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We analyze the Fermi surface behavior of fermionic modes from a charged black hole background with
two different charges arising in a truncated gauged supergravity theory in seven dimensions, which is dual
to the six-dimensional (2, 0) theory. At zero temperature, we numerically solve equations for fermionic
modes that do not couple to the gravitino. We find that each of the modes admits at least one Fermi surface.
We find Fermi surfaces in both the Fermi-liquid and non-Fermi-liquid regimes.
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I. INTRODUCTION

Metals and other interacting fermion systems are suc-
cessfully described by the Fermi-liquid theory, where
fermions are dressed into weakly coupled long-lived
quasiparticles near the Fermi surface. However, cuprate
superconductors and heavy fermions have evidence of a
Fermi surface, but fluctuations are unstable and have been
called non-Fermi liquid. In order to understand such
systems, gauge-gravity correspondence [1–3] turns out to
be quite useful, where the theory of fermion systems is
described by a gravitational system with charged, asymp-
totically anti–de Sitter (AdS) black hole geometries in one
higher dimension, which are computationally easier to
analyze.
A study of Fermi surfaces using holography first

appeared in Refs. [4–6]. Sharp quasiparticlelike fermionic
excitations at low energies with scaling behavior different
from Fermi liquid were found. It was also found that, over a
finite range of momentum, the spectral function shows log
periodic behavior. Subsequently, low-energy behavior of
the system in general dimensions with constant mass and
gauge couplings was considered in Ref. [7]. They studied,
in particular, the relation between the scaling exponent of
the spectral function and the dimension of the operator in
the IR conformal field theory, among other things. The
effect of Pauli coupling was studied in Refs. [8,9], and for
the strength beyond a critical value they found a gap in the
density of states.
These studies postulate a convenient effective

Lagrangian on the gravity side and analyze the outcomes.
Another approach is to begin with a known string or
supergravity model. One advantage of studies of a known
string or supergravity model is that the dual theory is often
known. Variations of the parameters within the theory also
help to make an identification of states in the dual theory. In
this approach, Fermi surfaces were studied for fermions
realized on probe branes [10,11]. Subsequently, the

fermionic response of gravitinos in minimal N ¼ 2 super-
gravity theories [12–14] was analyzed, but they did not find
a Fermi surface.
Afterwards, systematic studies of five- and four-

dimensionalmaximally gauged supergravity with variations
of the chemical potential appear where dual theories are
N ¼ 4 super-Yang-Mills (SYM) in four dimensions and
Aharony-Bergman-Jaeris-Maldacena (ABJM) theory in
three dimensions, respectively [15–17]. They analyzed
spin-1=2 fermions in supergravity, which do not couple
with the gravitino, and found that fermions with higher
charges are more likely to have Fermi surfaces over a range
of chemical potentials. In general, these are in the non-Fermi
regime, except a set of fermions approaches marginal Fermi
liquid for a certain limiting value of the chemical potentials.
A model with a single charge having vanishing entropy at
zero temperature was also analyzed in Ref. [18], where they
found that fermionic fluctuations are stable within a gap
around the Fermi surface. Discussions of Fermi surfaces in a
similar context also appeared in Refs. [19–21].
In the present work, we have considered the study of

Fermi surfaces in a maximally gauged supergravity theory
in seven dimensions. The dual theory is the (2, 0) conformal
field theory in six dimensions, which is the world volume
theory of M5 branes. This theory is interesting in its own
right, as this is one of the three maximally superconformal
field theories. The other two, namely, N ¼ 4 SYM and
ABJM theory, have been studied in Refs. [15,17,18]. This
theory consists of a tensor multiplet in six dimensions, and
in that respect the field content is different. In particular, the
gaugino appears as symplectic Majorana-Weyl spinors. So
from such a study we expect to learn something new about
this theory, and this will improve our understanding of the
Fermi surface behavior, in general.
The seven-dimensional gauged supergravity has an

SOð5Þ R-symmetry group. We consider a black hole
background with two chemical potentials at zero temper-
ature giving rise to a one-parameter family. The super-
gravity contains 16 spin-1=2 fermions, of which we have
studied only those modes that do not couple to the
gravitino. We find that each mode admits a Fermi surface
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over a range of parameters, unless they vanish inside an
oscillatory region where the Green function displayed log
oscillatory behavior. We also find excitations in Fermi
liquid regime and in non-Fermi liquid regime. In some
cases, it approaches marginal Fermi-liquid behaviour near
the boundary of the range.
The plan of the paper is as follows. In the next section,

we discuss the charged black hole solution. Sections III and
IVare devoted to fermionic fluctuations and the solution of
the Dirac equations, respectively. Section V discusses the
results.

II. BOSONIC ACTION

The M theory compactified on AdS7 × S4 is conjectured
to be dual to a conformal field theory in six dimensions.
There exists a consistent truncation of 11-dimensional
supergravity to the maximal (N ¼ 4) seven-dimensional
gauged supergravity with only the lowest massless modes
[22], which in the appropriate limit can serve as a dual to
the six-dimensional conformal field theory [1–3].
The bosonic content of the supergravity theory is as

follows [22–24]. It has a gauged SOð5Þg and a composite
SOð5Þc group. It contains a graviton, Yang-Mills gauge
fields transforming under adjoint of gauge group SOð5Þg,
five rank-3 tensor fields transforming as a 5 under SOð5Þg,
and 14 scalars parametrizing the SLð5; RÞ=SOð5Þc coset.
The fermionic contents are four gravitini and 16 spin-half
fields transforming as the 4 and 16 of SOð5Þc, respectively.
The bosonic Lagrangian is given as follows:

2κ2e−1Lboson ¼ Rþ 1

2
m2ðT2 − 2TijTijÞ− trðPμPμÞ

−
1

2
ðVi

IV
j
JF

IJ
μνÞ2 þm2ðV−1I

i CμνρIÞ2

þ e−1
�
1

2
δIJðC3ÞI ∧ ðdC3ÞJ

þmϵIJKLMðC3ÞIFJK
2 FLM

2 þm−1p2ðA;FÞ
�
:

ð2:1Þ
Here I; J ¼ 1; 2;…; 5 denote SOð5Þg indices, and i; j ¼
1; 2;…; 5 denote SOð5Þc indices. Vi

I represent 14 scalar
degrees of freedom parametrizing the SLð5; RÞ=SOð5Þc
coset transforming as 5 under both SOð5Þg and SOð5Þc.
The tensor Tij is given by Tij ¼ V−1I

i V−1J
j δIJ and

T ¼ Tijδ
ij. The covariant derivative of Vi

I is given as
DμVi

I ¼ ∂μVi
I − igAa

μðJaÞJI Vi
J, where ðJaÞJI are the gener-

ators in the vector representation of SOð5Þ. Pμ and Qμ are
symmetric and antisymmetric parts, respectively, of the
covariant derivative: V−1I

i DμVk
Iδkj ¼ ðQμÞ½ij� þ ðPμÞðijÞ.

In order to obtain a black hole solution, the theory can be
simplified by truncating the non-Abelian theory with
SOð5Þg into Uð1Þ2, keeping only gauge fields along two

of the Cartan generators [25,26]. The truncated theory has
nonzero gauge fields along the generators J12 and J34,

denoted by Að1Þ
μ and Að2Þ

μ , respectively, while all other
components of the gauge fields as well as three-form
potential CI

μνρ are set to zero. SOð5Þg can be identified
with SOð5Þc by making a gauge choice and restricting the
vielbein to the form

Vi
I ¼ diagðe−ϕ1 e−ϕ1 e−ϕ2 e−ϕ2 e2ϕ1þ2ϕ2Þ: ð2:2Þ

With the above truncated field contents, the bosonic
Lagrangian becomes [25]

2κ2e−1L¼ R−
1

2
m2νðϕ1;ϕ2Þ− 6ð∂ϕ1Þ2 − 6ð∂ϕ2Þ2

− 8ð∂μϕ1Þð∂μϕ2Þ− e−4ϕ1Fð1Þ2
μν

− e−4ϕ2Fð2Þ2
μν þm−1p2ðA;FÞ;

where νðϕ1;ϕ2Þ ¼ −8e2ðϕ1þϕ2Þ − 4e−2ϕ1−4ϕ2 − 4e−4ϕ1−2ϕ2

þ e−8ϕ1−8ϕ2 : ð2:3Þ

As shown in Refs. [25,26], the above truncated bosonic
Lagrangian admits an asymptotically AdS black hole
solution1 with two charges given by the following metric:

ds2 ¼ e2AðrÞðhðrÞdt2 − dx⃗2Þ − e2BðrÞ

hðrÞ dr2;

Að1Þ
μ dxμ ¼ Að1ÞðrÞdt; Að2Þ

μ dxμ ¼ Að2ÞðrÞdt;
ϕ1 ¼ ϕ1ðrÞ; ϕ2 ¼ ϕ2ðrÞ; ð2:4Þ

where the various functions depend only on r and are
given by

e2AðrÞ ¼m2

4
r2
�
1þQ2

1

r4

�1
5

�
1þQ2

2

r4

�1
5

;

e2BðrÞ ¼ 4

m2

1

r2

�
1þQ2

1

r4

�−4
5

�
1þQ2

2

r4

�−4
5

;

hðrÞ ¼
�
1−

r2

r2h

ðr4hþQ2
1Þðr4hþQ2

2Þ
ðr4þQ2

1Þðr4þQ2
2Þ
�
;

Að1ÞðrÞ ¼ 1

2

m
2

Q1

rh

�
r4hþQ2

2

r4hþQ2
1

�1
2

�
1−

r4hþQ2
1

r4þQ2
1

�
;

Að2ÞðrÞ ¼ 1

2

m
2

Q2

rh

�
r4hþQ2

1

r4hþQ2
2

�1
2

�
1−

r4hþQ2
2

r4þQ2
2

�
;

e2ϕ1ðrÞ ¼ r
4
5
ðr4þQ2

2Þ
2
5

ðr4þQ2
1Þ

3
5

; e2ϕ2ðrÞ ¼ r
4
5
ðr4þQ2

1Þ
2
5

ðr4þQ2
2Þ

3
5

: ð2:5Þ

1Reference [26] gave k ¼ 0;�1 solutions of the bosonic
action, of which we consider k ¼ 0.
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m=2 is related to the radius of AdS L, by m=2 ¼ 1=L and
g ¼ 2m. The temperature and entropy density associated
with this black hole are given, respectively, by [17]

T ¼ m2

4

rh
2π

3þ Q2
1

r4h
þ Q2

2

r4h
− Q2

1
Q2

2

r8hffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

1

r4h

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

2

r4h

r ;

s ¼ ðm=2Þ5 rh
4G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr4h þQ2

1Þðr4h þQ2
2Þ

q
: ð2:6Þ

The chemical potentials and charge density are given by

μ1 ¼
1

2

m2

4

Q1

rh

�
r4h þQ2

2

r4h þQ2
1

�1
2

; μ2 ¼
1

2

m2

4

Q2

rh

�
r4h þQ2

1

r4h þQ2
2

�1
2

;

ρi ¼
Qis
2πr2h

: ð2:7Þ

As evident from the above expression, this two-charge
black hole admits an extremal limit where T ¼ 0:

3þQ2
1

r4h
þQ2

2

r4h
−
Q2

1Q
2
2

r8h
¼ 0: ð2:8Þ

As apparent from above, at zero temperature the entropy of
this black hole solution does not vanish. In the following
sections, we will consider fermion fluctuations in this
background and investigate the possibility of the boundary
theory admitting a Fermi surface.

III. FERMIONIC ACTION

The fermionic content of the N ¼ 4 gauged supergravity
in seven dimensions [22–24] consists of spin-3=2 gravitini
ψA
μ and spin-1=2 field λAi transforming under SOð5Þc as 4

and 16, respectively, where A and i are spinor and vector
indices, respectively, of SOð5Þc and they satisfy γiλi ¼ 0.
We have used the notation of Ref. [23], but the metric is

mostly negative. In addition, we introduce the following for
convenience. We have chosen J12 and J34 as the two Cartan
generators. For the vector representation, we rewrite the
five components of a vector vi as

v1� ¼ 1ffiffiffi
2

p ðv1 � v2Þ; v2� ¼ 1ffiffiffi
2

p ðv3 � v4Þ; v0 ¼ v5;

ð3:1Þ
so that Uð1Þ ×Uð1Þ charges associated are as follows: v1�

and v2� have charges ð∓1; 0Þ and ð0;∓1Þ, respectively,
while ν0 has charge (0,0).
Spinor representations of these two SOð5Þ generators

can be written by using SOð5Þ γ matrices γi as

S12 ¼ −ði=2Þγ1γ2; S34 ¼ −ði=2Þγ3γ4: ð3:2Þ
We have written the SOð5Þ spinors as ψðs12; s34Þ, with s12,
s34 ¼ � 1

2
being the respective charges.

The terms in the Lagrangian consisting of only spin-1=2
fields λi are given by

e−1Lfermion ¼
i
2
λ̄iðΓμDμλ

iÞ −m
8
λ̄ið8Tij − TδijÞλj

−
1

32
λ̄iγ

jγklγiΓμνλjðFμνÞkl; ð3:3Þ

representing the kinetic term, mass term, and Pauli term.
The covariant derivatives are given by

Dμλ
i ¼ ∇μλ

i − ig½ðAð1Þ
μ ðJ12Þij þ Að2Þ

μ ðJ34ÞijÞλj

þ ðAð1Þ
μ S12 þ Að2Þ

μ S34Þλi�; ð3:4Þ
where ∇μ is the covariant derivative containing the spin
connection and is given by

∇μ ¼ ∂μ −
1

4
ðωμÞabΓab ð3:5Þ

and J12, J34 (S12, S34) are the vector (spinor) representa-
tions of the Uð1Þ ×Uð1Þ generators.
The terms in the Lagrangian corresponding to coupling

between gravitino ψμ and spin-1=2 fields λi are given by

e−1Lint ¼ ψ̄μð−mΓμTijγ
iλj þ ΓνΓμðPνÞijγiλj

þ 1

2
ΓνσΓμðFνσÞijγiλjÞ: ð3:6Þ

As in Ref. [16], we would like to consider only those
components of λ that do not couple to the gravitino. Since
the charges of the gravitino under two Cartans of SOð5Þ are
� 1

2
, λ’s having charges � 3

2
under one generator or the other

will not couple to the gravitino. A straightforward compu-
tation of (3.6) reveals that λ couples to the gravitino in the
following four combinations: γ1þλ1−, γ1−λ1þ, γ2þλ2−, and
γ2−λ2þ. Therefore, we will consider only the following
eight components of λ, given in this notation by
λ1þð− 1

2
; s34Þ, λ1−ð12 ; s34Þ, λ2þðs12;− 1

2
Þ, and λ2−ðs12; 12Þwith

s12, s34 ¼ �1=2, each of which has at least one of the
charges equal to � 3

2
in our notation.

So far as the dual field theory is concerned, according to
the conjecture it is given by the six-dimensional (2, 0)
conformal field theory. It has an R-symmetry group SOð5Þ,
and the relevant field content is the tensor multiplet
consisting of a self-dual 2-form potential Bμν transforming
as 1, five scalars ϕi transforming as 5, and four symplectic
Majorana-Weyl spinors ψA transforming as 4 under the
R-symmetry group. All the fields are taken to be in the
adjoint representation of UðNÞ. As given above, Uð1Þ ×
Uð1Þ charges associated with various fields are as follows:
ϕ1� and ϕ2� have charges ð∓1; 0Þ and ð0;∓1Þ, respec-
tively, while the charge of ϕ0 is (0,0). Four spinors can be
represented as ψðs12; s34Þ with s12; s34 ¼ �1=2. As
explained in Refs. [27,28], operators dual to the spinors
in the supergravity transforming under 16 are of the form
trðϕψÞ. So, counting the Uð1Þ ×Uð1Þ charges, the
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pertinent operators may be organized as trðϕ1�ψðs12; s34ÞÞ
and trðϕ2�ψðs12; s34ÞÞ with s12, s34 ¼ �1=2, as given in
Table I.

IV. DIRAC EQUATIONS

In order to study Fermi surfaces in the boundary theory,
we will consider solutions of the Dirac equations for the
eight spinors that do not couple to the gravitino. The Dirac
equations that follow from the fermionic Lagrangian (3.3),
after setting the components of fermions that couple to the
gravitino equal to zero, give rise to the following equations:

½iΓμ∇μ −mðm1e2ϕ1 þm2e2ϕ2 þm3e−4ðϕ1þϕ2ÞÞ
þ 2mðq1Að1Þ

μ þ q2A
ð2Þ
μ Þ

þ iðp1e−2ϕ1Fð1Þ
μν þ p2e−2ϕ2Fð2Þ

μν ÞΓμν�λiðs12; s34Þ ¼ 0;

ð4:1Þ
where we introduce parameters m1, m2, m3, q1, q2, p1, and
p2. The values of the parameters for different spinors are
summarized in Table I.
One can observe the top four rows are interchanged with

the bottom four rows under ðm1; q1; p1Þ ↔ ðm2; q2; p2Þ,
and so the Dirac equations remain unchanged provided one
interchanges the charge parameters Q1 and Q2 as well.
Under qi → −qi; pi → −pi, (1,4), (2,3), (5,8), and (6,7)
will be interchanged between each other.
We consider the Dirac Eqs. (4.1) in the bosonic back-

ground (2.4), (2.5). Our choices of Γ matrices, with tangent
space indices, are as follows:

Γt̂¼
�Γt̂

1 0

0 Γt̂
1

�
; Γr̂¼

�Γr̂
1 0

0 Γr̂
1

�
; Γî¼

�Γî
1 0

0 Γî
1

�
;

Γt̂
1¼

�
σ1 0

0 σ1

�
; Γr̂

1¼
�
iσ3 0

0 iσ3

�
; Γî

1¼
�
iσ2 0

0 −iσ2

�
;

ð4:2Þ

where σ1, σ2, and σ3 are Pauli spin matrices.

The effect of spin connection in the covariant derivative
∇μλ

i¼ð∂μ−1
4
ðωμÞabΓabÞλi may be canceled by introducing

λi ¼ e−AðrÞhðrÞ−1=4χi: ð4:3Þ

Apart from r dependence, we choose the time and space
dependence as

χiðt; r; xÞ ¼ e−iωtþikxχiðrÞ: ð4:4Þ

We can write χi as consisting of two four-component
spinors, Ψi and ηi, as follows:

χi ¼
�
Ψi

ηi

�
: ð4:5Þ

From the block diagonal structure of the Γmatrices as given
in first line of (4.2), it is clear that bothΨi and ηi will satisfy
the same equation, and so it is sufficient to study the
equations satisfied by Ψi. We have chosen

Ψi ¼
�Ψi

1

Ψi
2

�
; Ψi

α ¼
�
Ψi

α−

Ψi
αþ

�
; α ¼ 1; 2: ð4:6Þ

With these notations, the Dirac equations in the bosonic
background (2.4), (2.5) reduce to

�
∂r þm

eBffiffiffi
h

p Mðϕ1;ϕ2Þ
�
Ψα−

¼ eB−Affiffiffi
h

p ½uðrÞ þ ð−1Þαk − vðrÞ�Ψαþ;
�
∂r −m

eBffiffiffi
h

p Mðϕ1;ϕ2Þ
�
Ψαþ

¼ eB−Affiffiffi
h

p ½−uðrÞ þ ð−1Þαk − vðrÞ�Ψα−; ð4:7Þ

where α ¼ 1, 2 and we have introduced other functions
given as follows:

TABLE I. Parameters and dual operators corresponding to various fermionic modes

No. λIðs12; s34Þ m1 m2 m3 q1 q2 p1 p2 Dual operator

1 λ1−ð1
2
; 1
2
Þ 3

2
− 1

2
− 1

4
3
2

1
2

− 1
4

− 1
4

trðϕ1−ψð1
2
; 1
2
ÞÞ

2 λ1−ð1
2
;− 1

2
Þ 3

2
− 1

2
− 1

4
3
2

− 1
2

− 1
4

1
4

trðϕ1−ψð1
2
;− 1

2
ÞÞ

3 λ1þð− 1
2
; 1
2
Þ 3

2
− 1

2
− 1

4
− 3

2
1
2

1
4

− 1
4

trðϕ1þψð− 1
2
; 1
2
ÞÞ

4 λ1þð− 1
2
;− 1

2
Þ 3

2
− 1

2
− 1

4
− 3

2
− 1

2
1
4

1
4

trðϕ1þψð− 1
2
;− 1

2
ÞÞ

5 λ2−ð1
2
; 1
2
Þ − 1

2
3
2

− 1
4

1
2

3
2

− 1
4

− 1
4

trðϕ2−ψð1
2
; 1
2
ÞÞ

6 λ2−ð− 1
2
; 1
2
Þ − 1

2
3
2

− 1
4

− 1
2

3
2

1
4

− 1
4

trðϕ2−ψð− 1
2
; 1
2
ÞÞ

7 λ2þð1
2
;− 1

2
Þ − 1

2
3
2

− 1
4

1
2

− 3
2

− 1
4

1
4

trðϕ2þψð1
2
;− 1

2
ÞÞ

8 λ2þð− 1
2
;− 1

2
Þ − 1

2
3
2

− 1
4

− 1
2

− 3
2

1
4

1
4

trðϕ2þψð− 1
2
;− 1

2
ÞÞ
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Mðϕ1;ϕ2Þ ¼ ðm1e2ϕ1 þm2e2ϕ2 þm3e−4ðϕ1þϕ2ÞÞ;

uðrÞ ¼ 1ffiffiffi
h

p ½ωþ 2mðq1Að1Þ
t þ q2A

ð2Þ
t Þ�;

vðrÞ ¼ 2e−B½p1e−2ϕ1Fð1Þ
rt þ p2e−2ϕ2Fð2Þ

rt �: ð4:8Þ

These two first-order coupled equations can be written as
two decoupled equations of second order:

∂2
rΨα� − ∂r log

�
eB−Affiffiffi

h
p ½v − ð−1Þαk� u�

�
∂rΨα�

þ
�
∓∂r

�
eBffiffiffi
h

p mM
�
−
m2M2e2B

h

þ e2ðB−AÞ

h
½u2 − ðv − ð−1ÞαkÞ2�

� eBffiffiffi
h

p mM∂r log

�
eB−Affiffiffi

h
p ½v − ð−1Þαk� u�

��
Ψα� ¼ 0:

ð4:9Þ

α ¼ 1, 2 are related through flipping the sign of k.
Equations (4.9) are invariant under flipping the sign of
qi, pi, ω, and k. Therefore, the spinors and their conjugates,
which are related to each other through flipping of the signs
of qi, pi, will have solutions related through a change of the
signs of k and ω.

A. Asymptotic limit

We consider the asymptotic limit of (4.9) following
Ref. [16]. For r → ∞, e2ϕ1 ¼ e2ϕ2 ¼ 1, implying
Mðϕ1;ϕ2Þ ¼ ðm1 þm2 þm3Þ. Substituting this and limit-
ing values for other expressions, we obtain

∂2
rΨα� þ 2

r
∂rΨα� −

ð2M0Þ2 � 2M0

r2
Ψα� ¼ 0; ð4:10Þ

where we use M0 ¼ m1 þm2 þm3, giving rise to the
following solutions:

Ψαþ ¼ AαðkÞr2M0 þ BαðkÞr−2M0−1;

Ψα− ¼ CαðkÞr2M0−1 þDαðkÞr−2M0 : ð4:11Þ

A relation between AαðkÞ [BαðkÞ] andCαðkÞ [DαðkÞ] can be
obtained [16,17,29] from the first-order Dirac Eqs. (4.7):

Cα ¼
~ωþ ð−1Þαk
2ð2M0Þ − 1

Aα; Bα ¼
~ω − ð−1Þαk
2ð2M0Þ þ 1

Dα;

where ~ω ¼ ωþ 4
X2
i¼1

qiA
ðiÞ
t ðr → ∞Þ: ð4:12Þ

For M0 > 0, A is the source term and D is the response.
One can obtain the retarded Green function for the dual
fermionic operator as

Dα ¼ ðGRÞαβAβ; ð4:13Þ

where the fermionic fluctuation satisfy the infalling boun-
dary condition at the horizon. In this case, differential
Eqs. (4.7) do not mix different α components, rendering the
Green function to be diagonal.

B. Near horizon limit

In order to find the infalling boundary condition, follow-
ing Ref. [16], we consider a near horizon analysis of the
Dirac Eqs. (4.9) in the extremal case. For the extremal case,
(T ¼ 0) metric develops a double pole at the horizon. We
expand the metric and other bosonic fields near the horizon.
The terms up to leading order are given in the following.We
have also introduced [7,16] parameters useful to analyze the
Dirac equation in the near horizon region:

gii ∼ k20 ¼
m2

4
r−8=5h 23=5

ðQ2
1 þ r4hÞ4=5

ðQ2
1 − r4hÞ2=5

;

gtt ∼ τ20 ¼
m2

4
r−4=5h 26=5

ðQ4
1 þ 6Q2

1r
4
h − 3r8hÞ

ðQ2
1 þ r4hÞ8=5ðQ2

1 − r4hÞ1=5
;

grr ∼ L2
2 ¼

4

m2
2−9=5r16=5h

ðQ2
1 þ r4hÞ2=5ðQ2

1 − r4hÞ4=5
ðQ4

1 þ 6Q2
1r

4
h − 3r8hÞ

;

AðiÞ
t ∼ βiðr − rhÞ; β1 ¼

m
2

4
ffiffiffi
2

p
r4hQ1

ðQ2
1 þ r4hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

1 − r4hÞ
p ;

β2 ¼
m
2

2ffiffiffi
2

p
r2h

ðQ2
1 þ 3r4hÞ1=2ðQ2

1 − r4hÞ
ðQ2

1 þ r4hÞ
;

e2ϕ1 ∼ e2ϕ10 ¼ 22=5r12=5h

ðQ2
1 − r4hÞ2=5ðQ2

1 þ r4hÞ1=5
;

e2ϕ2 ∼ e2ϕ20 ¼ 1

23=5r8=5h

ðQ2
1 − r4hÞ3=5

ðQ2
1 þ r4hÞ1=5

: ð4:14Þ

At the near horizon limit, the Dirac equation simplifies
into the following [16]:

∂2
rΨα� þ 1

r − rh
∂rΨα� −

ν2k
ðr − rhÞ2

Ψα� ¼ 0;

where ν2k ¼ ðmMðϕ10;ϕ20ÞÞ2L2
2 þ ð~k=k0ÞÞ2L2

2

− ð2mÞ2ðq1e1 þ q2e2Þ2

and ~k ¼ k − ð−1Þα 2k0
L2
2

½p1e−2ϕ10e1 þ p2e−2ϕ20e2�;

ei ¼ ðL2=τ0Þβi; ð4:15Þ

where the expressions for various parameters are given
in (4.14).
We need to analyze solutions to (4.15) following

Refs. [7,16] to determine the appropriate boundary con-
dition. It admits two solutions:
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Ψ ∼ ðr − rhÞ�νk ; ð4:16Þ

of which we choose

Ψ ∼ ðr − rhÞþνk ; ð4:17Þ

which corresponds to the infalling boundary condition at
the horizon. With this boundary condition, we look for
Fermi momentum k ¼ kF for which the source term
AαðkFÞ ¼ 0 in (4.11).
As evident from the second equation of (4.15), the square

of the exponent ν2k has positive contributions from the mass
and shifted momentum and a negative contribution from
coupling to electric fields. When the electric field is strong
enough, νk will become imaginary for a range of values of
momentum [16] which is called the oscillatory region. Over
this range, the Green function becomes oscillatory with
oscillatory peaks periodic in log jωj [6,7]. For scalar
particles, this corresponds to an instability towards pair
production in AdS2 region. For spinors, however, it does
not imply an instability, as there is no singularity of the
Green function in the upper half of the complexω plane [7].
On the field theory side, the oscillatory region implies that
the effective dimension of the operator in the boundary
conformal field theory will become complex [7].
The boundary of the oscillatory region is given by

~k ¼ ~kosc, where

~k2osc ¼ k20

��
g
L2

�
2

ðq1e1 þ q2e2Þ2 −m2M2
0

�
; ð4:18Þ

and so the oscillatory region depends on the relative
strengths of charges and the masses.
The retarded Green function near the Fermi surface for

small ω can be written in terms of k⊥ ¼ k − kF and ω as
follows [7,16]:

GRðk;ωÞ ∼
h1

k⊥ − ω=vF − h2e
iγkF ð2ωÞ2νkF ;

γk ¼ arg½Γð−2νkÞðe−2πiνk − e−2πgðq1e1þq2e2ÞÞ�;
ð4:19Þ

where νk is given in (4.15), γk is as given above, and h1 and
h2 are positive constants. For νkF > 1=2, the leading real
part comes from OðωÞ correction, given by the 1=vF term.
The ratio of excitation width to excitation energy Γ

ω�
becomes vanishing as the Fermi surface is approached.
Quasiparticles are stable, and the system behaves as a
Fermi liquid.
For νkF < 1=2, one ignores the vF term, and the

dispersion relation becomes

ω� ∼ ðk⊥Þz; where z ¼ 1

2νkF
; ð4:20Þ

and the ratio of excitation width to energy is

Γ
ω�

¼
tan

�
γkF
2νkF

�
k⊥ > 0;

tan
�

γkF
2νkF

− πz
�

k⊥ < 0:
ð4:21Þ

For νkF ¼ 1=2, is the marginal Fermi liquid, where Γ
ω�

vanishes logarithmically in ω as one approaches the Fermi
surface. We find Fermi surfaces for our cases correspond-
ing to νkF > 1=2, νkF ¼ 1=2, and νkF < 1=2.

V. FERMI SURFACES

In order to study Fermi momentum, we have considered
Dirac Eq. (4.15) with infalling boundary condition (4.17).
We numerically solve it for different values of k to find kF
where AαðkFÞ given in (4.11) vanishes. We considered a
lower sign of Ψ and α ¼ 1 in (4.15), as other components
will give similar results.
As is clear from Table I, under the interchange of two

Cartan generators, the top four rows are interchanged with
the bottom four rows, and so interchanging charge param-
eters Q1 ↔ Q2 we will get the same equations. Therefore,
it is sufficient to consider only the four top modes.
Moreover, flipping the sign of qi and pi will interchange
spinors with its conjugates. As we have already mentioned,
from the symmetry of Dirac Eq. (4.9), that amounts to
flipping the sign of k and ω. So if a fermion with ðqi; piÞ
contains a Fermi surface singularity at kF, its conjugate one
with ð−qi;−piÞ will have a Fermi surface singularity at
−kF. Under flipping the signs of qi and pi rows (1, 2) will
be interchanged with rows (3, 4) in Table I. Therefore, in
the present case, we have considered only rows 3 and 4 of
Table I. We numerically searched for a Fermi momentum
for these two spinors for ω ¼ 0 and have plotted the k vs
the square of the inverse charge parameter, given by
x ¼ r4h=Q

2
1. The range of x is restricted to (0,1), asQ

2
1=r

4
h <

1 at T ¼ 0 will make Q2
2=r

4
h negative. At x ¼ 1=3, Q1 ¼

Q2 and two chemical potentials will be equal to each other.
We introduce ~Q1 ¼ Q1=r2h, which is the value of the charge
parameter in units of r2h. It is related to x through x ¼ 1= ~Q2

1.
For simplicity, m=2 is set to be equal to 1 in the numerical
computation. The discussions of each of these cases are
given below.
Case 1: λ1þð− 1

2
;− 1

2
Þ, q1 ¼ − 3

2
, q2 ¼ − 1

2
; dual operator

trðϕ1þψð− 1
2
;− 1

2
ÞÞ.—This case corresponds to higher net

charge jq1 þ q2j ¼ 2 and is more likely to have a Fermi
surface. Indeed, we find two branches of Fermi surface
singularities as shown in Fig. 1. We find that one of them
corresponds to non-Fermi liquid, while the other one is in
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the regime of Fermi liquid. Starting from the left, as ~Q1

decreases from∞ to 3.356, there is no oscillatory region. It
first appears at ~Q1 ¼ 3.356 and expands as the charge
parameter decreases till ~Q1 ¼ 1, carving out a bell-shaped
region.
The branch for the Fermi surface in the non-Fermi region

appears along the boundary of the oscillatory region. It
starts at ~Q1 ¼ 2.887, on the left of which it disappears
inside the oscillatory region, implying the operator devel-
ops a complex dimension. As ~Q1 decreases, we find the
Fermi momenta to be very close to the boundary of the
oscillatory region, almost trace the boundary itself, and
continue till ~Q1 ¼ 1. Looking at ν and Γ=ω for this branch
(Fig. 2), we observe that ν is small where it vanishes inside
the oscillatory region on the left, increases as ~Q1 decreases,
and approaches 0.5 as ~Q1 ¼ 1. Therefore, the Fermi surface
remains in the non-Fermi region for the entire range, while
it approaches marginal Fermi-liquid behavior at ~Q1 ¼ 1,

which corresponds to Q2
2=r

4
h → ∞. The excitation width

decreases steadily with ~Q1, implying the quasiparticle will
become more and more stable and approaches zero at the
limit of marginal Fermi liquid, where ~Q1 tends to 1. This
branch passes through zero at around ~Q1 ¼ 2, which may
be associated with a transition between Fermi surfaces of
particles to antiparticles [16].
The other branch appears on the same side of the

oscillatory region, and momenta are at a larger value. It
is extended over the entire range and does not enter the
oscillatory region. Plots of ν are given in Fig. 3, and, as
one may observe, ν decreases as the charge parameter
decreases. On the left extreme, where ~Q1 approaches ∞, ν
approaches 1, while at the other extreme where ~Q1

approaches 1, ν approaches 0.5, indicating the limiting
behavior to be that of marginal Fermi liquid. Throughout
the range, it remains in the Fermi-liquid regime and the
limit of ~Q1 ¼ 1 becomes marginal.
Considering both the branches together, one may

observe, over a range of ~Q1 in Fig. 1, that there are two
Fermi surfaces. The signs of the Fermi momenta of these
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FIG. 2. Case 1: ν vs r4h=Q
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1 for the lower branch.

0.0 0.2 0.4 0.6 0.8 1.0

–30

–20

–10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

–30

–20

–10

0

10

20

rh
4

Q1
2

k

FIG. 1. Case 1: k vs r4h=Q
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represents the oscillatory region. It shows two branches; the
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two surfaces are the same for ~Q1 < 2 and opposite for
~Q1 > 2. For this range of charge parameter, the dual field
theory admits two different excitations, which give rise to
two different Fermi surfaces. As ~Q1 approaches 1, branches
approach each other and merge, giving rise to marginal
Fermi liquid in the limiting case.
Case 2: λ1þð− 1

2
; 1
2
Þ and q1 ¼ 1

2
; q2 ¼ − 3

2
; dual operator

trðϕ1þψð− 1
2
; 1
2
ÞÞ.—This case corresponds to a lower total

charge compared to that of case 1 (total charge
jq1 þ q2j ¼ 1), and we have found one branch of the
Fermi surface as shown in Fig. 4. Here also there is no
oscillatory region on the left side corresponding to a large
value of the charge parameter. As ~Q1 decreases from∞, the
oscillatory region appears at around ~Q1 ¼ 2.04 and
expands till ~Q1 ¼ 1. In this case, the branch appears over
the entire range and does not enter the oscillatory region.
Plots for ν and Γ=ω for this branch are given in Fig. 5. On
the left extreme, where the charge parameter approaches∞,
ν is greater than 0.5, indicating the Fermi-liquid regime. As
~Q1 decreases, ν decreases steadily, and at ~Q1 ¼ 4.23, ν
becomes equal to 0.5, which corresponds to marginal Fermi

liquid. As ~Q1 decreases further, ν reaches a minimum and
then starts increasing with decreasing ~Q1, reaching 0.5
again at the right extreme where ~Q1 ¼ 1. The excitation
width decreases with decreasing ~Q1, and at ~Q1 ¼ 1 it
becomes very small, making the excitation stable.
However, with increasing ~Q1 it shoots up before it reaches
the marginal Fermi-liquid state. For most of the range, the
sign of the Fermi momentum remains positive, while it
passes through zero at ~Q1 ¼ 3.01 and becomes negative at
higher values, indicating a transition between Fermi sur-
faces of particles and antiparticles. This branch exhibits a
transition from non-Fermi-liquid to Fermi-liquid behavior,
with variations of the charge parameter. A similar transition
has been observed in Ref. [30] in a different context, where
it changes from Fermi liquid to non-Fermi liquid over
variations of some impurity parameter.
To summarize, we have studied Fermi surfaces in the six-

dimensional (2,0) theory using holographic correspon-
dence. We consider an asymptotically AdS black hole
solution in seven-dimensional gauged supergravity and
analyze fermionic modes that do not couple to the grav-
itino. We considered two types of fermionic modes; with
net charge q ¼ jq1 þ q2j ¼ 1, 2, where q1 and q2 are the
charges with respect to the two Uð1Þ gauge fields. We find
that each fermionic mode admits a Fermi surface(s). In
particular, fermions with q ¼ 2 admit two branches of
Fermi surfaces, of which one remains in the Fermi-liquid
regime, while the other in the non-Fermi regime. For the
other fermionic mode, we have found that the Fermi surface
is in the regime of Fermi liquid for a range of charge
parameters, while it is in the non-Fermi regime for the rest.
In the present model, we find one Fermi surface that is in

the Fermi-liquid regime. Compared to other models with
maximal supersymmetry, this is new in the present model,
as such behaviors were not found in the case of N ¼ 4
SYM and ABJM theory. The other Fermi surface remains
in the deep non-Fermi regime and approaches marginal
Fermi liquid for the limiting value of the charge parameter,
which is very similar to the cases obtained in those models.
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We have also found a branch which changes from Fermi
liquid to non-Fermi liquid, which is different from N ¼ 4
SYM and ABJM theory. For two of our branches, the Fermi
momenta occur along the boundary of the oscillatory
region, which is again very similar to results obtained in
Refs. [16,17]. Among all the fermions that we have
considered, it turns out that the nature of the Fermi surface
depends on the Uð1Þ ×Uð1Þ charge of fermions in the
boundary theory and does not depend on the scalars. This
behavior is different from N ¼ 4 SYM, where the Fermi
surface depends on the scalars in the boundary theory
as well.
In the present work, we have considered Fermi momen-

tum in the extremal limit at ω ¼ 0. A full-fledged study of
spectral functions and transport phenomena at a finite
temperature and over a range of ω may provide a more
elaborate picture of the field theory. We have observed
fermionic modes show marginal Fermi-liquid behavior for
certain values of the charge parameter, for example, in the

limit of Q1=r2h ¼ 1, which at zero temperature corresponds
to Q2=r2h approaching ∞. Marginal Fermi liquid was
proposed to describe optically doped cuprates [31], and
it may be interesting to further explore the model for these
values of the charge parameter. The present model with a
single charge by setting the other charge density to zero
would also be a natural extension, which cannot be
obtained as a limiting case of this study. Considering the
quasiparticles on the field theory side, operators are given
by TrðϕψÞ in our case, and we have observed that the
nature of the Fermi surface changes only when the charge
of the gaugino (ψ ) in the operator changes, while it remains
the same with the change of the scalar (ϕ). This is
consistent with the argument [15] that the gaugino itself
generates the Fermi surface. However, in N ¼ 4 SYM, it
was found that the nature of the Fermi surface may depend
on bosons as well, and so this issue requires a better
understanding.
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