real functions, 

which is only approximately satisfied if the damping coefficient 𝜎 of the Duffing Lorentz 

model is neglected. The above assumption is a consistent one.  In the following subsections we 
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will go through the energy conservation law of the cubic Schrödinger Equation, which will be 

only valid if we neglect the dissipative effects.       

 

 

 

2.4 Conservation Laws         

The Cubic Schrödinger Equation (CSE) possess very vital property that is, infinite number of 

conserved quantities. This property leads to interpreting the CSE as an infinite dimensional 

integrable Hamiltonian systems. We consider the first three conservation laws of the CSE 

which is confirmed by elementary calculations.  

We let the Cubic Schrödinger Equation in the following form 

  

𝜓𝑡 =
𝑖

2
𝜓𝑥𝑥 + 𝑖𝜉𝜓̅𝜓

2 = 0 ,                  2.36 

 

And the complex conjugate of the CSE in the form 

 

𝜓̅𝑡 = −
𝑖

2
𝜓̅𝑥𝑥 − 𝑖𝜉𝜓𝜓̅

2 = 0 ,                  2.37 

 

We use the integration by parts repeatedly where the boundary term vanish always due to the 

boundary conditions for 𝑥 → ±∞ . The scalar product of wave functions is given by (referring 

quantum mechanics)  

⟨𝜑|𝜓⟩ ≡ ∫𝜑(𝑥)̅̅ ̅̅ ̅̅ 𝜓(𝑥)𝑑𝑥.                               2.38 

We consider ⟨𝜓|𝜓⟩ , the first conserved quantity. This is the total probability (=1) which should 

be considered in the course of time in the quantum mechanics (𝜉 = 0). When the dissipative 

effects are neglected, ⟨𝜓|𝜓⟩ is proportional to the field energy and its conservation is plausible 

in the context of nonlinear optics.  

To prove       

 
𝑑

𝑑𝑡
⟨𝜓|𝜓⟩ = 0                   2.37a 
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We have 

 
𝑑

𝑑𝑡
⟨𝜓|𝜓⟩ = ⟨𝜓𝑡|𝜓⟩ + ⟨𝜓|𝜓𝑡⟩                            2.37b

      

= ⟨
𝑖

2
𝜓𝑥𝑥 + 𝑖𝜉ǀ𝜓ǀ

2𝜓𝑡|𝜓⟩ + ⟨𝜓|𝜓𝑡⟩ + ⟨𝜓|
𝑖

2
𝜓𝑥𝑥 + 𝑖𝜉ǀ𝜓ǀ

2𝜓⟩                                   2.37c 

    

          = −
𝑖

2
(∫𝜓𝑥𝑥̅̅ ̅̅ ̅ 𝜓𝑑𝑥 − ∫ 𝜓̅𝜓𝑥𝑥𝑑𝑥) + 𝜉(∫−⃓𝜓̅ǀ ǀ𝜓ǀ

2 𝜓𝑑𝑥 + ∫∫ 𝑖⃓𝜓̅ǀ ǀ𝜓ǀ2 𝜓𝑑𝑥)      2.37d 

 

Integrating (2.37d) by parts we conclude, 

 

          = −
𝑖

2
(−∫𝜓𝑥̅̅̅̅ 𝜓𝑥𝑑𝑥 + ∫ 𝜓̅𝜓𝑥𝑑𝑥) = 0                 2.37e 

 

The expectation value of momentum ⟨𝜓ǀℙǀ𝜓⟩ =
ℏ

𝑖
⟨𝜓|𝜓⟩ would be conserved in quantum 

mechanics. Hence we have  

 

 
𝑑

𝑑𝑡
∫𝜓𝜓𝑥̅̅̅̅ = 0 ,                                                          2.38 

 

For the solution of the CSE. 

 

To prove equation (2.38) we consider the following;    

 
𝑑

𝑑𝑡
∫𝜓𝜓𝑥̅̅̅̅ = −∫𝜓𝑥̅̅̅̅ 𝜓𝑡𝑑𝑥 + ∫𝜓𝑥𝑡̅̅ ̅̅ ̅𝜓               2.39a 

 

 

                = −𝑖 ∫ (−
1

2
𝜓𝑥𝜓𝑥𝑥̅̅ ̅̅ ̅ + 𝜉𝜓̅𝜓2𝜓𝑥̅̅̅̅ +

1

2
𝜓𝑥𝑥̅̅ ̅̅ ̅𝜓𝑥 + 𝜉𝜓𝜓𝑥̅̅̅̅

2
𝜓𝑥)𝑑𝑥                 2.39b 

 

                =
𝑖𝜉

2
∫(𝜓2𝜓̅2)𝑥𝑑𝑥 = 0                                               2.39c 

 

Which completes the proof of (2.38). 

We conclude from the equation (2.38) that the suitable defined centre of mass of the wave 

packet moves with uniform velocity as in quantum mechanics.   

 

The second conserved quantity in analogy with quantum mechanics is the total kinetic energy 

expectation value ⟨𝜓ǀℙ2ǀ𝜓⟩ . However in case 𝜉 ≠ 0 we have add a bi-quadratic term to obtain 

a conserved quantity:  
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𝑑

𝑑𝑡
∫ (𝜓𝜓𝑥̅̅̅̅ −  𝜉𝜓𝜓𝑥̅̅̅̅

2
) 𝑑𝑥 = 𝑖 ∫(𝜓𝑡𝑥𝜓𝑥̅̅̅̅ − 2𝜉𝜓𝜓̅

2𝜓𝑡 − 𝜉𝜓
2𝜓𝜓𝑥̅̅ ̅̅ ̅̅ )𝑑𝑥                    2.40a

   

       = 𝑖 ∫ {(
1

2
𝜓𝑥𝑥𝑥 + 𝜉(𝜓̅𝜓

2)𝑥)𝜓𝑥̅̅̅̅ − (
1

2
𝜓𝑥𝑥𝑥̅̅ ̅̅ ̅̅ + 𝜉(𝜓𝜓̅2)𝑥)𝜓𝑥 −

                                                           2𝜉 ((
1

2
𝜓𝑥𝑥 + 𝜉𝜓̅𝜓

2)𝜓𝜓𝑥̅̅̅̅
2
− (

1

2
𝜓𝑥𝑥̅̅ ̅̅ ̅ + 𝜉𝜓𝜓𝑥̅̅̅̅

2
) 𝜓̅𝜓2) 𝑑𝑥}  

        

                 2.40b 

 

Integrating (2.40b) by parts the 8 terms cancel pairwise in accordance with the powers of ξ. 

Hence we have   

     
𝑑

𝑑𝑡
∫ (𝜓𝜓𝑥̅̅̅̅ −  𝜉𝜓𝜓𝑥̅̅̅̅

2
) 𝑑𝑥 =0                2.40c 

 

 

2.5 Solitary Wave Solution of the Schrödinger Equation 

There exist a special class of wave equations which support soliton solutions in different 

physical system. Particularly, the study of soliton propagation in optical fibre. The soliton 

pulses are used as the information carriers (elementary bits) to transmit digital signals over 

long distances. To obtain these special solutions of the cubic Schrödinger Equation (CSE) we 

insert the ansatz  

 

𝜓(𝑥, 𝑡) = Ψ(𝑥)𝑒𝑖𝛽𝑡  ,    𝛽 ∈ ℝ               2.41a 

 

Into the CSE (2.35), and we get 

 

−𝛽Ψ+
1

2
Ψ𝑥𝑥 + 𝜉Ψ

3 = 0 .                           2.41b 

 

In the next step, we multiply eq. (2.41b) by 4Ψ𝑥 and integrate over 𝑥 in equivalence with the 

treatment of one-dimensional equations. 

We get,  

   Ψ𝑥
2 − 2𝛽Ψ2 + 𝜉Ψ4 = 𝐶 .                2.41c 
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On solving equation (2.41a) for Ψ𝑥 and applying separation of variables we arrive at an 

elliptical integral 

∫
𝑑Ψ

√𝐶−𝜉Ψ4+𝛽Ψ2
= ∫𝑑𝑥                            2.41d 

 

We obtain periodic solutions for  𝛽, 𝜉 > 0, 𝐶 < 0, and soliton solution for  𝛽, 𝜉 > 0, 𝐶 = 0 .    

We perform the transformation  Ψ(𝑥) = 𝑔−1(𝑥) , instead of solving the integral equation 

(2.41d). Performing the transformation  Ψ𝑥 = −𝑔
−2𝑔𝑥 in the equation (2.41c),  

We get  

𝑔−4𝑔𝑥
2 − 2𝛽𝑔−2 + 𝜉𝑔−4 = 0.                2.41e 

Again multiplying (2.41e) with  𝑔4 , differentiating it with respect  𝑥 and then dividing the 

resultant with 2𝑔𝑥 we get the following, 

  𝑔𝑥
2 − 2𝛽𝑔2 + 𝜉 = 0                 2.42a 

2𝑔𝑥𝑔𝑥𝑥 − 𝑔𝑔𝑥 = 0                 2.42b  

 

𝑔𝑥𝑥 − 2𝛽𝑔 = 0.                 2.42c 

 

The general solution of the equation (2.42c) satisfying the boundary conditions  𝛽, 𝜉 > 0, 𝐿 ≤

0 is given by  

𝑔(𝑥) = 𝐴 𝐶𝑜𝑠ℎ(√2𝛽(𝑥 − 𝑥0)).               2.42d 

Without loss of generality we let 𝑥0 = 0 . We can do that since the CSE is invariant with respect 

to 𝑥-translations. The next task we have is to check whether the equation (2.42d) satisfies 

equation (2.42a), since by differentiation of a differential equation we might have enlarged the 

set of solitons.  

Applying  

 

𝑔𝑥 = 𝐴√2𝛽 𝑆𝑖𝑛ℎ(√2𝛽𝑥) ,                2.43a 

 

We obtain  
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−𝑔𝑥
2 + 2𝛽𝑔2 = 2𝛽𝐴2[𝐶𝑜𝑠ℎ2(√2𝛽𝑥) − 𝑆𝑖𝑛ℎ2(√2𝛽𝑥)] = 2𝛽𝐴2 = 𝜉.          2.43b 

 

Which implies that the parameters 𝐴, 𝛽, 𝜉  cannot be chosen independently and have to satisfy  

 

𝐴 = √
𝜉

2𝛽
                  2.44a 

 

Hence we invert the above transformation and obtain  

 

𝜓(𝑥) = √
2𝛽

𝜉
 𝑆𝑒𝑐ℎ(√2𝛽𝑥 )𝑒𝑖𝛽𝑡 .               2.44b 

 

Lastly we apply the Galileo transformation to equation (2.44b) and obtain   

 

𝜙(𝑥, 𝑡) = √
2𝛽

𝜉
𝑒𝑥𝑝 (𝑖 (𝛽 −

1

2
𝑉2) 𝑡 + 𝑖𝑉𝑥) 𝑆𝑒𝑐ℎ(√2𝛼(𝑥 − 𝑉𝑡))  .           2.44c 

 

Equation (2.44c) represents a soliton moving with velocity V in 𝑥-direction without changing 

its form. The amplitude of the soliton is inversely proportional to its width and the distance 𝑑 

between the two points of inflection of the soliton profile is given by  

   𝑑 = √
2

𝛽
log(√2 + 1)  .                   

 

 

2.6 Summary of Literature Review 

Over the years people have solved the Schrödinger equations using both the analytical and 

numerical methods. The need for solving the Schrödinger equation numerically can arise in the 

description of nuclear motion in molecules in the Born-Oppenheimer approximation or in the 

description of atoms and molecules in self-consistent field approximations. 

First the Schrödinger equation was solved with finite differences and a basic propagator in 

time, and it was then concluded that this method is far too slow and computationally heavy for 

its use to be justified for this type of problem. In the year 1982 M. D. Feit, J. A. Fleck, JR., and 
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A. Steiger [11] have provided the Solution of the Schrödinger Equation by a Spectral Method. 

In this method a new computational method for determining the eigenvalues and Eigen 

functions of the Schrödinger equation is described. Conventional methods of solving this kind 

of problem rely on diagonalization of a Hamiltonian matrix or iterative numerical solutions of 

a time independent wave equation. The new method, in contrast, is based on the spectral 

properties of solutions to the time-dependent Schrödinger equation. The method requires the 

computation of a correlation function <𝛹(𝑟, 𝑂)| 𝛹 (𝑟, t)> from a numerical solution 𝛹 (𝑟, 𝑡). 

Fourier analysis of this correlation function reveals a set of resonant peaks that correspond to 

the stationary states of the system. Analysis of the location of these peaks reveals the 

eigenvalues with high accuracy. Additional Fourier transforms of 𝛹 (𝑟, 𝑡) with respect to time 

generate the Eigen functions. Delfour, Fortin, and Payre [12] has also presented a finite 

difference scheme for solving a non-linear Schrödinger Equation with a Linear Damping term 

the scheme is shown to give numerical solutions which are in good agreement with analytical 

solutions for cases in which the damping coefficient v is zero. However, when v # 0, the 

numerical solutions have sawteeth oscillations (with wavelengths of the order of the mesh 

spacing) superimposed on the smooth wave solutions. These sawteeth are caused by the 

incorrect discretization of the damping term in equation. 

 

One of the most significant work has been done by Uri Peskin, Ronnie Kosloff, and Nimrod 

Moiseyev[13] who have solved the Schrödinger equations by (𝑡,t’) method: The use of global 

polynomial propagators for time dependent Hamiltonians. The crude methods of time 

propagation were unbalanced with respect to the very high quality of the spatial representation. 

It was the introduction of the Chebyshev polynomial expansion of the evolution operator which 

first created a balanced method where both the spatial representation and the evolution operator 

possessed exponential convergence. The method gains its optimal efficiency for very high order 



22 

 

polynomial expansions. Polynomial orders of a few thousand terms are not uncommon in 

current applications. For encounters described by a stationary Hamiltonian the extreme 

accuracy and stability of the Chebyshev expansion have been found to be superior to other 

propagation techniques. For explicitly time dependent problems the construction of the 

propagator is more involved due to the problem of time ordering. The customary solution to 

the problem is to segment the propagation into small intervals for which the time variation of 

the Hamiltonian is small. The short time intervals mean that the Chebyshev expansion is far 

from optimal. Therefore new methods for propagation of explicitly time dependent problems 

have been developed. These methods have been based on short iterative polynomial expansions 

and the use of the Magnus series to overcome the time ordering problem. The method has been 

found satisfactory but could not reach the high degree of accuracy and efficiency of the 

Chebyshev expansion. In particular that any segmented propagation scheme is bound to 

accumulate errors. In a very non-conventional approach S.R.Kiyegar , G. Jayaraman and V. 

Balasubramanian [14] has given the Variable Mesh Difference Schemes Solving a Nonlinear 

Schrödinger Equation with a Linear Damping Term In the variable mesh scheme, the spatial 

discretization is done in a non-uniform manner with the mesh size refined at the region of large 

changes. Variable mesh schemes proposed by Jain for solving singular perturbation boundary 

value problems are extended. D. Kosloff [15] has provided a Fourier method solution for the 

time dependent Schrödinger equation, the method is based on discretizing space and time on a 

grid, and using the Fourier method to produce both spatial derivatives, and second order 

differencing for time derivatives. The method conserves norm and energy, and preserves 

quantum mechanical commutation relations. One and two dimensional examples, where a 

comparison to analytic results is possible, are investigated. Jiten C. Kalitaa, Puneet Chhabrab, 

Sudhanshu Kumarb [16] have provided a semi-discrete higher order compact scheme for the 

unsteady two-dimensional Schrödinger equation In this study, an implicit semi-discrete higher 
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order compact (HOC) scheme, with an averaged time discretization, has been presented for the 

numerical solution of unsteady two-dimensional(2D) Schrödinger equation. The scheme is 

second order accurate in time and fourth order accurate in space. The results of numerical 

experiments are presented, and are compared with analytical solutions and well established 

numerical results of some other finite difference schemes. In all cases, the present scheme 

produces highly accurate results with much better computational efficiency. In another finite 

difference scheme Maike Schulte [17] has discuss and analyse the results on open boundary 

conditions for the two-dimensional time-dependent Schrödinger equation. In his work he has 

derived a new mathematical models for the simulation of novel electronic devices of nanoscale 

dimensions. Within these models it is possible to study the electron flow through devices and 

their operations like the switching behaviour between on- and off states. In practice, devices 

consist of an “active region” (often having a complicated geometry) which is connected to 

leads or contact regions. Compared to the domain of interest, these leads are so long that they 

are usually modelled as infinitely long. For numerical purposes it is hence necessary to reduce 

the computational domain of the simulation model to a small region around the domain of 

interest – however, without changing the simulation results. Hence we need to use artificial 

boundary conditions at the cut-offs of the computational domain. These boundary conditions 

are called transparent, if the solution on the restricted area with the new boundary conditions 

coincides with the solution on the unbounded domain (i.e. the channel). The main courtesy of 

this work is the discretization of such artificial boundary conditions in conjunction with various 

finite difference schemes for the Schrödinger equations. 

In a numerical method for two-dimensional Schrödinger equation using collocation and radial 

basis functions provided by Mehdi Dehghan, Ali Shokri[18], they have proposed a scheme for 

the solution of the two-dimensional Schrödinger equation using collocation points and 

approximated the solution using multiquadrics (MQ) and the Thin Plate Splines (TPS) Radial 



24 

 

Basis Function (RBF). The scheme works in a similar fashion as finite-difference methods 

Mohandas pilai, Joshua Goglio and Thad g. Walker [19] a case in point is the solution of 

boundary value problems for the one-dimensional Schrödinger equation. One typically starts 

at one boundary with an assumed value for the energy, then integrates to the other boundary 

where the boundary conditions are tested. A new guess for the energy is generated, and the 

process is repeated until the desired level of accuracy is obtained .Using the Numerov method, 

the numerical integration can be done with relatively high accuracy even with large step 

sizes .Though straightforward, this process is tedious to program when one needs to solve for 

a large number of Eigen states. Wang, and Jiang [20] proposed a numerical scheme to solve the 

two-dimensional time-dependent Schrödinger equation using the method of particular solution 

and radial basis function (RBF). In this paper they have develop the multiquadrics (MQ) and 

the thin plate splines (TPS) (m=3) radial basis function in the MPS. The scheme is similar to 

finite- difference methods. The time dependent Schrödinger equation have been solved by 

Diwaker, Bandhan Panda, Aniruddha Chakraborty [21] they have focused on the exact solution 

of the time dependent Schrödinger equation involving two potentials coupled by a time 

dependent Dirac Delta function potential. The problem involving the partial differential 

equations in two variables have been reduced to a single integral equation in Laplace domain 

and by knowing the wave function at the origin they have derive the wave function everywhere. 

One of the most relevant work to our work are done by Korkmaz and Idris [34, 35]. They have 

solved a non-linear Schrödinger equation (NLSE), using two different differential Quadrature 

methods namely Lagrange based differential quadrature method and Cosine expansion based 

differential quadrature method. In Lagrange based differential quadrature method they have 

used the Chebyshev collocation points as the grid points and solved the equation first in the 

domain [-1, 1] and generalised the solution in an arbitrary domain by using a transformation. 
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After solving the equation for four different initial conditions they have estimated the error 

𝐿2  𝑎𝑛𝑑 𝐿∞  by using the known analytical solutions.   

The computational methods are very efficient schemes to solve the time-dependent 

Schrödinger equation. But using such methods, gives out unwanted reflections at the 

boundaries that necessarily constrains the computation area. To minimize these reflections 

Christoph Wachter [24] has introduced absorbing boundary conditions and has solved the time 

dependent Schrödinger equation with the Crank-Nicolson method with absorbing boundary 

conditions.  He has examined the effectiveness of the absorbing boundary conditions, as well 

as calculating transmission coefficients for various shapes of potential barriers. 
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3. Differential Quadrature Methods (DQMs) 

The different types of differential quadrature methods and the corresponding recurrence 

formulas for determining the weighting coefficients are discussed in this chapter. 

 

3.1 Lagrange Polynomial Based Differential Quadrature (PDQM) 

In this method the Lagrange interpolation polynomials are used as base functions, let the set of 

Lagrange interpolation polynomial be  

𝑟𝑘(𝑥) =
𝑀(𝑥)

(𝑥−𝑥𝑘)𝑀
1𝑥𝑘
  , 𝑘 = 0,1,2, … ,𝑁                                                                3.1 

 

Where,    

 

𝑀(𝑥) = ∏ (𝑥 − 𝑥𝑖)
𝑁
𝑖=0                             

 

  And  

 

 𝑀(1)(𝑥𝑘) = ∏ (𝑥𝑖 − 𝑥𝑘)
𝑁
𝑖=0,𝑖≠𝑘                    

  

constitute an 𝑁 + 1 dimensional vector space and used as the test function  for determining the 

weighting coefficients. After some computation and applying differential quadrature 

approximation given by Shu [5], the weighting coefficients of the first order derivatives are 

given as follows  

 𝐴𝑖𝑗 =
𝑀(1)(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀
(1)(𝑥𝑖)

                    3.2 

For determining the diagonal weighting coefficients, the test function 𝑟𝑘(𝑥) = 1  is chosen 

from the set of test functions  𝑟𝑘(𝑥) = 𝑥
𝑘   , 𝑘 = 0,1,2, … ,𝑁    

 

∑ 𝐴𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐴𝑖𝑖 = −∑ 𝐴𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗                 3.3  

 

Weighting coefficients for the second order derivatives can be obtained by the Shu [5] general 

formula as follows: 
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 𝐵𝑖𝑗 = 2𝐴𝑖𝑗 (𝐴𝑖𝑗 −
1

(𝑥𝑖−𝑥𝑗)
)      , 𝑖 ≠ 𝑗                   3.4 

   And 

 ∑ 𝐵𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐵𝑖𝑖 = −∑ 𝐵𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗                 3.5   

 

The Recurrence formulas for the weighting coefficients of the higher order derivatives are 

given as  

𝑊𝑖𝑗 = 𝑛 (𝑊𝑖𝑗
(𝑛−1)

𝐴𝑖𝑗 −
𝑊𝑖𝑗
𝑛−1

𝑥𝑖−𝑥𝑗
)   , 𝑖 ≠ 𝑗 , 𝑛 = 2,3, … ,𝑁 − 1                   3.6 

    

And 

 

∑ 𝑊𝑖𝑗
(𝑛)

= 0𝑁
𝑗=1         𝑜𝑟      𝑊𝑖𝑖

(𝑛) = −∑ 𝑊𝑖𝑗
𝑛𝑁

𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗                 3.7  

 

It should be mentioned that, when the problem domain is large the value of   
𝑀
(1)(𝑥𝑖)

(𝑥𝑖−𝑥𝑗)𝑀
(1)
(𝑥𝑖)

 in 

(3.2) may exceed the computation limits of the computer. So the usage of the uniform grids is 

not practical for all problems with differential quadrature method based on the Lagrange 

polynomials. Also Polynomial based Differential Quadrature method is of higher accuracy but 

poor stability. The high accuracy can be achieved by using more grid points. However, larger 

grid points unavoidably lead to instability of the results.  

 

3.2 Fourier Expansion Based Differential Quadrature (FDQM) 

In this method the Fourier series expansion is used as the base function for the approximation 

of the function 𝑔(𝑥) which is given as  

𝑔(𝑥) = 𝑐0 + ∑ (𝑐𝑘𝐶𝑜𝑠(𝑘𝑥) + 𝑑𝑘𝑆𝑖𝑛(𝑘𝑥))
𝑁

2
𝑘=0                 3.8 
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Here 𝑔(𝑥)  constitute a (𝑁 + 1)  dimensional vector space. There are two typical sets of base 

vectors which are used in the formulation of the Fourier Expansion Based Differential 

Quadrature (FDQ), 

 

1, 𝐶𝑜𝑠𝑥, 𝑆𝑖𝑛𝑥, 𝐶𝑜𝑠2𝑥, 𝑆𝑖𝑛2𝑥,… . . , 𝐶𝑜𝑠 (
𝑁𝑥

2
) , 𝑆𝑖𝑛 (

𝑁𝑥

2
)              3.9 

     And 

𝑠𝑘(𝑥) =
𝑆(𝑥)

𝑞(𝑥𝑘)𝑆𝑖𝑛
𝑥−𝑥𝑘
2

  , 𝑘 = 0,1,2,… . , 𝑁                3.10 

Where, 

𝑆(𝑥) = ∏ 𝑆𝑖𝑛
𝑥−𝑥𝑘

2

𝑁
𝑘=0                    

 

𝑞(𝑥𝑖) = ∏ 𝑆𝑖𝑛
𝑥𝑖−𝑥𝑘

2

𝑁
𝑘=0,𝑘≠𝑖                               

 

Now after some computation and using eq. (1.3), the weighting coefficients of the first order 

derivative are given as  

𝐴𝑖𝑗 =
𝑞(𝑥𝑖)

2𝑞(𝑥𝑖)
𝑥𝑖−𝑥𝑘
2

       , 𝑗 ≠ 𝑖                   3.11 

Using the first set of base vectors (3.9), we get  

 

 ∑ 𝐴𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐴𝑖𝑖 = −∑ 𝐴𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗              3.12 

 

And the weighting coefficients of the second order are given by  

 

𝐵𝑖𝑗 = 𝐴𝑖𝑗 (2𝐴𝑖𝑗 − 𝐶𝑜𝑡
(𝑥𝑖−𝑥𝑗)

2
)      , 𝑖 ≠ 𝑗                 3.13 

    

                     and 
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∑ 𝐵𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐵𝑖𝑖 = −∑ 𝐵𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗                         3.14

    

 

 

 

3.3 Sine Expansion Based Differential Quadrature (SDQM) 

Here we consider an odd function 𝑔(𝑥). Let the Fourier series expansion is used for the 

approximation of the function 𝑔(𝑥) which is of the following form 

𝑔(𝑥) = ∑ 𝑑𝑘𝐶𝑜𝑠(𝑘𝑥
𝑁
𝑘=1 )                  3 .15 

There are two sets of base vectors in a  𝑁 + 1  linear vector space, which are used to determine 

the Sine Expansion Based Differential Quadrature (SDQM)  

 

𝑆𝑘(𝑥) = 𝑆𝑖𝑛(𝑘𝑥) , 𝑘 = 1,2, … , 𝑁                            3.16 

  And 

𝑆𝑘(𝑥) =
𝑆𝑖𝑛𝐶𝑘(𝑥)

𝑆𝑖𝑛𝑥𝑘
                    3.17 

Where, 

𝐶𝑘(𝑥) =
𝐶(𝑥)

𝑃(𝑥𝑖)(𝑆𝑖𝑛𝑥−𝑆𝑖𝑛𝑥𝑖)
                 

Where, 

𝐶(𝑥) = ∏ (𝑆𝑖𝑛𝑥 − 𝑆𝑖𝑛𝑥𝑖)
𝑁
𝑖=1                  

 

𝑃(𝑥𝑖) = ∏ (𝑆𝑖𝑛𝑥𝑖 − 𝑆𝑖𝑛𝑥𝑖)
𝑁
𝑘=1,𝑘≠𝑖                 

Now after some computation and using eq. (1.3), we obtain the first order weighting 

coefficients of SDQM as   

  𝐴𝑖𝑗 =
−𝑃(𝑥𝑖)𝑆𝑖𝑛

2(𝑥𝑖)

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)𝑆𝑖𝑛𝑥𝑗𝑃(𝑥𝑗)
   , 𝑖 ≠ 𝑗                 3.18 
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  And 

𝐴𝑖𝑖 = 𝑐𝑖
(1)(𝑥𝑗) + 𝐶𝑜𝑡𝑥𝑖    ,                  3.19 

Similarly the weighting coefficient of second order derivative are given by  

𝐵𝑖𝑗 = 𝐴𝑖𝑗 (
2𝑆𝑖𝑛𝑥𝑖

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)
+ 2𝐴𝑖𝑖 + 𝐶𝑜𝑡𝑥𝑖   , 𝑖 ≠ 𝑗 )                3.20 

  and 

𝐵𝑖𝑖 = 𝐶𝑖
(2)(𝑥𝑖) + 2𝐶𝑜𝑡(𝑥𝑖)𝐶𝑖

(1)(𝑥𝑖)   ,    𝑖 = 𝑗                           3.21 

Finally weighting coefficients for the higher order derivatives are given by 

𝑊𝑖𝑗
(3) = 3𝐴𝑖𝑗

(1)
(𝐵𝑖𝑖 −

1

3
+ 𝐴𝑖𝑖𝐶𝑜𝑡𝑥𝑖 +

𝐶𝑜𝑠𝑥𝑖

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)
) +

3𝑆𝑖𝑛𝑥𝑖𝐵𝑖𝑗
(1)

(𝐶𝑜𝑠𝑥𝑗−𝐶𝑜𝑠𝑥𝑖)
 , 𝑖 ≠ 𝑗            3.22 

                       

   

3.4 Cosine Expansion Based Differential Quadrature (CDQM) 

Here we consider an even function 𝑔(𝑥). Let the Fourier series expansion is used for the 

approximation of the function 𝑔(𝑥) which is of the following form 

𝑔(𝑥) = 𝑑0 + ∑ 𝑑𝑘𝐶𝑜𝑠(𝑘𝑥
𝑁
𝑘=1 )                 3.23 

There are two sets of base vectors in a  𝑁 + 1  linear vector space, which are used to determine 

the Cosine Expansion Based Differential Quadrature (CDQM)  

𝐶𝑘(𝑥) = 𝐶𝑜𝑠(𝑘𝑥), 𝑘 = 0,1,2, … ,𝑁                 3.24 

 And  

𝐶𝑘(𝑥) =
𝐶(𝑥)

𝑃(𝑥𝑘)(𝐶𝑜𝑠𝑥−𝐶𝑜𝑠𝑥𝑘)
   , 𝑘 = 0,1,2, … ,𝑁                            3.25 

Where, 

𝐶(𝑥) = ∏ (𝐶𝑜𝑠𝑥 − 𝐶𝑜𝑠𝑥𝑘)
𝑁
𝑘=0                 

𝑃(𝑥𝑖) = ∏ (𝐶𝑜𝑠𝑥𝑖 − 𝐶𝑜𝑠𝑥𝑘)
𝑁
𝑘=0,𝑘≠𝑖                 
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Now after some computation and using equation (1.3), we obtain the first order weighting 

coefficients of CDQM as   

 

𝐴𝑖𝑗 =
−𝑃(𝑥𝑖)𝑆𝑖𝑛(𝑥𝑖)

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)𝑃(𝑥𝑗)
   , 𝑖 ≠ 𝑗                 3.26 

  

 and  

 

∑ 𝐴𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐴𝑖𝑖 = −∑ 𝐴𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗              3.27 

 

Similarly the weighting coefficient of second order derivative are given by  

𝐵𝑖𝑗 = 𝐴𝑖𝑗 (
2𝑆𝑖𝑛𝑥𝑖

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)
+ 2𝐴𝑖𝑖 + 𝐶𝑜𝑡𝑥𝑖   , 𝑖 ≠ 𝑗 )                3.28 

  and 

∑ 𝐵𝑖𝑗 = 0𝑁
𝑗=1         𝑜𝑟      𝐵𝑖𝑖 = −∑ 𝐵𝑖𝑗

𝑁
𝑗=1,𝑗≠𝑖     , 𝑖 = 𝑗                         3.29 

 

Finally weighting coefficients for the higher order derivatives are given by 

𝑊𝑖𝑗
(3) = 3𝐴𝑖𝑗

(1)
(𝐵𝑖𝑖

(2)
−
1

3
+ 𝐴𝑖𝑗

(1)
𝐶𝑜𝑡𝑥𝑖 +

𝐶𝑜𝑠𝑥𝑖

(𝐶𝑜𝑠𝑥𝑖−𝐶𝑜𝑠𝑥𝑗)
) +

3𝑆𝑖𝑛𝑥𝑖𝐵𝑖𝑗
(2)

(𝐶𝑜𝑠𝑥𝑗−𝐶𝑜𝑠𝑥𝑖)
 , 𝑖 ≠ 𝑗            3.30 

 

3.5 B-Spline Based Differential Quadrature (BDQM) 

In spline base differential quadrature method, instead of using the function values on all grid 

points to approximate the derivatives as in PDQ, we employ only a small portion of nearby 

grid points to approximate the derivatives [26, 27]. In this case a uniform partition

bxxxa n  21  , of the problem domain ],[ ba is considered. Let 1...,2,1,0,  NkQk  be a 

B-spline over the same domain. Forming a basis for the functions defined over ],[ ba leads B 
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-splines to be used as test functions to determine the weighting coefficients
m

ijw . The use of B-

spline functions as test functions in (1.3) leads to the following system of linear equations 

which can be solved in order to obtain the values of the weighting coefficients: 

  .1......,,2,1,0;,...,3,2,1,0,)(
1

)( 






NkNiforxQw
x

Q N

j

jkji
m

x

m

k

m

i

         3.31 

Once the weighting coefficients are determine, one can easily use the functional values to 

compute the derivatives.  

 

3.6 Quintic B-Spline Differential Quadrature Method (QBDQM) 

Let 𝑄 𝑖  (𝑥 ) be the quintic B-splines with knots at the point 𝑥 𝑖  where the uniformly distributed grid 

points are chosen as 𝑎 =  𝑥0 <  𝑥1 < ⋯ <  𝑥𝑁 = 𝑏  on the ordinary real axis with ℎ =  𝑥𝑖 −  𝑥𝑖 −

1, 𝑖 =  1,⋯ ,𝑁 . The quintic B-spline 𝑄 𝑖  (𝑥 ) at the knots is given by  

𝑄𝑖(𝑥) =
1

ℎ5

{
 
 
 

 
 
 

(𝑥 − 𝑥𝑖−3)
5 , 𝑥 ∈ [𝑥𝑖−3 , 𝑥𝑖−2)

(𝑥 − 𝑥𝑖−3)
5 − 6 (𝑥 − 𝑥𝑖−2)

5 , 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1)

(𝑥 − 𝑥𝑖−3)
5 − 6(𝑥 − 𝑥𝑖−2)

5 + 15(𝑥 − 𝑥𝑖−1)
5 , 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖)

(𝑥𝑖+3 − 𝑥)
5 −  6(𝑥𝑖+2 − 𝑥)

5 + 15 (𝑥𝑖+1 − 𝑥)
5 , 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1)

(𝑥𝑖+3 − 𝑥)
5 − 6 (𝑥𝑖+2 − 𝑥)

5 , 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2)

(𝑥𝑖+3 − 𝑥)
5 , 𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The quintic B-spline {𝑄−2, 𝑄−1, 𝑄0 , 𝑄1, … , 𝑄𝑁−1, 𝑄𝑁 , 𝑄𝑁+1, 𝑄𝑁+1} for a basis for the function 

defined over the domain [a, b] [25, 26, 27, 28, 29]. Each quintic B-spline covers six elements 

so that each element is covered by six quintic B-splines. The values of 𝑄𝑖(𝑥) and its derivative 

are shown in the table 3.1. [25, 26, 27, 28, 29].   
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Table 3.1. Coefficients of Quintic B-spline and derivatives at 𝑥𝑖  
𝑥 𝑥𝑖−3 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥𝑖+3 

𝑄𝑖(𝑥) 0      1    26    66    26     1       0 

𝑄𝑖
′(𝑥) 0 5

ℎ
 

50

ℎ
 

    0 −50

ℎ
 

−5

ℎ
 

      0 

𝑄𝑖
′′(𝑥) 0 20

ℎ2
 

40

ℎ2
 

−120

ℎ2
 

40

ℎ2
 

20

ℎ2
 

      0 

𝑄𝑖
′′′(𝑥) 0 20

ℎ3
 

−120

ℎ3
 

    0 120

ℎ3
 

60

ℎ3
 

      0 

𝑄𝑖
′′′′(𝑥) 0 120

ℎ4
 

−480

ℎ3
 

720

ℎ4
 

−480

ℎ4
 

120

ℎ4
 

      0 

 

Using the B-spline as test function in the fundamental DQM equation (1.3) leads to the equation  

𝜕𝑛𝑄𝑚(𝑥𝑖)

𝜕𝑥𝑛
= ∑ 𝐴𝑖𝑗

(𝑛)𝑚+2
𝑗=𝑚−2 𝑄𝑚(𝑥𝑗𝑖)  , 𝑖 = 0,1, … ,𝑁,𝑚 = −2,−1,… ,𝑁 + 1, 𝑁 + 2            3.32 

An arbitrary choice of  𝑖 leads to an algebraic equation system  

(

 
 

𝑄−2,−4 𝑄−2,−3 𝑄−2,−2 𝑄−2,−1 𝑄−2,−0     

 𝑄−1,−3 𝑄−1,−2 𝑄−1,−1 𝑄−1,0 𝑄−1,1    
 ⋱ ⋱ ⋱ ⋱ ⋱    
   𝑄𝑁+1,𝑁−1 𝑄𝑁+1,𝑁 𝑄𝑁+1,𝑁+1 𝑄𝑁+1,𝑁+2 𝑄𝑁+1,𝑁+3  

    𝑄𝑁+1,𝑁 𝑄𝑁+2,𝑁+1 𝑄𝑁+2,𝑁+2 𝑄𝑁+2,𝑁+3 𝑄𝑁+2,𝑁+4)

 
 

(

 
 
 
 
 
 

𝐴𝑖,−4
(𝑛)

𝐴𝑖,−3
(𝑛)

.

.

.

𝐴𝑖,𝑁+3
(𝑛)

𝐴𝑖,𝑁+4
(𝑛)

)

 
 
 
 
 
 

=

Λ                      3.33

   

Where  𝑄𝑖𝑗  represents 𝑄𝑖(𝑢𝑗) and Λ = [
𝜕𝑛𝑄−2(𝑥𝑖)

𝜕𝑥𝑛
,
𝜕𝑛𝑄−1(𝑥𝑖)

𝜕𝑥𝑛
, … ,

𝜕𝑛𝑄𝑁+1(𝑥𝑖)

𝜕𝑥𝑛
,
𝜕𝑛𝑄𝑁+2(𝑥𝑖)

𝜕𝑥𝑛
]
𝑇

.  

The system (3.33) comprise of (N+5) equations and (N+9) unknowns. In order to be able to 

solve eq. (3.33), four more additional equations are required. We add the following equations 

𝜕𝑛+1𝑄−2(𝑥𝑖)

𝜕𝑥𝑛+1
= ∑ 𝐴𝑖𝑗

(𝑛)0
𝑗=−4 𝑄−2

′ (𝑥𝑗) ,
𝜕𝑛+1𝑄−1(𝑥𝑖)

𝜕𝑥𝑛+1
= ∑ 𝐴𝑖𝑗

(𝑛)1
𝑗=−3 𝑄−1

′ (𝑥𝑗) ,  

𝜕𝑛+1𝑄𝑁+1(𝑥𝑖)

𝜕𝑥𝑛+1
= ∑ 𝐴𝑖𝑗

(𝑛)𝑁+3
𝑗=𝑁−1 𝑄𝑁+1

′ (𝑥𝑗) , 
𝜕𝑛+1𝑄𝑁+2(𝑥𝑖)

𝜕𝑥𝑛+1
= ∑ 𝐴𝑖𝑗

(𝑛)𝑁+4
𝑗=𝑁 𝑄𝑁+2

′ (𝑥𝑗)  
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to the system (3.33) and using the values of quintic B-spline at the grid points and 

eliminating 𝐴𝑖𝑗,−4
(𝑛)

, 𝐴𝑖𝑗,−3
(𝑛)

,  𝐴𝑖𝑗,𝑁+3
(𝑛)

 and  𝐴𝑖𝑗,𝑁+4
(𝑛)

 from the system, we obtain an algebraic 

equation system having penta-diagonal matrix of the form  

P𝐴 = Ω                    3.34 

Where  

𝑃 =

(

 
 
 
 
 
 

37 82 21       
8 33 18 1      
1 26 66 26 1     
 1 26 66 226 1    
  ⋱ ⋱ ⋱ ⋱ ⋱   
   1 26 66 26 1  
    1 26 66 26 1
     1 18 33 8
      21 82 37)

 
 
 
 
 
 

 And 𝐴 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

𝐴𝑖,−2
(𝑛)

𝐴𝑖,−1
(𝑛)

⋮

𝐴𝑖,𝑗−2
(𝑛)

𝐴𝑖,𝑗−1
(𝑛)

𝐴𝑖,𝑗
(𝑛)

𝐴𝑖,𝑗+1
(𝑛)

𝐴𝑖,𝑗+2
(𝑛)

⋮

𝐴𝑖,𝑁+1
(𝑛)

𝐴𝑖,𝑁+2
(𝑛)

)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

The entries of the load vector Ω are given as: 

  Ω−2 =
1

30
(−5𝑄−2

(𝑛)(𝑥𝑖) + ℎ𝑄−2
(𝑛+1)(𝑥𝑖) + 40𝑄−1

(𝑛)(𝑥𝑖) + 8ℎ𝑄−1
(𝑛+1)(𝑥𝑖))        

  Ω−1 =
1

10
(5𝑄−1

(𝑛)(𝑥𝑖) − ℎ𝑄−1
(𝑛+1)(𝑥𝑖))  

  Ω𝑖−2 = 𝑄𝑖−2
(𝑛)
 ,  Ω𝑖−1 = 𝑄𝑖−1

(𝑛)
 , Ω𝑖 = 𝑄𝑖

(𝑛)
 , Ω𝑖+1 = 𝑄𝑖+1

(𝑛)
 ,  Ω𝑖+2 = 𝑄𝑖+2

(𝑛)
 ,  

  Ω𝑁+1 =
1

10
(5𝑄𝑁+1

(𝑛) (𝑥𝑖) − ℎ𝑄𝑁+1
(𝑛+1)(𝑥𝑖)) ,  

   Ω𝑁+2 =
−1

30
(5𝑄𝑁+2

(𝑛) (𝑥𝑖) + ℎ𝑄𝑁+2
(𝑛+1)(𝑥𝑖) + 40𝑄𝑁+1

(𝑛) (𝑥𝑖) + 8ℎ𝑄𝑁+1
(𝑛+1)(𝑥𝑖))            3.35                                   

The system of equations (3.34) can be solved by using Thomas algorithm at each grid point 

𝑥𝑖 , 𝑖 = 0,1,2, … ,𝑁 and we can get all the weight coefficients 𝐴𝑖,𝑗
(𝑛)
 , for all 𝑖, 𝑗 = 0,1, …𝑁, 𝑛 =

1, … , 𝑁 − 1. 
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4. Numerical Experiments 

In this section numerical solutions are studied for Schrödinger equations (2.35). In order to 

understand the applicability of the DQM two test problems, namely single soliton and soliton 

interactions are solved separately using the quintic B-spline based DQM and the result obtain 

are compared with the analytical solutions and with the earlier numerical solutions [34, 35]. 

The Schrödinger equations for the test problems can be written as follows: 

 𝑖𝜓𝑡 = −𝜓𝑥𝑥 − 𝑞𝜓ǀ𝜓ǀ
2 = 0 , (𝑥, 𝑡) ∈ (−∞,∞) × (0, 𝑇) .                  4.1 

Where 𝑖 = √−1 , 𝜓(𝑥, 𝑡) is a complex valued function, which represents weakly nonlinear, 

strongly dispersive and almost monochromatic [34], x is the spatial coordinate, t is time, q is a 

real parameter and 𝜓𝑡  , 𝜓𝑥𝑥  represents derivative with respect to t and x respectively. In order 

to solve eq. (4.1) numerically artificial boundary conditions are introduce  𝜓(𝑎, 0) =

𝜓(𝑏, 0) = 0 to model the physical conditions. 

Assuming, 

𝜓(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) + 𝑖𝑔(𝑥, 𝑡)         4.2 

Where, 𝑓(𝑥, 𝑡) and 𝑔(𝑥, 𝑡) are real functions. 

We have 

 𝜓𝑡 = 𝑓𝑡 + 𝑖𝑔𝑡  

𝜓𝑥𝑥 = 𝑓𝑥𝑥 + 𝑖𝑔𝑥𝑥          4.3 

Substituting system (4.3) in to eq. (4.1) the following system of equations are obtained,  

𝑔𝑡 = 𝑓𝑥𝑥 + 𝑞(𝑓
2 + 𝑔2)𝑓  

𝑓𝑡 = −𝑔𝑥𝑥 − 𝑞(𝑓
2 + 𝑔2)𝑔         4.4 

And the corresponding boundary conditions are: 

𝑔(𝑎, 𝑡)  =  𝑓 (𝑎, 𝑡)  =  0        
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𝑔(𝑏, 𝑡)  =  𝑓 (𝑏, 𝑡)  =  0.                    4.5

        

Use of DQM approximations described in section (3.6) for spatial discretization of (4.4) leads 

to the following ODE’s system. 

𝜕𝑔

𝜕𝑡
|
𝑥=𝑥𝑖

= ∑ 𝐴𝑖𝑗
(2)
𝑓𝑗 + 𝑞(𝑓𝑖

2 + 𝑔𝑖
2)𝑓𝑖

𝑁
𝑗=0   

𝜕𝑓

𝜕𝑡
|
𝑥=𝑥𝑖

= −∑ 𝐴𝑖𝑗
(2)
𝑔𝑗 − 𝑞(𝑓𝑖

2 + 𝑔𝑖
2)𝑔𝑖

𝑁
𝑗=0                  (4.6) 

Where the weighting coefficients are given in section (3.6). The above system of equations 

(4.6) are solved using RK4 method. 

To get a reliable solution it is important to consider discrete conservation laws for the 

computation of smooth solitons of (4.1). Here, we have considered two basic conserved 

quantities as follows: 

𝐶1 = ∫ ǀ𝜓ǀ2𝑑𝑥 ≈ ∑ ǀ𝜓𝑗
𝑛ǀ2𝑁

𝑗=0
𝑏

𝑎
                      4.7

 𝐶2 = ∫ (ǀ
𝜕𝜓

𝜕𝑥
ǀ2 −

1

2
𝑞ǀ𝜓ǀ4)

𝑏

𝑎
𝑑𝑥                   4.8 

Where 𝜓(𝑥, 𝑡) is the analytical solution and 𝜓𝑗
𝑛 is the numerical solution at 𝑛𝑡ℎ time step at jth 

node.  

Further to determine the error we have used 𝐿∞ defined as follow  

𝐿∞ = max
𝑗
ǀ𝜓𝑗 − 𝜓𝑗

𝑛ǀ                        4.9 

 

 

 

4.1 Results and Discussion  
 

 Single Solitary Solution: 

The analytical solution of (4.1) is of the form [34]   

    𝜓(𝑥, 𝑡) = 𝛽√
2

𝑞
exp 𝑖 (

𝑐𝑥

2
−
(𝑐2−𝛽2)𝑡

4
) × 𝑆𝑒𝑐ℎ(𝛽(𝑥 − 𝑐𝑡))               4.10 
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Where c represents the speed of the single soliton and its magnitude depends on 𝛼.  

Putting 𝑡 = 0 in the solution expression (4.10) we get the initial expression as 𝜓(𝑥, 0). 

The system of first order ODE’s (4.6) are solve under the boundary conditions (4.5) and the 

initial condition 𝜓(𝑥, 0) for suitable values of parameters in order to compare our present 

results with the analytical solutions and the earlier results [34, 35]. For  𝑞 = 2 , 𝑐 = 4, 𝛽 = 1 , 

the soliton, 

|𝜓| = 𝑆𝑒𝑐ℎ(𝑥 − 4𝑡)                              4.11 

propagates to the right with unchanged profiles at a constant speed of 𝑐 = 4. Fig.1 depicts the 

propagation of the single soliton at different times. Using the above parameters with ℎ =

0.1 , and Δ𝑡 = 0.001 numerical results obtained by our method are tabulated in the table 4.1. 

 

Table 4.1. Conserved Quantities and Errors with ℎ = 0.1 , 𝛥𝑡 = 0.001,𝑁 = 400 
𝑡 𝐶1 𝐶2 Max. error 

0 2.000000 -0.666711 00000 

0.5 2.000000 -0.666657 1.84234× 10−6 

1 2.000000 -0.66667 2.4968× 10−6 

1.5 2.000000 -0.66667 3.12936× 10−6 

2 2.000000 -0.666657 4.01783× 10−6 

 

 

Table 4.2 Errors with ℎ = 0.1 , 𝛥𝑡 = 0.001,𝑁 = 400 

 𝑡     Max. error  

               0  00000 

               1  1.162331× 10−5 

               2  2.301020× 10−5 
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In order to know the efficiency of our present QBDQM we used the Cosine based differential 

method with same parameters and the numerical results are tabulated in the table 4.2   

 

 

  

  
                      Fig.1 Single Solitary at different times , 𝑁 = 400 

𝑡 = 0 𝑡 = 0.5 

𝑡 = 1 𝑡 = 2 
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We have compared the errors with some the earlier works [34, 35] and presented in Table 4.3. 

Table 4.3 Comparison of single soliton at time 𝑡 = 1 with some earlier results  

Method h  𝚫𝒕                                       𝑳∞                                      
Quintic B-spline(present) 0.1 0.001 2.4968× 10−6 

CDQM(present) 0.1 0.001 1.162331× 10−5 

B-spline Galerkin [34] 0.05 0.005 0.0003 

Hopscotch [34] 0.08 0.002 0.005 

Split-step Fourier [34] 0.3125 0.020 0.005 

Pseudospectral [34] 0.3125 0.00026 0.005 

    

 

 

 Interaction of two Solitons 

For the interaction of two solitons the initial condition is given as [34] 

𝜓(𝑥, 0) = 𝜓1(𝑥, 0) + 𝜓2(𝑥, 0)                 4.12 

Where  

𝜓𝑗(𝑥, 0) = 𝛽𝑗√
2

𝑞
𝑒𝑥𝑝 {

1

2
 𝑆𝑗(𝑥 − 𝑥𝑗)} × 𝑆𝑒𝑐ℎ 𝛽𝑗(𝑥 − 𝑥𝑗)     

The system of first order ODE’s (4.6) are solve under the boundary conditions (4.5) and the 

initial condition (4.12) for suitable values of parameters. We have considered the 

parameters 𝑞 = 2, 𝛽1 = 1, 𝛽2 = 1, 𝑆1 = 4, 𝑆2 = −4, 𝑥1 = −10, 𝑥2 = 10, ℎ = , Δ𝑡 = 0.01. The 

initial condition given by equation (4.12) represents two solitons of equal magnitudes and they 

are separated by a distant of 20 units, first one is placed at 𝑥1 = −10 and second one is placed 

at 𝑥2 = 10 , both with equal and opposite velocities. The interaction of two soliton at different 

times are shown in the figure 2 , we observed that two waves travelling in opposite direction 

after the collision separate but conserve their initial shapes.  

 

 

 



40 

 

  

  
Fig.2 Interaction of two solitons (N=200) 

 

  

 

 

Numerical results obtained by our method and Cosine based differential method are tabulated 

in the table 4.4 and table 4.5 respectively. 

 

 

 

 

𝑡 = 0 𝑡 = 2.5 
 

𝑡 =2 

 
𝑡 = 4 
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Table 4.4 Conserved Quantities and variants with 𝑞 = 2, 𝛽1 = 1, 𝛽2 = 1, 𝑆1 = 4, 𝑆2 =
−4, 𝑥1 = −10, 𝑥2 = 10, ℎ = , 𝛥𝑡 = 0.01 ℎ = 0.25 , 𝛥𝑡 = 0.01, 𝑁 = 200 

𝑡                        𝐶1                               𝐶2                             𝐶1−𝐶1
0

𝐶1
0              

𝐶2−𝐶2
0

𝐶2
0             

0 3.99991 -1.33332     ----    ---- 

1 3.99992 -1.33329        0.0000025        -0.000022500          

2 3.99946 -1.33335 -0.0001125025 0.0000225002 

2.5 3.99993 -1.33333 0.0000050001 0.0000075001 

4 3.99994 -1.33323 0.0000075002 0.0000675007 

 

 

Table 4.5. Conserved Quantities and variants with 𝑞 = 2, 𝛽1 = 1, 𝛽2 = 1, 𝑆1 = 4, 𝑆2 =
−4, 𝑥1 = −10, 𝑥2 = 10, ℎ = , 𝛥𝑡 = 0.01 ℎ = 0.25 , 𝛥𝑡 = 0.01, 𝑁 = 200 

𝑡                          𝐶1                               𝐶2                             𝐶1−𝐶1
0

𝐶1
0              

𝐶2−𝐶2
0

𝐶2
0             

0 3.99999 -1.33340      ----      ---- 

1 3.99992 -1.33329 -0.0000175 -0.000082495 

2 3.99996 -1.33337 -0.0000075 -0.000022498 

 

 

 

 

We have also done a comparison of the conserved quantities and relative changes of the 

conserved quantities at 𝑡 = 1 with some of the earlier works [34, 35] and shown in the table 

4.6. 

Table 4.6. Comparison of two soliton simulations at time 𝑡 = 2.5 with some earlier results  

Method h  𝚫𝒕                                       
     
𝑪𝟏−𝑪𝟏

𝟎

𝑪𝟏
𝟎
                               

𝑪𝟐−𝑪𝟐
𝟎

𝑪𝟐
𝟎
            

Quintic B-spline(present) 0.25 0.01 0.0000050001 0.0000075001 

CDQM(present) 0.25  -0.00000740 -0.000022498 

B-spline Galerkin [34] 0.10 0.01 -0.000003 0.00330 

Hopscotch [34] 0.05 0.001 0.000030 0.00063 

Split-step Fourier [34] 0.625 0.005 0.000710 0.03595 

Pseudospectral [34] 0.625 0.0071 0.00073 0.03247 

     

 

 

 

 

 

 

 

 

 

 



42 

 

5. Solution of Coupled Nonlinear Schrodingr Equation 
 
In this chapter we study the nemerical results of the Coupled Nonlinear Schrödinger Equation 

(CNLSE) of the form [30] 

𝑖
𝜕𝜓1

𝜕𝑡
+
1

2

𝜕2𝜓1

𝜕𝑥2
+ (|𝜓1|

2 + 𝜖|𝜓2|
2)𝜓1 = 0 ,        𝑥 ∈ (−∞,∞) ,    5.1 

𝑖
𝜕𝜓2

𝜕𝑡
+
1

2

𝜕2𝜓2

𝜕𝑥2
+ (𝜖|𝜓1|

2 + |𝜓2|
2)𝜓2 = 0 ,        𝑥 ∈ (−∞,∞) ,    5.2 

with boundary conditions: 

𝑖
𝜕𝜓1(𝑥,𝑡)

𝜕𝑥
= 𝑖

𝜕𝜓2(𝑥,𝑡)

𝜕𝑥
= 0  as |𝑥| → ∞       5.3 

Where 𝜓1 and 𝜓2 are the wave amplitudes in two polarizations and 𝑒 represents the the cross-

phasde modulation coefficient. Where 𝑖 = √−1 , 𝜓1(𝑥, 𝑡) and 𝜓1(𝑥, 𝑡) are complex valued 

function, x is the spatial coordinate, t is time. In order to solve eq. (5.1 and 5.2) numerically we 

assume  

𝜓1(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡) + 𝑖𝑔1(𝑥, 𝑡)                   5.4 

 𝜓2(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡) + 𝑖𝑔2(𝑥, 𝑡).        5.5 

 

Where, 𝑓1(𝑥, 𝑡), 𝑔1(𝑥, 𝑡), 𝑓2(𝑥, 𝑡) 𝑎𝑛𝑑 𝑔2(𝑥, 𝑡) are real functions. 

We have 

𝜕𝜓1

𝜕𝑡
=

𝜕𝑓1

𝜕𝑡
+ 𝑖

𝜕𝑔1

𝜕𝑡
  

𝜕𝜓2

𝜕𝑡
=

𝜕𝑓2

𝜕𝑡
+ 𝑖

𝜕𝑔2

𝜕𝑡
  

𝜕2𝜓1

𝜕𝑥2
=

𝜕2𝑓1

𝜕𝑥2
+ 𝑖

𝜕2𝑔1

𝜕𝑥2
  

𝜕2𝜓2

𝜕𝑥2
=

𝜕2𝑓2

𝜕𝑥2
+ 𝑖

𝜕2𝑔2

𝜕𝑥2
          5.6 

Substituting system (5.6) in the system of eq. (5.1, 5.2) the following system of equations are 

obtained 
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𝑖 (
𝜕𝑓1

𝜕𝑡
+ 𝑖

𝜕𝑔1

𝜕𝑡
) +

1

2
(
𝜕2𝑓1

𝜕𝑥2
+ 𝑖

𝜕2𝑔1

𝜕𝑥2
) + (|𝑓1 + 𝑖𝑔1|

2 + 𝜖|𝑓2 + 𝑖𝑔2|
2)(𝑓1 + 𝑖𝑔1) = 0  5.7 

𝑖 (
𝜕𝑓2

𝜕𝑡
+ 𝑖

𝜕𝑔2

𝜕𝑡
) +

1

2
(
𝜕2𝑓2

𝜕𝑥2
+ 𝑖

𝜕2𝑔2

𝜕𝑥2
) + (𝜖|𝑓1 + 𝑖𝑔1|

2 + |𝑓2 + 𝑖𝑔2|
2)(𝑓2 + 𝑖𝑔2) = 0  5.8 

And the corresponding boundary conditions are: 

𝑖 (
𝜕𝑓1(𝑥,𝑡)

𝜕𝑥
+
𝜕𝑔1(𝑥,𝑡)

𝜕𝑥
) = 𝑖 (

𝜕𝑓2(𝑥,𝑡)

𝜕𝑥
+
𝜕𝑔2(𝑥,𝑡)

𝜕𝑥
) = 0      5.9 

Use of DQM approximations described in section (3.6) for spatial discretization of the system 

(5.7, 5.8) leads to the following ODE’s system. 

𝜕𝑔1

𝜕𝑡
=

1

2
(∑ 𝐴𝑖𝑗

(2)
𝑓1𝑗

𝑁
𝑗=0 ) + (|𝜓1|

2 + 𝜖|𝜓2|
2)𝑓1    

𝜕𝑓1

𝜕𝑡
= −

1

2
(∑ 𝐴𝑖𝑗

(2)𝑔1𝑗
𝑁
𝑗=0 ) − (|𝜓1|

2 + 𝜖|𝜓2|
2)𝑔1  

𝜕𝑔2

𝜕𝑡
=

1

2
(∑ 𝐴𝑖𝑗

(2)
𝑓2𝑗

𝑁
𝑗=0 ) + (𝜖|𝜓1|

2 + |𝜓2|
2)𝑓2   

𝜕𝑓2

𝜕𝑡
= −

1

2
(∑ 𝐴𝑖𝑗

(2)𝑔2𝑗
𝑁
𝑗=0 ) − (𝜖|𝜓1|

2 + |𝜓2|
2)𝑔2               5.10 

Where the weighting coefficients are given in section (3.6). The above system of ODE`s (5.10) 

are solved using RK4 method. 

 

5.1 Results and Discussion 

Single Solitary Solution: 

The analytical solution of (5.1, 5.2) are of the form [30]   

𝜓1(𝑥, 𝑡) = √
2𝛼

1+𝜐
𝑆𝑒𝑐ℎ√2𝛼(𝑥 − 𝑐𝑡) exp 𝑖 {𝑐𝑥 − [

𝑐2

2
− 𝛼] 𝑡}   ,    

𝜓2(𝑥, 𝑡) = √
2𝛼

1+𝜐
𝑆𝑒𝑐ℎ√2𝛼(𝑥 − 𝑐𝑡) exp 𝑖 {𝑐𝑥 − [

𝑐2

2
− 𝛼] 𝑡}   ,             5.11 

Putting 𝑡 = 0 in the solution expression (5.11) we get the initial expression as 

𝜓1(𝑥, 𝑡) and 𝜓2(𝑥, 𝑡). 

The system of first order ODE’s (5.10) are solve under the boundary conditions (5.9) and the 

initial condition 𝜓1(𝑥, 0) and 𝜓2(𝑥, 0) for suitable values of parameters. For  𝜐 = 1, 𝑐 = 1,
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𝛼 = 1 with ℎ = 0.1 , and Δ𝑡 = 0.01 numerical results obtained by our method for 𝜓1 and 

𝜓2 are tabulated in the table 5.1. and 5.2 respectively. Fig 3 depicts the evolution of single 

soliton moving to the right with velocity 𝑐 = 1. 

 

 

 
Fig.3. Single Solitary at different times , 𝑁 = 800 

 

 

Table 5.1. Conserved Quantities and Errors with ℎ = 0.1 , 𝛥𝑡 = 0.01, 𝑁 = 800 
t 𝑐1 𝑐2 𝐿∞ 

0 1.41421 0.470532 ---- 

1 1.41421 0.470670 3.493400 × 10−5 
2 1.41421 0.470672 5.906480 × 10−5 
3 1.41421 0.470656 7.747943 × 10−5 
4 1.41421 0.470660 8.133650 × 10−5 

 

Table 5.2. Conserved Quantities and Errors with ℎ = 0.1 , 𝛥𝑡 = 0.01, 𝑁 = 800 
t 𝑐1 𝑐2 𝐿∞ 

0 1.41421 0.470532 ---- 

1 1.41421 0.470670 3.46105 × 10−5 
2 1.41421 0.470672 5.88181 × 10−5 
3 1.41421 0.470656 7.44700 × 10−5 
4 1.41421 0.470660 8.08233 × 10−5 
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We have also compared our results with some of the earlier works [30, 31, 32, 33] which are 

tabulated in the table 5.3 

Table 5.3 Comparison of single soliton at time 𝑡 = 1 with some earlier results  

Method h  𝚫𝒕                                       𝑳∞                                      
Quintic B-spline(present) 0.100 0.01 3.493400 × 10−5          
Galerkin [30] 0.100 0.01    0.01722 

Meshless Local Petrov–Galerkin [31] 0.025 0.001 1.2375 × 10−4               
Direct-discontinuous Galerkin 

method [32] 

0.500 0.01 6.2914 × 10−4               
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6. Conclusion 
 
From our results it is clear that our present method (QBDQM) out performs some of the 

conventional numrical methods like Hopscotch , Psuedo-spectral , Galerkin [30], Meshless 

Local Petrov–Galerkin [31], as well as other global DQMs like PDQM and CDQM. Global 

DQMs are insuficient when the number of grid points are large and small number grid points 

greately limit the applications og local DQMs. For example a solitary wave sweeps all parts of 

space. The grid points should be uniformly distributed to correctly capture wave profiles at 

different time steps but fewer grid points deterioates wave profile as time increases. The 

localised DQMs like our method (QBDQM) overcomes these limitations. In table 4.3, 4.6, 5.3 

we have listed the values of error corresponding to some of the earlier methods as well as our 

method and it is clear form the tabulated values that error corresponding to our method are 

minimum. 
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