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Abstract

This thesis focus on computational studies of melting transition of copper crystal

with volume voids. The melting properties of copper metal with different size of

spherical voids, varied from 4 Å to 10 Å in radius and layered voids were studied by

classical molecular dynamics simulations in isothermal-isobaric (NPT) ensemble.

We used embedded atom method (EAM) potential for copper and obtain various

thermodynamic and structural properties of copper crystals in the temeperature

900 K to 2000 K. Our objective was to find how spherical and layered voids in-

fluence the properties of solid and its bulk melting temperature. We calculated

the potential energy, enthalpy, density, radial distribution function, order param-

eter (Q6), diffusion coefficient and Lindemann index to characterize the melting

process. Our results show that melting temperature is size dependent. Defects

decrease the melting temperature from 1740 K to 1500 K. Melting temperature is

also found to depend on the position of the defects.



Contents

List of Figures iii

List of Tables iv

1 Bulk Melting 1

1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Lindemann Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Born Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Review of Literature 7

2.1 Melting of Defective Bulk Metal . . . . . . . . . . . . . . . . . . . . 7

2.2 Melting of Nanostructures . . . . . . . . . . . . . . . . . . . . . . . 9

3 Computational Details 12

3.1 Idea of Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Interatomic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Embedded Atom Method . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Charge optimized many-body potential(COMB) . . . . . . . 15

3.2.3 Melting of Bulk Copper Using COMB and EAM Potential . 16

3.3 Newtons equation of motion . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Time Inegration Algorithm . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Verlet Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.2 Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Periodic Boundary Condition . . . . . . . . . . . . . . . . . . . . . 20

3.6 Isothermal-isobaric (NPT) ensemble . . . . . . . . . . . . . . . . . . 21

3.6.1 Molecular Dynamics at Constant Temperature . . . . . . . . 21

3.6.2 Molecular Dynamics at Constant Pressure . . . . . . . . . . 22

3.7 Visualization and Initial Configurations . . . . . . . . . . . . . . . . 23

3.8 Simulation using LAMMPS . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Quantities of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . 28

i



4 Results and Discussions 31

4.1 Melting of Bulk Copper with Spherical Voids . . . . . . . . . . . . . 31

4.2 Melting of Bulk Copper with Layered Voids . . . . . . . . . . . . . 39

5 Conclusion and Future Prospects 42

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 References 45

ii



List of Figures

1.1 Variation of the Gibbs free energy of a simple atomic substance

near the melting point as a function of temperature. . . . . . . . . . 1

3.1 A simple molecular dynamics program. . . . . . . . . . . . . . . . . 13

3.2 Density, enthalpy and diffusion coefficient as a function of temper-

ature of bulk copper (500 atoms). . . . . . . . . . . . . . . . . . . . 16

3.3 Periodic boundary conditions used in MD simulations, from ref [41] 20

3.4 Initial structure of 12x12x12 supercell of copper without void and

with small and large radius of spherical void. . . . . . . . . . . . . . 24

3.5 Initial structure of 12x12x12 supercell of copper with layered voids. 25

4.1 Density, enthalpy, diffusion coefficient and average bond order pa-

rameter as a function of temperature of bulk copper with different

sized-voids and without voids. . . . . . . . . . . . . . . . . . . . . . 31

4.2 Lindemann index for the different size of voids system during heat-

ing process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Radial distribution function of bulk copper at various temperatures. 34

4.4 Radial distribution function of of voids system at various tempera-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Fraction of copper atoms with 12, 13 and 14 neighbours of different

systems as a function of temperature. . . . . . . . . . . . . . . . . . 36

4.6 Distribution of orientational order parameter, Q6 for coordination

number 12, 13 and 14 at different temperatures of bulk copper. . . . 37

4.7 Distribution of orientational order parameter, Q6 for coordination

number 12, 13 and 14 at different temperatures. . . . . . . . . . . . 38

4.8 Density, enthalpy and diffusion coefficient as a function of temper-

ature of bulk copper with layer voids. . . . . . . . . . . . . . . . . . 40

4.9 RDF of copper with layer voids at various temperatures. . . . . . . 41

iii



List of Tables

3.1 Number of copper atoms present in different system of voids having
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Chapter 1

1 Bulk Melting

1.1 Preface

The process of solid becoming liquid with increase in temperature is called melting.

During melting solid requires energy to transform to liquid and this energy goes

exclusively to change the phase of the substance. Melting is thus classified as a first

order phase transition where first derivative of Gibbs free energy with temperature

and pressure changes discontinously. At the melting temperature, solid-liquid

phase equilibrium exists and Gibbs free energy difference between phases are equal

but entropy and volume of the two phases differ. Though many scientists proposed

different theories for melting transition yet it’s mechanism is not satisfactorily

understood.

Figure 1.1: Variation of the Gibbs free energy of a simple atomic substance near
the melting point as a function of temperature.

For all known elements (except He), the entropy of the liquid state is higher than

that of the entropy of solid state at melting temperature.

∆Sm = Rln

(
Wl

Ws

)
(1.1)
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Where ∆Sm is the difference of entropy between the solid and liquid phases, R

is the gas constant. Wl and Ws are the number of impartial methods of figuring

out the molten state and solid state respectively. Melting is also a transition

from an ordered state to a much less ordered state and thus melting increases the

“randomnes” of the material [1]. Thermodynamic equations establish relationship

between various macroscopic properties at melting. But mechanism of melting

can’t be explained properly by these equations. Mechanistically, melting transition

is best understood by following structural changes taking place in materials during

appearance of molten state.

One can find few theories suggested by researchers to describe the melting

transition. According to Sorkin [2], all melting transitions can be divided into

two groups. The first is the group of one phase models considering melting as a

homogeneous (mechanical melting) process. It happens in the bulk of the solid

resulting from lattice instability. The second group considers melting as a het-

erogeneous two-phase (thermodynamic melting) process resulting from extrinsic

defects (grain boundary, voids etc.). Although homogenous melting theories are

questionable yet these give a very simplistic perspective of this transition.

Two of the most important theories of melting which has been tested since

they were proposed is discussed in the next two sections -

1.2 Lindemann Criterion

Frederick Lindemann [3] was the first scientist who explained the mechanism of

melting. He proposed that melting happens when vibrational amplitude becomes

half of the interatomic spacing in the crystal lattice [4]. When the temperature

of solid is increased, vibrational amplitude of atoms also increase. At some point,

melting occurs when the amplitude of vibrations become so large that atoms are

completely displaced from their positions. Based on this Lindemann suggested

an easy criterion that melting occurs when the root mean vibrational amplitude√
〈u2〉 exceeds a certain threshold value. Lindemann believed that each atom vi-
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brates around their equilibrium position with the same frequency νE (the Einstein

approximation). The average thermal vibration energy can be considered from

the equipartition theorem as:

E = m4π2ν2E〈u2〉 (1.2)

Where m and νE are the atomic mass and Einstein frequency respectively. One

can calculate the melting point using 〈u2〉 = C2
l . Cl is the Lindemann constant.

There are few disadvantages of Lindemann theory. The theory is based on

harmonic forces, while melting has to involve bond breaking. Moreover many

experiments performed at excessive pressures suggest that the Lindemann model

does no longer estimate accurately the strain dependence of the melting temper-

ature [5]. The most serious drawback of the theory is that melting is defined in

term individual atomic property, i.e. mean square amplitude of vibration, at the

same time phase transition is a collective process [1]. Also, the Lindemann model

consider melting for solid alone, even through the melting transition must involve

in each solid and liquid phases.

1.3 Born Criterion

In the year 1939, Born [6] proposed a theory where he suggested that melting

takes place when shear modulus becomes zero. He realized that liquid phase do

not offer any resistance to shear stress unlike the crystal phase. A. Kanigel et al .

[7] found that at melting point the Born hypothesis is fulfilled and showed that

one of the shear stress of solid vanishes.

Shear elastic constant decrease with increasing temperature of solid substance

because of the thermal development the distance between the atoms is decreased.

Born investigated that the free energy of a solid with a cubic crystalline lattice.

For a lattice to be stable, the free energy should be in quadratic form. For a

3



cubic crystal, there are three independent elastic constant: C11 , C12 , C44 and the

accepted stability criteria are

C11 + 2C12 > 0 (1.3)

C44 > 0 (1.4)

C11 − C12 > 0 (1.5)

Equation (1.3), (1.4) and (1.5) are related to bulk, shear and tetragonal shear

moduli respectively and are referred to as spinodal, shear and Born criteria [8].

According to Born [6], C44 first vanishes and the melting temperature can

be calculated from the relation C44(Tm) = 0. He did not consider the external

pressure. The new modified stability criteria are

C11 + 2C12 − P > 0 (1.6)

C44 − P > 0 (1.7)

C11 − C12 − P > 0 (1.8)

Experimentally melting can be located in various ways. A simple technique

is to note the temperature at which molten state of the solid state first appears.

Other sophisiticated techniques to locate melting are calorimetric measurements

etc. These methods help to locate the melting temperature of the sample precisely.

But experimentally, it is always hard to understand melting inside a crystal since

this process takes place during a short interval of time. To understand these as-

pects of melting theoretical and computational studies are performed. Molecular

simulations have played an important role in understanding melting transitions

in bulk. One of the most important conclusions obtained from simulatios is that

mechanical melting occurs after thermodynamic melting. Wang et al . [9] analyzed

the bulk melting temperature of copper without external pressure using molecular
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dynamics simulation and found that shear moduli C/ vanishes at some tempera-

ture, Tf , which is higher than thermodynamic melting that is Tf > Tm. They also

concluded that Born stability criteria is satisfied only for perfect crystal; not for

real crystals with defects and boundaries.

According to Frenkel [10], melting happens because of formation and spreading

of intrinsic crystalline defects like vacancies. Lennard-Jones and Devonshire [11,

12] proposed a theory which depended on positional disordering. They considered

a model of rare gas crystal and first order transition was observed. Their theory

was based on order-disorder transition. The disadvantage of this theory was that

it proposed a critical point for melting which was not observed experimentally.

Out of all the theories for melting, Lindermann and Born theories are mostly used

to examine the melting transition.

Moreover simulation studies also show that spread of defects cause melting.

It has also helped to understand the effect of imperfections like point defects,

voids, grain boundaries, dislocations etc. in crystals. These aspects which are

otherwise impossible to study experimentally has been successfully investigated

from molecular simulations. [13]

As explained previously both Monte Carlo and Molecular Dynamics simula-

tions have been extensively used to study melting. Advanced sampling technqiues

have also been used to estimate free energies of solid and liquid basins at the

melting temperature. Most of the earlier simulations on melting were performed

on Lennard-Jones potential. Later melting of ice and metallic systems have been

investigated with more reliable potentials which could reproduce experimental

properties of these systems reasonably well. Both Lindemann and Born criteria

of melting have been rigorously tested for these systems.

Melting of metallic systems and its alloys has remained an active area of re-

search since a long time. One of the most studied metallic system is copper. It is

one of those materials we use throughout the day in a variety of forms due to re-

marakable physical properties. Its a good conductor of electricity and its ductility
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makes it the most suitable metal avaialble for conduction. At ambient conditions

copper has a melting temperature of 1356 K. The melting properties of copper in

bulk, clusters and with defects are being researched exhaustively using simulation

methods.

Point defects and voids play an important role in melting. The physical prop-

erties of the solid depend on point defects and nano-voids. Interstitials extend the

sample, while vacancies diminish its volume. A.Kanigel et al . [7] discovered that

the bulk melting temperature of copper depends on the concentration of point

defects (namely self-interstitials). Point defects expand the volume of the solid to

a critical value at which the mechanical melting transition is produced. According

to A.Kanigel et al . [7] the bulk melting transition is lowered by point defects.

Recently melting of copper metal with imperfections and also under shock

have generated lots of interest. With the availability of reliable potentials for

copper, both MC and MD techniques have been widely used to study this system.

Our focus in this thesis is to understand mechanism of melting in copper with

imperfections. We analyse the structural properties of copper around the melting

transition. We create two types of imperfections in bulk copper and investigate

structural changes asociated with melting.

In the next chapter we briefly review the literature available on melting of bulk

metal like copper, aluminium etc. with defects and melting of copper clusters. We

review the simulation studies performed on these systems.
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Chapter 2

2 Review of Literature

This chapter briefly reviews the literature on simulation studies of melting with

defects and melting of nano-clusters. In the first section literature on melting

studies of copper, aluminium, Lennard-Jones systems with defects is reviewed.

Second section presents the review on melting of copper and LJ nano-clusters.

2.1 Melting of Defective Bulk Metal

In a recent work melting pathways have been determined using advanced sampling

techniques in molecular dynamics simulations. According to Samanta et al . [14]

melting of solid happens through multiple melting pathways and each pathway

proceeds via the formation of point defects and dislocations. Melting is aided

through mobile defect each at the thermodynamic melting point and at super-

heating. They established three specific melting regimes in their rare sampling

simulation of copper:

(i) Close to melting transition occurs via multiple barrier crossings.

(ii) At superheated temperature (1525 K to 1595 K), melting occurrs as single

barrier crossing event and it consists of both entropic and enthalpic contribution.

(iii) Beyond the superheating, melting is driven by large vibrational amplitudes

of atoms.

To determine the structural and thermodynamics melting point of copper,

Lutsko et al . [15] simulated bulk copper with a grain boundary and voids on

(001) plane using EAM potential at superheating rate and found the structural

and thermodynamic melting at 1450 K and 1171 K individually. They found that

the ratio between structural and thermodynamic melting points is 1.32.

Puri et al . [13] performed molecular dynamics simulation using isobaric-isoenthalpic

ensemble to investigate the effect of voids on the melting of bulk Aluminum within
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the size range varied from 2 nm 9 nm. To characterize the melting process, they

analyzed Lindemann index, translational order parameter and radial distribution

function and found that melting temperature is dependent on the size of voids.

Voids decrease the melting point and the structural melting point of bulk Al with

void was also found to be 32% higher than the thermodynamic melting point.

In the year 1998, P.Heino et al . [16] studied the mechanical properties of copper

with various types of defects from molecular dynamics simulation using effective

medium theory (EMT) [17]. They investigated the physical properties of three

types of defects: point defects, grain boundary, and an initial void serving as a

crack seed. Simulations were done at room temperature or near zero tempera-

ture. First they studied the strength and modulus of copper with vacancies or

interstitials where they removed atoms randomly from the perfect fcc structure to

introduce vacancies and added atoms randomly to the perfect fcc structure such

that two atoms were not too close to each other to introduce the interstitials. They

found that system strength was decreasing in terms of fracture stress and fracture

strain as they increased the amount of defects and the inerstitials decreased the

system strength more effectively than vacancies. They studied the effect of grain

boundaries with different crystal orientations introducing one such boundary and

found that elastic modulus and the critical strain for crack initiation turned into

less on the grain boundary than in the bulk of the system.

In 2008, Li-Boo Han et al . [18] investigated the isobaric melting of defective

copper solids by classical molecular dynamics simulations using EAM interatomic

potential [19]. They introduce only one type of defect: intrinsic or extrinsic stack-

ing faults. Simulations were performed under steady pressure-temperature en-

semble and three dimensional periodic boundary condition was applied. Hoover

thermostat [20] and isotropic volume scaling [21] was applied to control the Tem-

perature and pressure respectively. They found that global order parameter for

both intrinsic and extrinsic stacking faults was diminished from 0.94 at 300 K to

0.44 at 1600 K and dropped quickly to 0.115 at 1620 K (melting point). From the
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development of enthalpy and density at 1620 K, they mentioned that the melting

point of both the defective copper and perfect copper was 1620 K which implies

that the stacking faults have little or insignificant impacts on the bulk melting at

such high heating rates. The authors mentioned that nucleation of liquid nuclei

happened close to the stacking fault indicating both heterogeneous and homoge-

neous nucleation and the stacking faults slightly expanded the nucleation rate.

2.2 Melting of Nanostructures

In the year 2003, Li Wang and his co workers [22], studied the melting behavior

of copper nanocluster within up to 8628 atoms by molecular dynamics simula-

tion using embedded atom method (EAM) [19]. The calculation was performed

in two steps. First, they simulated the nanoclusters with constant temperature

and constant volume (NVT) without the periodic boundary condition. After that,

the bulk system was simulated under constant temperature and constant pressure

(NPT) condition containing up to 500 particles in the cube with a periodic bound-

ary condition. They defined the melting point as the temperature corresponding

to the maximum of the heat capacity. In their work, heat capacity indicates the

melting point is 1780 K. They also found that there exists an intermediate region

above 456 atoms, the melting temperature and heat of melting scales inversely as

N−1/3 for FCC structures in this region. Melting of the whole clusters begin from

the liquid to core region and the enthalpy, entropy and the surface energy of the

clusters increase with the increase of cluster size.

H.H.Kart et al . [23] studied the thermodynamics, structural and dynamics

properties of copper nanoparticles containing from 369 atoms to 44,403 atoms,

diameter varied from 2 nm to 10 nm by molecular dynamics simulation using

Quantum Sutton-Chen (QSC) [24] many-body force potential. All the calculations

were done in the MPiSiM software developed at Caltech [25] under NVT condi-

tion. They investigated that how the melting temperature, heat capacity, radial

distribution function, mean square displacement, diffusion coefficient, Lindemann
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index and Honeycutte Andersen index of nanoparticles are depend on nanoparticle

sizes, including pre-melting of the nanoparticles to estimate the phase transition

from solid to liquid. In their work, they found that melting temperature of Cu

nanoparticles increased as they increased the size of the nanoparticles and from

the Honeycutte Andersen index plot they found that the number of fcc atoms were

decreased with increasing the temperature. They also calculated the diffusion co-

efficient using the slope of MSD curve and found to be fitted with the Arrhenius

curve. From the Lindermann index plot, they concluded that an increase in tem-

perature leads to an increment of the surface diffusion or surface melting of the

nanoparticles.

In 2017, Jiacheng Zhang et al . [26] studied the melting behaviors of copper

nanorod by using molecular dynamics simulation using embedded atom method

potential. Calculations have been calculated using large-scale atomic/molecular

massively parallel simulator (LAMMPS) [27] under NVT condition with an inte-

gration time step of one femtosecond to simulate the melting conduct of the copper

nanorods. The periodic boundary condition became implemented to all the three

axial direction. They presented the copper nanorods with five unique diameters of

2.896, 3.62, 4.344, 5.43, 6.516 nm including 4036, 8081, 13446, 26942, 45905 atoms

respectively. They identified the melting point of copper nanorods by the slop fast

change in the potential energy curve. According to them, melting temperature

is strongly size-dependent and the nanorod with smaller diameter has a decrease

melting temperature. It was seen that in case of surface atoms, potential energy

was higher than the interior ones. The proportion of the surface atoms is bigger

for the nanorod with a smaller diameter, which decrease the melting point. They

observed that that copper nanorods go through two thermal structural modifi-

cations throughout the heating process: shape transition and melting transition.

The shape transition followed the incidence of planar defects like twin boundaries

and stacking faults. After accomplishing melting point, the intermediate structure

collapsed into a liquid sphere.
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As observed earlier by Solca [28] and later by Aggarwal [29], melting temper-

ature decreases with size of the voids. Thereafter a plateau region is observed

wherein the melting temperature does not change with the size of the void. It was

also reported by Agarwal that melting temperature does not depend on the shape

of the void. Moreover in another study by Bai and Li [30] showed that melting

in void systems occur in four stages. They simulated lenard jones system having

voids of size 0.58 to 6.62 nm. They found that voids collapse and acts as seeds

for melting of the crystals. We test these observations in our study. Our study

aims at the following - first we investigate melting in systems with smaller voids

ranging from 4 to 10 Å. Second we change the shape and position of the void and

analyse its effect on the melting properties.
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Chapter 3

3 Computational Details

3.1 Idea of Molecular Dynamics

In our work, we have performed Molecular Dynamics (MD) simulations to analyze

the properties of copper and copper with spherical and layered voids. Molecular

dynamics simulation is a statisitical tool for computer based simulation of atoms

and molecules [31]. In this method, molecules are allowed to have interaction

with every different atom in the system for a certain time frame. For a system

of interacting particles, the paths are decided by solving the Newton’s equations

of motion, where forces among particles are calculated using force fields. The

goal of the MD simulation is to predict the time-based trajectories in a system of

interacting particles [32].

In our work we use Verlet [33] algorithm to integrate the Newtonian equation of

motion with an integration time-step of 2 fs. Two interatomic potentials, embed-

ded atom method (EAM) and charge optimize many body potential (COMB) for

Copper proposed by Folis [19] and Liang [34] respectively are chosen for our calcu-

lations. Simulations are carried out using large-scale atomic/molecular massively

parallel simulator (LAMMPS) [27] in NPT ensemble. Cubic periodic boundary

conditions are applied in all the three axial directions.

A Molecular Dynamics algorithm is explained here - (i) Firstly, the initial

positions from X-ray diffraction data and velocities from Maxwell-Boltzmann dis-

tribution of each atom are described.

(ii) The forces between the atoms are calculated through the usage of the

inter-atomic potentials.

(iii) As soon as we get the forces, a small time interval is introduced, and the

initial atomic positions and velocities change to a new values.
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(iv) The process is repeated till the end of the simulation.

Figure 3.1: A simple molecular dynamics program.

3.2 Interatomic Potential

To start MD simulation, we need model and these models are often expressed

in terms of potential function. The potential function defines how the potential

energy of a system of N atoms depend on the coordinates of the atoms. In classical

MD simulation, electrons are not taken into account and Newtonian equation of

motion is solved.

The total energy of the N atoms system with empirical potential is written as

U(~r1, ~r2, ... ~rn) =
∑
i

U1(ri) +
∑
i

∑
j>i

U2(~ri, ~rj) +
∑
i

∑
j>i

∑
k>j

U3(~ri, ~rj, ~rk) + ... (3.1)

Where U1 stands for one body term due to an external field or boundary

condition. The second term, U2 indicates pair wise potential and the third term,

U3 gives the three body component when the interaction of pair of atoms is changed

by the presence of a third atom.

While selecting potentials one has to consider the following properties:

(i) Accuracy (reproduce qualities of interest as closely as possible)
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(ii) Computational speed (calculations are rapid with simple potentials)

In molecular dynamics simulation it is hard to consider the interactions be-

tween one atom and the other atoms present in the simulated system. To decrease

the computational effort only the closest neighbors of every atom are taken ac-

count. Therefore, a cut-off radius is introduced as a highest value of the modulus

of the radius vector [32]. Because of this, the interactions among the atoms are

taken within the cut-off radius.

3.2.1 Embedded Atom Method

Embedded atom method was first proposed by Dow and Baskes in 1987 [35] and

it has been mostly used for the simulation of matter at the atomic level. EAM is

based on density functional theory (DFT) [36].

In the embedded atom method, each atom is embedded in a host electron gas

generated by all surrounding atoms [32]. The amount of energy needed to put one

atom into the electron gas of a given density is called the embedding function,

which considers many atom effects. In a simulation, the potential energy of an

atom, i, is given by-

Ei = Fα

(∑
i 6=j

ρβ(rij) +
1

2

∑
i 6=j

φαβ(rij)

)
(3.2)

where rij is the distance between atoms i and j , φαβ is a pair-wise potential

function, ρβ is the contribution to the electron charge density from atom j of type

14



β at the location of atom i, and F is an embedding function that represents the

energy needed to put atom i of type α into the electron cloud [32].

3.2.2 Charge optimized many-body potential(COMB)

We have also used COMB potential for the simulation of small number of Cu atoms

(n=500). The COMB potential is a variable charge potential. The equilibrium

charge on each atom is calculated by the electro negativity equalization [37]. In a

simulation, the energy ‘E’ of system of atoms is given by

ET =
∑
i

[
ES
i +

1

2

∑
j 6=i

Vij(rij, qi, qj) + EBB
i

]
(3.3)

Vij(rij, qi, qj) = UR
ij (rij) + UA

ij (rij, qi, qj) + U I
ij(rij, qi, qj) + UV

ij (rij) (3.4)

Where ET is the total potential energy of the system,ES
i is the self-energy of

atom i. Vij is the interatomic potential between the ith and jth atoms, rij is the

distance between the atoms i and j, and qi and qj are charges of the atoms, and

EBB
i stands for bond-bending term of atom i.

The interatomic potential energy Vij has four parts. UR
ij , U

A
ij , U

I
ij and UV

ij stand

for two-body short-range repulsion, many-body short-range attraction, long-range

Coulombic electrostatic interaction, and van der Waals energy respectively [37].
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3.2.3 Melting of Bulk Copper Using COMB and EAM Potential

Before introducing the defects, we simulated a small crystal system of copper

containing 500 atoms using EAM and COMB potentials.

Figure 3.2: Density, enthalpy and diffusion coefficient as a function of temperature
of bulk copper (500 atoms).

From the figure 3.2, it is seen that densities obtained from both the potential are

different while enthalpy and diffusion coefficient agree for both COMB and EAM

potential. At ambient pressure, elting point is found to be 1780 K from EAM

potential which is closer to the available theoretical data [22]. Also we have found

that COMB potential is very time consuming and EAM calculations are five times

faster than COMB. Therefore, we choose EAM potential for all our simulations.
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3.3 Newtons equation of motion

The dynamics of classical objects follow the three laws of Newton. We get the

equation of motion for classical particles from Newton’s second law. Consider, the

position of a particle is described by a vector r = (x,y,z). The velocity changes

with time and is also a vector: v = dr/dt = (vx, vy, vz). In component form,

vx = dx/dt, y = dy/dt, vz = dz/dt. The acceleration vector is then time derivative

of velocity, i.e., a = dv/dt [38]. So that, equation of motion for particle can be

written as-

d2r

dt2
=
F

m
(3.5)

Where force is calculated from

F = −dV (r)

dr
(3.6)

Now we have the complete equation of motion for particle

d2r

dt2
= − 1

m

dV (r)

dr
(3.7)

Where V (r) is the potential energy of the system and the kinetic is given by-

Ekin =
1

2
m|V |2 (3.8)

The total energy is the sum of kinetic and potential energy contribution.

Etot = Ekin + V (3.9)

Since we consider the total energy as a function of particle position r and

momentum p = mv, it is called the Hamiltonian of the system,
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H(r, p) =
|p|2

2m
+ V (r) (3.10)

The Hamiltonian (i.e. the total energy) is preserved if the particle obeys the

Newtons equation of motion.

dEtot
dt

= mv
dv

dt
+
dV (r)

dr

dr

dt
= m

dr

dt

[
− 1

m

dV (r)

dr

]
+
dV (r)

dr

dr

dt
= 0 (3.11)

Therefore, the total energy is a conserved quantity when the particle moves.

We can also write the Newtons equation of motion in the form of Hamiltonian.

dr

dt
=
∂H(r, p)

∂p
(3.12)

dp

dt
=
∂H(r, p)

∂r
(3.13)

dH

dt
=
∂H(r, p)

∂r

dr

dt
+
∂H(r, p)

∂p

dp

dt
= 0 (3.14)

3.4 Time Inegration Algorithm

A dynamical simulation calculates the new position of particle as a function of time

from its initial position and velocity [38]. Since the ‘r’ in Newtonian equation

of motion is second order, therefore, the initial condition needs to define both

particle position and velocity. To solve the Newtonian equation of motion, time

is discretized using a time step ∆t. The integration procedure gives the positions

and some of their derivatives at a certain time t+ ∆t [32]. Once those quantities

are known on the previous time t, the time development of the system can be

followed by iterating this procedure.
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There are different kinds of time integration algorithms to solve the equation of

motion. Each algorithm has its own advantages and disadvantages. Before choos-

ing an algorithm, we should consider about the order of accuracy and reversibility

of the integration algorithms [39].

3.4.1 Verlet Algorithm

In our simulation work, we have used Verlet algorithm [33] because it is simple to

implement and time accurate In this algorithm two third order Taylor expansions

for positions r(t), one forward and the other backward in time is written [40].

r(t−∆t) = r(t)− v(t)∆t+
1

2
a(t)∆t2 − 1

6
b(t)∆t3 +O(∆t4) (3.15)

r(t+ ∆t) = r(t) + v(t)∆t+
1

2
a(t)∆t2 +

1

6
b(t)∆t3 +O(∆t4) (3.16)

Adding both equation, we get the basic form of the Verlet algorithm.

Since we are integrating Newtons equation, a(t) is just the force divided by

mass and force is in turn a function of this position r(t).

a(t) = − 1

m
∇V (r(t)) (3.17)

But Verlet algorithm does not calculate velocities which is obtained from the

positions using the following expression.

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
(3.18)

3.4.2 Time Step

The choice of time-step ∆t is an important factor in MD simulation. The time-step

has to be small enough in order that the simulation is realistic and the integration
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algorithm conserves the total energy of the system. If we choose a large time step,

the motion of atoms is not continuous and the particles jump too far from their

positions in each iteration which is also reflected in the potential energy as well

as the total energy [41].

3.5 Periodic Boundary Condition

Proper boundary conditions are key to a successful atomistic simulation. In molec-

ular simulation, we simulate a finite and comparatively small number of particles.

This introduces surface effects. For example, in a simulation of cubic crystal con-

sisting of 1000 particles, 521 will be at the surface [41]. But we need to compute

the bulk properties of the system that means properties in the thermodynamic

limit, N → ∞ . To get rid of the problem, periodic boundary conditions (PBC)

are usually imposed. Here we use cubic periodic boudary conditions for all our

simulations.

Figure 3.3: Periodic boundary conditions used in MD simulations, from ref [41]

When PBC is implemented, the simulation cell becomes an infinite, periodic array

of replicas or images occupied by particles. The atoms within the replicas behave

exactly in an identical manner as the atoms inside the main simulation cell. [39].
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3.6 Isothermal-isobaric (NPT) ensemble

In classical molecular dynamics simulation, the isothermal-isobaric (NPT) en-

semble is mostly used because; the real experiments are always performed under

constant temeprature and pressure conditions. In experiments constant tempera-

ture and pressure is maintained typically using a heat bath. In this ensemble, the

paritions function can be written as -

QNPT =
1

N !

1

h3N
1

V0

∫ ∫
exp(− β(H(r, p) + PV ))drdpdV (3.19)

Where β = 1/kBT is the statistical temperature and V0 is a reference volume.

In this ensemble, sampling is done solving the equations of motion at a fixed

temperature and pressure.

3.6.1 Molecular Dynamics at Constant Temperature

To implement the constant temperature condition we have to perform the sampling

incontact with a heat bath. The energy here is Boltzmann distributed and the

imposed macroscopic temperature is proportional to the average kinetic energy

per particle [42].

kBT = m

〈
v2α

〉
(3.20)

Where vα is the velocity of α th component amd m is the mass of the particle.

In order to sample the instantaneous kinetic temperature Tk fluctuates around its

macroscopic.

σ2
Tk〈

Tk
〉2
NV T

=
2

3N
(3.21)

To control the fluctuation of the temperature, an algorithm called thermostat

is used. In our work, we employed Nosé-Hoover thermostat, introduced by Nose
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[43] and subsequently developed by Hoover [20]. Nosé-Hoover thermostat uses an

extended Lagrangian containing additional coordinates and velocities [42]. Heat

bath is thus introduced using additional coordinate s, associated with effective

mass Q.

The resulting Hamiltonian of N particles with additional coordinate is

H =
N∑
i=1

pi
2mis2

+ U(rN) +
p2ξ
2Q

+ L
lns

β
(3.22)

Where ξ is the friction parameter and pξ is the momentum of the reservoir.

The following equations are used to calculate the difference between instanta-

neous kinetic temperature and the reference temperature.

d2ri
dt2

=
Fi

mi

− pξ
Q

dri
dt

(3.23)

dpξ
dt

= (T − T0) (3.24)

3.6.2 Molecular Dynamics at Constant Pressure

We have employed Nosé-Hoover barostat to control the pressure fluctuation during

simulation. At constant pressure, the volume is interpreted as variable. Nosé-

Hoover barostat was described by Martyna et al . [44] which is based on constant

temperature method proposed by Anderson [45]. The equation of motion proposed

by Martyna et al . are

ṙi =
pi
mi

+
pε
W

ri (3.25)

ṗi = Fi −
(

1 +
d

Nf

)
pε
W

pi −
pξ1
Q1

pi (3.26)
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V̇ =
dV pε
W

(3.27)

ṗε = dV (Pint − Pext) +
d

Nf

N∑
i=1

p2
i

mi

− pξ1
Q1

pε (3.28)

ξ̇ =
pξ
Q

(3.29)

ṗξ =
N∑
i=1

p2
i

mi

+
p2ε
W
− (Nf + 1)kT (3.30)

Where ri and pi are position and momentum of the i th particle respectively.

V is the volume. pε, ξ and pξ are the barostat momentum, thermostat position

and momentum respectively. Pext is the external pressure and Pint is the internal

pressure.

Pint =
1

dV

[
N∑
i=1

(p2
i

mi

+ riFi

)
− dV ∂U(V )

∂V

]
(3.31)

Where U is the potential.

3.7 Visualization and Initial Configurations

For MD simulation, visualization is so essential for the development of the work.

The complicated geometry of copper crystal and spherical void configurations

inside the bulk and the correct implementation of periodic boundary conditions

are tested by “Visual Molecular Dynamics” (VMD) [46] visualization tool. VMD

was used extensively in our research work. It is a very powerful visualization tool

which helps to improve the 3D observation.
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Figure 3.4: Initial structure of 12x12x12 supercell of copper without void and with
small and large radius of spherical void.

• Five different model systems of bulk Cu with different size of spherical void

having radius 4-10 Å were generated.

• All models were equilibrated over 2500000 time steps at elevated temper-

atures ranging from 900 K to 2000 K at an interval of 100 K after that the

equilibrated configurations were simulated for production run over 500000 time

steps.
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The model system of bulk fcc copper without spherical void containing 6912

atoms.

Radius of spherical void Number of atoms

4Å 6886
5Å 6874
6Å 6832
8Å 6730
9Å 6667
10Å 6542

Table 3.1: Number of copper atoms present in different system of voids having
radius 4-10 Å

We have also analysed melting properties of bulk copper with other defects

like layered voids. We removed 370 atoms from the center and edge of the bulk

copper containing 6912 atoms.

Figure 3.5: Initial structure of 12x12x12 supercell of copper with layered voids.

3.8 Simulation using LAMMPS

Large-scale atomic/molecular massively parallel simulator (LAMMPS) [27] soft-

ware was chosen to perform this simulation. LAMMPS is molecular dynamics

simulation, open source code written in C++ language [37].

This software can model a set of particles in a solid, liquid or gaseous state

and additionally atomic, metal and biological systems the usage of various types
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of boundary conditions and force fields. LAMMPS integrates Newton’s equations

of motion for group of molecules, atoms, or macroscopic particles which interact

by short- or long-range forces [37].

There are two essential things that LAMMPS needs to run a Molecular Dy-

namic simulation, which are the input script and a potential file. The first one is

where all the instructions that the program will need are written. The potential

file is the one that includes the parameters of the interatomical potential of the

simulated system.

A LAMMPS input script has 5 parts:

1. Initialization

2. Atom and Lattice definition

3. Force fields

4. Settings

5. Run

In the LAMMPS software, the“metal” units are: distance = Å, time = pi-

coseconds, energy = eV, velocity = Å/ps, temperature = K, pressure = bar [37]

An example of input file using in our simulation for fcc copper containing 6912

atoms.

Initialization

units metal

(specifies units of every quantity used in the input file)

dimension 3

(simulation dimensions, in this case 3D)

boundary p p p

(for x, y and z direction, the boundary is periodic)

Atom and Lattice definition
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region box block 0 12 0 12 0 12 units box

(defines a geometric region of space)

create box 1 box

(generates a simulation cell in the defined region)

lattice fcc 3.615

(lattice type and lattice parameter)

region Cu block 0 12 0 12 0 12 units box

create atoms 1 region Cu units box

(generates copper atoms in the simulation)

Force fields

pair style eam/alloy

pair coeff * * Cu.eam.alloy

(“*” indicates that the potential is applied to all the types of atoms defined.)

Settings

velocity all create 900 12345

(sets the velocity of a group of atoms)

fix 1 all npt temp 900 900 0.01 iso 1 1 1000 drag 1

(temp and pressure conserved)

thermo 100

(computes and prints thermodynamic data every 100 timesteps)

thermo style custom step temp etotal pe ke enthalpy lx ly lz press density

(specifies content of thermodynamic data to be printed in screen)

Run the simulation

timestep 0.002
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(sets the timestep for subsequent simulations)

run 500000

(program is run for 500000 iterations)

SIMULATION DONE

print “All done”

3.9 Quantities of Interest

In our simulation work, we have analyzed structural and thermodynamic proper-

ties like density, enthalpy, radial distribution function (RDF), diffusion coefficient

and order parameter (Q6) to characterize the melting process.

• Density 〈
ρ
〉

=
mN〈
V
〉 (3.32)

• Enthalpy 〈
H
〉

= E + P
〈
V
〉

(3.33)

• Diffusion Coefficient (D)

Diffusion coefficient can be calculated from the slop of mean square displace-

ment (MSD) at long time gap [23]. MSD helps us to examine the motion of the

atoms of the model system before and after the melting point. It is a quantity of

average distance that a given particle in system travels. The MSD define as [47]

MSD =
〈
r2(t)

〉
=

〈
1

N

N∑
i=0

(ri(t)− ri(0))2
〉

(3.34)

where N and t stands for number of particles and time respectively. ri(t)−ri(0)

is the vector distance traveled by a given particle over time interval.

28



The Einstein formula is used to calculate diffusion coefficient [48].

D =
1

6
lim
t→∞

d

dt
(MSD) (3.35)

• Lindemann index

The melting transition temperature is often defined by root mean square bond

fluctuation, called Lindemann index δ [23]. The Lindemann index of each atom

and of the entire bulk system is calculated by following formulas [49].

δi =
1

N − 1

∑
j 6=i

√〈
r2ij
〉
T
−
〈
rij
〉2
T〈

rij
〉
T

(3.36)

δ =
∑
i

δi (3.37)

Where N is the number of atoms. δi and δ are the Lindemann indices of i th

atom and bulk respectively, rij is the distance between i th atom and j th atom.

• Radial distribution function (RDF)

RDF is used to analyze the structural properties of materials. RDF of single

type of atom in a system defined as [23]

g(r) =
V

N

n(n)

4Πr2∆r
(3.38)

Where V and N are the volume and number of particles in the system respec-

tively, and n(r) is the number of atoms in the thickness of ∆r at the radius of the

particle.

• Bond order parameter (Q6)

Bond order parameters are introduced by Steinhardt [50]. Bond order pa-

rameters are based on spherical harmonics [51]. From the value of bond order
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parameter, one can determine the crystal structure in molecular simulation. For

each atom, bond orientation order parameter is calcultaed by following equations

[52].

Ȳlm =
1

nnn

nnn∑
j=i

Ylm
(
θ(rij), φ(rij)

)
(3.39)

Ql =

√√√√ 4Π

2l + 1

m=l∑
m=−l

ȲlmȲ ∗lm (3.40)

First equation indicates the spherical harmonic order parameter. The summa-

tion over the nnn stands for nearest neighbor of the central atom. θ and φ are the

standard spherical polar angles. Ql in the second equation is rotationally invarient

scaler quantity [52].
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Chapter 4

4 Results and Discussions

We perform molecular dynamics simulations of copper with two types of volume

defects. In the first case spherical voids of different sizes are introduced in the

crystal. In the second rectangular shaped layers are removed from two places of

the crystal and then melting transition is ivestigated in them. All simulations

were performed at 1 bar and temperatures were varied from 900 to 2000 K.

4.1 Melting of Bulk Copper with Spherical Voids

Figure 4.1 shows the plots between various thermodynamic properties and tem-

perature for all the systems.

Figure 4.1: Density, enthalpy, diffusion coefficient and average bond order param-
eter as a function of temperature of bulk copper with different sized-voids and
without voids.

For all systems and for all properties a sharp transition is observed. Systems with

spherical voids greater than 5 Å melts earlier than other systems. Spherical voids

of 4 and 5 Å melts at similar temperature to bulk. Atomic density and bond
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order parameter (Q6) decrease linearly with temperature till 1500 K then it drops

sharply. Diffusion coefficient and enthalpy gradually increases with temperature

and then at melting increases sharply. Four systems start melting at 1500 K

and the other three melts at 1740 K. When we increase the temperature, the

interatomic distance between two atoms decreases so that atomic density decreases

and potential energy increases hence enthalpy of the system increases.

Diffusion coefficient gives the atomic motion before and after the melting point

and is calculated from the slope of the mean square displacement (MSD) which is

a measure of the average distance that a particle or an atom in a system travels.

For large void systems (6-10 Å), the value of diffusion coefficient is low at 900-

1500 K because the atoms are still in their original lattice position and the atomic

motion is very low, but at 1780 K when the atoms are displaced from their lattice

positions, the diffusion coeffficient reaches a maximum value of 0.55 Å2/ps, which

shows that atoms are now free to move. It is observed that for small void systems(4

and 5 Å) and void free Cu crystal, melting happens at around 1700 K.

The value of bond order parameter (Q6) decreases with increasing temperature

for all systems which shows that with increasing temperature the crystallinity of

the solid decreases. At 1500 K, the atoms of the large void systems (6-10 Å)

start to melt and by 1700 K they melt completely. The sudden drop of Q6 value

indicates that the atoms are displaced from their lattice positions. The value of

Q6 drops to a minimum of 0.332 at 1780 K and the crystal structure become

disordered which means by 1780 K the crystal has melted completely.
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Figure 4.2: Lindemann index for the different size of voids system during heating
process.

Figure 4.2 shows the behavior of lindemann index as a function of temperature.

From the figure, it is found that the melting point of copper crystal of large

spherical voids is 1500 K and for small void systems, it is around 1740 K which is

identical to copper crystal without void.

For crystal systems containing voids of radius greater than 6 Å, when the

temperature is lower than 1500 K, the lindemann index increases linearly with

temperature. At 1500 K, the crystals melt and by 1700 K the value of lindemann

index reaches a maximum of about 0.040 which means the atoms are completely

displaced. Before 1500 K, the value of lindemann index is very low since most

of the atoms donot have large vibrational amplitude motion, they vibrate around

their original lattice positions which means the atoms of the large void systems

are still in solid. After 1500 K, the atoms have large vibrational amplitude and

start to melt, therefore, the value of lindemann index goes maximum.

But for small voids of radius 4, 5 Å and void free copper crystal, the lindermann

index reaches a maximum value of 0.0405 at 1780 K indicating that crystal melts

by 1780 K.
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Figure 4.3: Radial distribution function of bulk copper at various temperatures.

Figure 4.3 shows the behavior of RDF for bulk copper system. The intensity of

third and fourth peak is very low at 1780 K. This further illustrates the loss of

long range order in the crystal when melting happens. At 1780 K, atoms in the

bulk system behave like liquid. Loss of long range order along with change in the

coordination of the first shell indicates the appearance of the molten state.
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Figure 4.4: Radial distribution function of of voids system at various temperatures.

Figure 4.4 shows the behavior of radial distribution function for different size

of voids system as a function of temperature. From the figure, it is observed that

there are many sharp peaks which indicate that the atoms occupy fixed positions

in first, second and subsequent shells. The peaks of the RDF for 6-10 Å void size,

crystal systems are mostly sharp before 1700 K indicating the atoms are placed

around each other. The peaks widen at higher temperature (after 1500 K) due

to the thermal motion. At 1500 K the third and fourth peak disappears with

appearance of molten state. But for 4 and 5 Å void size copper crystal and for

void free copper crystal, the RDF peaks are intense till 1740 K. The third and

fourth peaks disappear at 1780 K indicating the atoms of these systems are solid

at 1740 K and liquid at 1780 K.
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We calculated the fraction of cordination number from 9-16 for copper atoms

using the following equation -

〈f9,10,11,12,13,14,15,16〉 =
n9,10,11,12,13,14,15,16

N
(4.1)

Where N = (total number of atoms) × (total number of configurations)

We have found that fraction of coordination with 12, 13 and 14 is more than

87%. We all know that in the solid state, the coordination number for fcc copper

is 12.

Figure 4.5: Fraction of copper atoms with 12, 13 and 14 neighbours of different
systems as a function of temperature.

Figure 4.5 shows the variation of 12, 13 and 14 coordinated copper with tem-

perature. Sharp changes in coordination concentration is observed for all these

systems. It is also observed that for the system having void radius greater than

5 Å, 12 co-ordinated copper remains constant till 1500 K thereafter it sharply

decreases. This drop in 12 coordinated copper is almost 40%. On the other hand

concentration of 13 and 14 coordinated copper increases at melting. But for bulk

and other two systems having void radius 4 and 5 Å, it is observed that most of

the copper atoms are 12 coordinated till 1740 K and drops to a minimum value

of 0.165 at 1780 K.

36



Figure 4.6: Distribution of orientational order parameter, Q6 for coordination
number 12, 13 and 14 at different temperatures of bulk copper.

Figure 4.6 shows the orientational ordering in 12, 13 and 14 coordinated atoms

of bulk copper system at different temperatures. It is observed that two sharp

peaks appear for all the coordinations and 12 coordinated copper atoms are more

orientationally ordered following 13 and 14 coordinated atoms. The peak at higher

q6 corresponds to crystalline state while the peak at higher q6 corresponds to the

liquid state. Bond orientational order bulk molten state appears at 1780 K.
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Figure 4.7: Distribution of orientational order parameter, Q6 for coordination
number 12, 13 and 14 at different temperatures.

Figure 4.7 shows the orientational ordering in 12, 13 and 14 coordinated copper

atoms of all spherical void systems at different temperatures. We note here that for

all the coordinations two sharp peaks appear. The peak at higher q6 corresponds

to crystalline arrangemet and the peak at lower q6 corresponds to the liquid-

like arrangement. It is also observed that 12 coordinated atoms are the most

ordered and 14 coordinated atoms are the least. It may be noted that we chose to

understand the crystallinity in these systems because 12, 13 and 14 coordinated

copper all together consitute 90 % of the atoms in the crystal. Similar to previous

results which show voids greater than 5 Å melts earlier than 4 Å, 5 Å and bulk

systems. But we interestingly note that for 4 Å, 5 Å and bulk system melting in
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12, 13 and 14 coordinated atoms take place at 1780 K, but for 6 Å and higher

radii spherical voids melt at 1700 K. It must be remembered that we noted the

melting temperatures at 1700 K for crystal systems having void radius 4 and 5 Å

but here from bond-orientational order parameter bulk molten state appears at

1780 K. It signifies the existence of cryistallinity in differently coordinated system

to a somewhat higher temperature.

4.2 Melting of Bulk Copper with Layered Voids

From our previous simulation results we conclude that melting in 6 Å and higher

spherical voids happens earlier than 4 and 5 Å voids. Here we create a different

shaped void by removing same number of atoms which are missing in the 10 Å

void. Moreover we also remove these many atoms from two different positions

of the crystals. We remove them from the (i) center and (ii) edge of the bulk

copper system having 6912 atoms and performed molecular dynamics simulation

at 1 bar and different temperatures varied from 900 to 2000 K. We analyze the

properties like density enthalpy, diffusivity and radial distribution function and

compare these properties with large void system of void radius 10 Å , which also

contains 6542 atoms.
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Figure 4.8: Density, enthalpy and diffusion coefficient as a function of temperature
of bulk copper with layer voids.

From the figure 4.8, it seen that density, enthalpy and difusivity follow the same

pattern with other crystal systems which we have already discussed in our previous

section of this chapter.

The properties obtained from the system (i) behave exactly same as the system

having void radius 10 Å. The atoms of the system (i) start to melt at 1500 K

and are completely melted at 1700 K. But in the case of system (ii), it seems

different. Though system (ii) also contains 6542 atoms, the phase transformation

occurs at 1740 where solids turn to liquids. At this point density suddenly drops

to a minimum value and enthalpy as well as the value of diffusion coefficient

reach a maximum value following the same pattern with bulk copper and smaller

void crystal systems having 4 and 5 Å void radii. We can conclude that melting

temperature depends on the number of atoms removed to create the void but not
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on the shape of the void. But melting temperature does depend on the position

of the void created. Here layered voids created at the edges behave like melting

of bulk copper.

Figure 4.9: RDF of copper with layer voids at various temperatures.

Figure 4.9 shows the behavior of radial distribution function of sysytem (i)

and system (ii) at various temperatures. RDF of system (i) also follows the same

pattern with other crystal systems having void radius greater than 5 Å. The peaks

are broad after 1500 K and the third and fourth peak have disappeared with

increasing temperature indicating liquid like behavior of copper atoms. While the

behavior of RDF for system (ii) is identical to the smaller void systems of radius

4 and 5 Å.
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5 Conclusion and Future Prospects

5.1 Conclusion

The main objective of our reasearch work was to locate and understand melting

of copper metal with volume voids. Before introducing the defects, we simulated

a small crystal system of copper containing 500 atoms using molecular dynamics

simulation at 1 bar. Two interatomic potentials, EAM and COMB were used

for the simulation of 500 copper atoms. We found that densities obtained from

both the poteintial were different. The melting point was found to be 1780 K by

EAM potential which is closer to the available theoretical data [22]. Also EAM

calculations were five times faster than COMB calculations. For that reason we

decided to use only EAM potential for rest of our simulations.

After confirmation of melting point for the pure fcc copper, we introduced

spherical voids into the pure copper crystal system containg 6912 atoms.The radius

of spherical voids varied from 4-10 Å. We simulated these systems at 1 bar and

temperatures were varied from 900 to 2000 K. The properties like density, entalpy,

diffusivity and bond order parameter vary linearly after and before the transition.

At transition all these properties show a sharp change. Lindemann index also

varies linearly with temperature and at certain point it also increases sharply

indicating the phase transition. Analyzing these properties obtained from the

simulation we conclude that melting temperature decreases as the size of the

volume voids increases. Crystal systems having void radius greater than 5 Å

started to melt early temperature (1500 K) than the atoms of the 4 Å and 5 Å

void size system which started to melt at 1700 K.

We also analyzed the behavior of radial distribution function and distribution

of orientational order parameter, Q6 for coordination number 12, 13 and 14 at

different temperatures. We found that the second shell peak in the RDF and

orientational order in 12 of the 6, 8, 9 and 10 Å spherical voids disappeared at

1700 K. But for bulk copper and for void size of 4 and 5 Å, orientational order in
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12 disappeared at 1780 K indicating liquid like behavior of copper atoms.

The influence of other kinds of defect like layer defect is also studied. We re-

moved 370 atoms from the center (i) and edge (ii) of bulk copper system containing

6912 atoms. We analyzed the structural and dynamics properties at 1 bar. We

created these defects by removing the same number of atoms which were missing

in the 10 Å void. It was found that system (i) behaved exactly same as the system

having void size of 10 Å but system (ii) melted like bulk copper. Our results also

confirm earlier observations that voids or defects created with removal of similar

number of atoms melt at the same temperature [29]. But we also observe that

position of the void effects melting. Removal of atoms from the edge has no effect

on the melting transition. It resembles melting in bulk.

From our results we also underline key aspects of melting which are similar

in bulk copper and in copper with volume voids - melting happens with loss of

long-range order. 12 coordinated fraction decreases with appearance of molten

state and the crystallinity within also disappears with melting. Interestingly loss

of longe range order, loss of 12 coordinated copper happens at similar temperature

but crystallinity is lost at somewhat higher temperatures (40 K higher). Volume

voids created with removal of similar number of atoms melts at similar tempera-

tures and melting is similar to bulk. Volume voids created at the edge of a crystal

has negligible effect on bulk melting. Volume defects with sizes greater than 6 Å

decreases melting temperature substantially.

5.2 Future Prospects

Few aspects of melting which needs to be investigated further are discussed here

in this section. We need to investigate the reason behind appearance of plateau in

melting temperature with increase in size of spherical voids. This has ben reported

earlier and we also observe this from our study- spherical voids of 6, 8 and 10 Å

behave similarly. We also need to understand why there is change in melting
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temperature when the position of the void changes. Defects/voids weaken the

system and facilitate thermal motion of atoms as well as propagation of defects.

But defects within the crystal facilitates melting than defects at the surface. We

also need to understand the behaviour of atoms which are at the interface of the

void. Their behaviour is crucial to understand the melting transition. Finally one

of the most important aspect of study of melting lies in understanding the kinetics

of it. How fast voids appear/disappear, propagate etc.? These in-depth analysis

will provide us with additional insights in understanding melting.
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