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We analyzed two-point Green’s functions of operators in six-dimensional (2, 0) theory dual to fermions
in maximal gauged supergravity in seven dimensions at finite temperature. We have considered
backgrounds with both the charge parameters nonzero as well as only one charge parameter nonzero.
In the former case we find all the modes admit Fermi surface(s), while in the latter, some of the modes do
not have a Fermi surface. We find backgrounds corresponding to nonzero expectation value of the scalar
appearing in the dual operator give rise to Fermi surface(s).
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I. INTRODUCTION

AdS=CFT correspondence [1–3] has been proved to be
an extremely useful tool for studying strongly interacting
fermionic systems using the gravity dual. This has been
effectively used to study Fermi surfaces [4–6] showing
existence of holographic Fermi liquid as well as non-Fermi
liquid, which are characterized by sharp Fermi surfaces but
excitations with scaling behavior different from Fermi
liquid. Studies of various aspects of these non-Fermi liquid
have appeared in literature [7–9], such as effects of
variation of mass, charge parameters, Pauli coupling as
well as the relation between the scaling exponent of spectral
function and dimension of dual operators, to name a few.
These analyses are in bottom-up approach where on the
gravity side one chooses a Lagrangian, which reflects the
effective low energy operators of the system one is
interested in, with appropriate symmetries. Though this
is a very informative and flexible approach, often the dual
theory is not known.
On the other hand, one can begin with a known string or

supergravity model, where the dual theory is known.
Several studies in this top-down approach [10–14]
appeared in the cases of probe branes and N ¼ 2 super-
gravity theories. In particular, no Fermi surface was found
in the case of N ¼ 2 supergravity [12,14]. Subsequently,
systematic studies appeared for maximally gauged super-
gravity theories in five and four dimensions [15–17], which
are dual to N ¼ 4 super-Yang-Mills (SYM) in four dimen-
sions and Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory in three dimensions. Fermi surfaces were found to
be present in both cases, as revealed through analysis at
zero temperature for various values of chemical potentials.
Later, the zero temperature analyses were extended to the
computation of full Green’s function at finite temperature
for single charge [18], which also studied the role of scalar

and spinor operators in the dual field theory. Discussions of
Fermi surfaces in a similar context appeared in [19–21]. A
model with single charge having vanishing entropy at zero
temperature was analyzed in [22] where they found
fermionic fluctuations are stable within a gap around the
Fermi surface. Studies of Lifshitz geometry at finite
temperature in the bottom-up approach have also appeared
[23,24], where gapped spectra were found.
Analysis of maximally gauged supergravity in seven

dimensions at zero temperature, which is dual to (2, 0)
conformal field theory in six dimensions appeared in [25].
The dual theory is one of three maximally superconformal
field theories and so it is interesting in its own right. The
background considered consists of two nonzero charge
parameters and over the range of these parameters, it turned
out operators in the dual field theory admit at least one
Fermi surface. In particular, operators corresponding to
fermionic modes with higher total charge admit two Fermi
surfaces, over some region of parameter space.
In the present work we have extended this analysis of

zero temperature [25] to finite temperature by computing
the full Green’s function. We have analyzed behavior of the
spectral function for various fermionic modes at nonzero
temperature in order to study Fermi surfaces. We find
agreement with earlier results for background with two
nonzero charge parameters. Furthermore, we set one of the
charge parameters to zero that gives rise to different
backgrounds, which does not admit extremal limit. Since
the dual field theory is known, it enables us to study the role
of the operators in the dual field theory in determining the
nature of the Fermi surface.
The plan of the article is as follows. In the next section,

we briefly describe the black hole solution that we use
as the background. In Sec. III we set up the equations to
compute Green’s function of the dual operators. In Sec. IV
we present numerical computation of Green’s function for
different modes and backgrounds. In Sec. V we conclude
with a discussion of the results.
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II. BLACK HOLE SOLUTION

We consider maximal seven-dimensional gauged super-
gravity [26–28], which is conjectured to be dual to a
six-dimensional (2, 0) conformal field theory [1–3]. The
seven-dimensional theory has an SOð5Þ symmetry and it
admits an asymptotically AdS black hole solution. In order
to obtain the black hole solution one can truncate the theory
so as to reduce to gauge group to Uð1Þ2, where two gauge
fields in two Cartan of SOð5Þ are nonzero, while setting
other components of the gauge fields and three-form
potential to be zero [29,30]. The bosonic Lagrangian with
the truncated fields is given by [29]

2κ2e−1L ¼ R −
1

2
m2νðϕ1;ϕ2Þ − 6ð∂ϕ1Þ2 − 6ð∂ϕ2Þ2

− 8ð∂μϕ1Þð∂μϕ2Þ − e−4ϕ1Fð1Þ2
μν − e−4ϕ2Fð2Þ2

μν

þm−1p2ðA; FÞ; where

νðϕ1;ϕ2Þ ¼ −8e2ðϕ1þϕ2Þ − 4e−2ϕ1−4ϕ2

− 4e−4ϕ1−2ϕ2 þ e−8ϕ1−8ϕ2 : ð2:1Þ

The asymptotically AdS black hole solution [29,30] to
the equations of motion ensuing from the Lagrangian (2.1)
with two charges is as follows [25]. The metric and the
gauge fields are given by

ds2 ¼ e2AðrÞðhðrÞdt2 − dx⃗2Þ − e2BðrÞ

hðrÞ dr2;

Að1Þ
μ dxμ ¼ Að1Þ

t ðrÞdt; Að2Þ
μ dxμ ¼ Að2Þ

t ðrÞdt;
ϕ1 ¼ ϕ1ðrÞ;ϕ2 ¼ ϕ2ðrÞ: ð2:2Þ

The explicit expressions of the functions appearing on the
right-hand side are given by
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m=2 ¼ 1=L where L is the radius of AdS and g ¼ 2m.
Temperature and entropy density associated with this black
hole are given by [17]

T ¼ m2
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The chemical potentials and charge densities are given by

μ1 ¼
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: ð2:5Þ

Fermionic field content consists of gravitini and spin-1=2
fermions, transforming in 4 and 16 ofSOð5Þ respectively.We
are denoting the spin-1=2 fermions by λ1�ðs12;s34Þ,
λ2�ðs12;s34Þ, where s12, s34 ¼ � 1

2
are charges of spinor

representation of two generators in Cartan of SOð5Þ, as
explained in [25]. Our objective is to study Fermi surfaces
associated with the operators dual to these Fermionic modes.
Out of these 16 fermions wewill consider eight fermions that
do not couple to the gravitini. The charges, masses and other
parameters of these fermions are summarized in Table I.
The dual field theory contains [31] self-dual two-form

potential transforming as 1, five scalars Σi transforming as
5 and four symplectic Majorana-Weyl spinors ψA trans-
forming as 4 under the R-symmetry group. We denote
scalars by Σ1�, Σ2� and Σ0 having Uð1Þ ×Uð1Þ charges
ð∓ 1; 0Þ, ð0;∓ 1Þ and (0, 0) respectively and spinors by
ψðs12; s34Þ with s12, s34 ¼ �1=2. Operators dual to the
fermions λi in the supergravity, transforming as 16, are of
the form trðΣψÞ [31,32]. These operators may be organized
as trðΣ1�ψðs12; s34ÞÞ and trðΣ2�ψðs12; s34ÞÞ with s12, s34 ¼
�1=2 on the basis of the Uð1Þ ×Uð1Þ charges. Operators
dual to each fermion in supergravity are given in Table I.

III. GREEN’S FUNCTION

In order to study Fermi surfaces in boundary theory we
consider solutions of Dirac equations for spin-1=2 fermions
λi in the supergravity theory. The Dirac equations for the
eight spinors in the supergravity theory, in which we are
interested, are given by [25]

½iΓμ∇μ −mðm1e2ϕ1 þm2e2ϕ2 þm3e−4ðϕ1þϕ2ÞÞ
þ 2mðq1Að1Þ

μ þ q2A
ð2Þ
μ Þ

þ iðp1e−2ϕ1Fð1Þ
μν þ p2e−2ϕ2Fð2Þ

μν ÞΓμν�λiðs12; s34Þ ¼ 0;

ð3:1Þ
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where we introduce parameters m1, m2, m3, q1, q2, p1 and
p2. The values of the parameters for different fermions in
supergravity theory are summarized in Table I. We will use
the following simplification as explained in detail in [25].
By introducing suitable Γ matrices and t and x depend-

ences, as λi ¼ e−AðrÞhðrÞ−1=4e−iωtþikx
� ψ i

ηi
�
one can see both

four-component spinors, ψ i and ηi satisfy the same equa-
tion and so it is sufficient to study the equations satisfied by
ψ i. Choosing

ψ i ¼
�
ψ i
1

ψ i
2

�
; ψ i

α ¼
�
ψ i
α−

ψ i
αþ

�
; α ¼ 1; 2; ð3:2Þ

where ψ i
α are two-component spinors the equations reduce

to the following form (suppressing i index):

ð∂r þ Xσ3 þ Yiσ2 þ Zσ1Þψα ¼ 0;

where X ¼ m
eBffiffiffi
h

p Mðϕ1;ϕ2Þ; Y ¼ −
eB−Affiffiffi

h
p uðrÞ;

Z ¼ −
eB−Affiffiffi

h
p ½ð−1Þαk− vðrÞ�;

and Mðϕ1;ϕ2Þ ¼ ðm1e2ϕ1 þm2e2ϕ2 þm3e−4ðϕ1þϕ2ÞÞ

uðrÞ ¼ 1ffiffiffi
h

p ½ωþ 2mðq1Að1Þ
t þ q2A

ð2Þ
t Þ�

vðrÞ ¼ 2e−B½p1e−2ϕ1Fð1Þ
rt þ p2e−2ϕ2Fð2Þ

rt �:
ð3:3Þ

One can observe, changing the value of α is associated with
flipping of the sign of k. Therefore, if for one value of α it
admits a Fermi surface at k ¼ kF, for the other value of α,
the Fermi surface will appear at k ¼ −kF, provided other
parameters remain the same. So one can choose a specific
value of α without loss of generality.
Since the fermions have oscillatory behavior at the near

horizon limit, following [18], we introduce the following
quantities, termed as generalized fluxes. Unlike the fermions,

thesegeneralized fluxes havenonoscillatory behavior near the
horizon:

U� ¼ ψ− � iψþ; F ¼ jUþj2 − jU−j2
I ¼ UþU�

− þ U�þU−; J ¼ iðUþU�
− −U�þU−Þ;

K ¼ jUþj2 þ jU−j2: ð3:4Þ

The equations satisfied by the generalized fluxes, as
follows from (3.3) are

∂rF ¼ 0; ∂rI ¼ 2YJ − 2XK;

∂rJ ¼ −2YI þ 2ZK; ∂rK ¼ −2XI þ 2ZJ : ð3:5Þ

At the near horizon limit, behaviors of fermion fields
[33] for any specific α are given by

ψ− ¼ iψþ ¼ i
2
ðr − rhÞ− iω

4πT; ð3:6Þ

along with corrections of order
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh

p
. Leading order

behavior of the generalized fluxes at the near horizon limit
follows from (3.5) and near horizon expansion of X, Y and
Z [25], as given by

F ¼1; I ¼ i1
ffiffiffiffiffiffiffiffiffiffiffi
r−rh

p
; J ¼ j1

ffiffiffiffiffiffiffiffiffiffiffi
r−rh

p
; K¼1; ð3:7Þ

where i1 and j1 depend on ω, k, rh and parameters
associated with fermions.
At the asymptotic limit r → ∞, behavior of the fermions

is given by [25]

ψþ ¼ Ar
3
2 þ Br−

5
2; ψ− ¼ Cr

1
2 þDr−

3
2: ð3:8Þ

Using (3.4), one can relate the asymptotic behaviors of
generalized fluxes with the coefficients, A, B, C and D,
given in (3.8). In particular, we obtain the following
expressions:

TABLE I. Charges, masses, Pauli terms coupling and dual operators corresponding to the fermionic modes.

No. λIðs12; s34Þ m1 m2 m3 q1 q2 p1 p2 dual operator

1 λ1−ð1
2
; 1
2
Þ 3

2
− 1

2
− 1

4
3
2

1
2

− 1
4

− 1
4
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4

1
4
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2
ÞÞ
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2
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2
Þ 3
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− 1

2
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2
1
2

1
4

− 1
4
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2
; 1
2
ÞÞ
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2
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2
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2
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4
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4

trðΣ2−ψð1
2
; 1
2
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2
3
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4
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F 0 ¼ 2iðAD� − A�DÞ ¼ 1; J 0 ¼ −2ðA�Dþ AD�Þ;
K3 ¼ 2jAj2 ¼ −I3; ð3:9Þ

where the subscript in the coefficient refers to the power of
r in the asymptotic expansion.
The expression of Green’s function depends on the

coefficients in the asymptotic expansion in (3.8). It is
given by

GR ¼ D
A
; ð3:10Þ

and it is retarded because of in-falling boundary condition.
The imaginary and real parts of Green’s function are
given by

ImðGRÞ ¼
1

2i
A�D − AD�

jAj2 ¼ 1

2K3

;

ReðGRÞ ¼
1

2

A�Dþ AD�

jAj2 ¼ −
J 0

2K3

: ð3:11Þ

In general, the Green’s function according to our notation is
a 2 × 2matrixGαβ. However, in the present case it turns out
to be diagonal. We will be considering G11, corresponding
to α ¼ 1. Changing the value of α would correspond to
flipping of the sign of Fermi momentum as mentioned
earlier.

IV. RESULTS

In the present section we have studied spectral function
associated with the operators dual to the fermions in the
supergravity theory, given in the Table I. All eight fermions
are charged with respect to both the Uð1Þ gauge fields. As
explained in [25], the different fermionic modes are related
to each other through interchanging of charge parameters
Q1 and Q2 and flipping of the sign of qi and pi associated
with alteration of signs of k and ω. For the general
background, where both charge parameters Q1 and Q2

are nonzero, we have discussed the result only for two
different modes, namely, q1 ¼ −3=2, q2 ¼ −1=2 and
q1 ¼ −3=2, q2 ¼ 1=2. For the other modes in this back-
ground, behaviors are similar. We have termed these as
two-charge cases. For each of the two modes, settingm ¼ 2
we numerically solve (3.3) subject to the boundary con-
dition (3.7) and obtain ImGR using (3.11). In addition, we
have studied the spectral function for fermions in the
background with one charge, as well. This background
is obtained by setting one of the charge parameters,
Q2 ¼ 0, and then using a similar procedure we examined
the modes with q1 ¼ 3=2, q2 ¼ 1=2 and q1 ¼ 1=2,
q2 ¼ 1=2. Once again, due to symmetry, other modes in
Table I have similar behaviors. We have termed these as
one-charge cases. It may be mentioned that, since Q2 ¼ 0
does not admit an extremal limit, Fermi surfaces of one-
charge cases can only be studied at finite temperature.
In order to see the existence of Fermi surface at finite

temperature we have used the following criteria [18]. If
there is a Fermi surface at a certain value of k ¼ kF, it
shows up as a peak in the spectral function for ω ¼ 0
around kF, which has a width small enough compared to
the temperature. Furthermore, if we plot the spectral
function vs ω at k ¼ kF that should show a peak near
ω ¼ 0, which is consistent with quasiparticle. Furthermore,
the maximum value of the spectral function at ω ¼ 0
should be large enough. Since the underlying theory is
conformal, we considered ratio of spectral function and
μ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ μ21 þ μ22

p
in the plots.

We have studied Fermi surfaces for the two-charge cases
at zero temperature in [25]. We found the operator dual to
the fermionic mode with q1 ¼ −3=2, q2 ¼ −1=2 admits
two Fermi surfaces; one of the Fermi surfaces is in the
Fermi liquid regime while the other one is in the non-Fermi
liquid regime, both approaching marginal Fermi liquid as
Q1 approaches infinity. The operator dual to the mode with
charges q1 ¼ −3=2, q2 ¼ 1=2 admits one Fermi surface,
which is partly in the Fermi liquid regime and partly in the
non-Fermi liquid regime.

FIG. 1. Spectral function for fermionic mode with q1 ¼ −3=2; q2 ¼ −1=2, Q2
1=r

4
h ¼ 10.
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At finite temperature, we begin with q1 ¼ −3=2, q2 ¼
−1=2 at T ¼ 0.0005. In order to demonstrate the depend-
ence on the charge parameters we have considered two
different values, Q2

1=r
4
h¼10 and Q2

1=r
4
h¼2. For Q2

1=r
4
h ¼

10, spectral function at ω ¼ 0, as shown in Fig. 1, shows
two peaks at around two different k values, k1 ¼ −2.6 and
k2 ¼ 4.3. Clearly, the former peak is quite broad while the
latter is sharp indicating that the former does not correspond
to a Fermi surface while the latter does. Looking into the
zero temperature behavior [25] one can observe at that value
of charge parameter, there is only one branch that admits
the Fermi surface, while the other branch has entered the
oscillatory region. Plots of spectral function vs ω for k1 ¼
−2.6 and k2 ¼ 4.3 as given in Fig. 1 confirm this, as the
former does not have a sharp peak around ω ¼ 0. For
Q2

1=r
4
h ¼ 2, the plot of spectral function vs k is given in

Fig. 2, where it shows two sharp peaks at k1 ¼ 1.177 and
k2 ¼ 4.5, indicating existence of two Fermi surfaces. Plots
of spectral function vs ω at those values of k are given in Fig.
2, showing peaks at around ω ¼ 0, establishing the fact that
both correspond to Fermi surfaces. This also confirms the
result obtained at T ¼ 0 [25], that at this value of charge
parameter, there are two Fermi surfaces.
We have plotted the spectral function for the operator dual

to the fermionic mode with charges q1 ¼ −3=2, q2 ¼ 1=2 at

the same temperature at T ¼ 0.0005. For Q2
1=r

4
h ¼ 10 and

Q2
1=r

4
h ¼ 2 plots are given in Figs. 3 and 4, respectively. As

one can observe, it has a single peak in both cases, at k ¼
−0.1572 and at k ¼ 3.054 for Q2

1=r
4
h ¼ 10 and Q2

1=r
4
h ¼ 2,

respectively. This implies that the mode admits a single
Fermi surface for both values, which is consistent with the
result obtained in the T ¼ 0 analysis. For both values of
charge parameter, it shows the peak of spectral function
around ω ¼ 0 at respective k values.
We have extended this analysis to one-charge cases, by

setting Q2 ¼ 0. We first consider the operator dual to the
mode with q1 ¼ 3=2, q2 ¼ 1=2 and plotted the spectral
function vs k at ω ¼ 0. As is apparent from Fig. 5, it is
showing a peak at around k ¼ −0.899. Plotting the spectral
function vs ω at k ¼ −0.899, we find a peak around ω ¼ 0
and so we conclude this mode admits a Fermi surface.
Similar plots for the operators, dual to the fermionic
mode with q1 ¼ 1=2, q2 ¼ 3=2 are given in Fig. 6.
While considering the plot vs k, it does show a peak at
k ¼ 0.451. However, the ω plot at that k value does not
show any peak at all around ω ¼ 0. Therefore we can
conclude, for operator dual to the mode with charges
q1 ¼ 1=2, q2 ¼ 3=2 there exists no Fermi surface.
From the results of the two-charge cases, it appears

fermions with higher charge tend to have Fermi surfaces.

FIG. 2. Spectral function for fermionic mode with q1 ¼ −3=2; q2 ¼ −1=2 for Q2
1=r

4
h ¼ 2.

FIG. 3. Spectral function for fermionic mode with q1 ¼ −3=2; q2 ¼ 1=2 for Q2
1=r

4
h ¼ 10.
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In particular, operators involving gauginos ψð�1=2;�1=2Þ
have two Fermi surfaces, while operators involving gau-
ginos ψð�1=2;∓ 1=2Þ have one Fermi surface. So it seems
that it is the gauginos that determine the nature of the Fermi
surface admitted by the operator. In order to understand the
role played by the scalars in the dual field theory we

consider the relation between ϕ1 and ϕ2 in the supergravity
and the scalar operator in the dual field theory. Our solution
has a Uð1Þ ×Uð1Þ symmetry that rotates phases of Σ1�

and Σ2� respectively. This implies distribution of the
M5-branes should be symmetric in the large N limit. In
terms of Σi, i ¼ 1; 2;…5 (they are related to Σ1� and Σ2�

FIG. 4. Spectral function for fermionic mode with q1 ¼ −3=2; q2 ¼ 1=2 for Q2
1=r

4
h ¼ 2.

FIG. 5. Spectral function q1 ¼ 3=2, q2 ¼ 1=2. The left figure is at ω ¼ 0 and the right figure is the plot vs ω.

FIG. 6. Spectral function q1 ¼ 1=2, q2 ¼ 3=2. The left figure is at ω ¼ 0 and the right figure is the plot vs ω.
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through Σ1�¼Σ1� iΣ2;Σ2�¼Σ3� iΣ4 [25]) this implies
the scalar operators in the dual field theory satisfy
trððΣ1Þ2Þ ¼ trððΣ2Þ2Þ and trððΣ3Þ2Þ ¼ trððΣ4Þ2Þ, which
we call trðΣ2

AÞ and trðΣ2
BÞ respectively, while we write

ðΣ5Þ2 ¼ Σ2
C. In presence of this symmetry, the operators

dual to the supergravity field ϕ1 and ϕ2 are given by [34]

Oϕ1
∼
1

5
trð−3Σ2

A þ 2Σ2
B þ Σ2

CÞ and

Oϕ2
∼
1

5
trð2Σ2

A − 3Σ2
B þ Σ2

CÞ: ð4:1Þ

From the asymptotic expansion of ϕ1 and ϕ2, as given in
supergravity solution (2.3), one can see for the one-charge
case, where we set Q2 ¼ 0, hOϕ1

i is negative and hOϕ2
i is

positive. This implies ΣA, or in other words Σ1� has a
nonzero expectation value. From our analysis given above
we find that the operators involving Σ1� give rise to the
Fermi surface, while operators involving Σ2� do not admit
one. It suggests that expectation values of the scalars
appearing in the dual operator play a role in determining
the Fermi surface. A similar result has been found in N ¼ 4
SYM and the ABJM model [18]. It may be mentioned that
in the present case the near horizon geometry is AdS2 with
a nonzero entropy at T ¼ 0, while the models discussed
in [18] have vanishing zero entropy, and so this feature
seems to be quite general. In the cases where both charge
parameters are nonzero, it is plausible to assume that both
Σ1� and Σ2� have nonzero expectation value in general,
giving rise to Fermi surface(s) for all the operators.

V. DISCUSSION

To summarize, we have studied the Fermi surface in the
six-dimensional (2, 0) theory at finite temperature, both for
two charge parameters and one charge parameter. In the
case of two charge parameters we find operators dual to the
fermionic modes with higher charge are more likely to
admit the Fermi surface, confirming the result we obtained
in the zero temperature analysis. We find the one with
higher charge admits two Fermi surfaces, while the one
with less charge admits one. It appears the Fermi surface
associated with dual operator of the form trðΣψÞ depends
on the charge of the gaugino ψ . At finite temperature, we
have extended the analysis to the cases of one-charge,
obtained by setting one of the charge parameters equal to

zero. We considered all the fermionic modes and found that
only operators dual to some of the modes are admitting the
Fermi surface while others do not. By analyzing the dual
field theory, we find if the background corresponds to a
nonzero expectation value of the scalar, the corresponding
operator admits the Fermi surface. On the other hand when
both the charge parameters are nonzero, probably all the
scalars have expectation values and dual operators asso-
ciated with all the fermionic modes, as we have seen in the
present model, admit one or more Fermi surface. If that is
the case as explained elsewhere [18], it is the colored
gaugino that gives rise to the singularity associated
with Fermi surface. However, there are counter examples
[18] found in the analysis of N ¼ 4 SYM [16] and so
understanding the roles of scalar operators requires
more study.
As explained above, obtaining a clear picture regarding

roles played by various operators in the dual field theory in
the context of Fermi surfaces requires models amenable to
more precise and detailed analysis. The Luttinger count of
charge density may also shed light on it [15]. In the present
work, we have considered only those fermionic modes,
which do not couple to gravitini in supergravity theory.
An analysis of other modes, as well as that of the gravitini
itself, may lead to further insight into the dual field theory.
In the earlier work [25] we have observed that in the two-
charge cases, for limiting values of the charge parameters,
the dual field theory is in the regime of marginal Fermi
liquid. Optimally doped cuprates [35] are thought to be
examples of marginal Fermi liquid and so it will be
interesting to extend the study for such limiting values
of charge parameters. A study of transport phenomena at
finite temperature for the present model may also lead to
better understanding. Finally, a thermodynamic analysis
may illuminate stability issues of the present model. In five
dimensions similar black hole solutions show instability
through development of charge density leading to sponta-
neous breaking of SUð2Þ ⊂ SOð6Þ and translational invari-
ance [36]. In the present case, the theory has an SOð5Þ
symmetry and it may be interesting to see whether similar
symmetry breaking may render it unstable.

ACKNOWLEDGMENTS

The work of N. R. is supported by University Grants
Commission of India (UGC India).

[1] J. M. Maldacena, The large N limit of superconformal
field theories and supergravity, Int. J. Theor. Phys. 38,
1113 (1999); Adv. Theor. Math. Phys. 2, 231 (1998).

[2] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

HOLOGRAPHIC FERMI SURFACE AT FINITE … PHYSICAL REVIEW D 96, 066001 (2017)

066001-7

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3


[3] E. Witten, Anti–de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[4] S. S. Lee, Non-Fermi liquid from a charged black hole: A
critical Fermi ball, Phys. Rev. D 79, 086006 (2009).

[5] M. Cubrovic, J. Zaanen, and K. Schalm, String theory,
quantum phase transitions and the emergent Fermi liquid,
Science 325, 439 (2009).

[6] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from
holography, Phys. Rev. D 83, 065029 (2011).

[7] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent
quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D
83, 125002 (2011).

[8] M. Edalati, R. G. Leigh, K. W. Lo, and P.W. Phillips,
Dynamical gap and cuprate-like physics from holography,
Phys. Rev. D 83, 046012 (2011).

[9] M. Edalati, R. G. Leigh, and P.W. Phillips, Dynamically
Generated Mott Gap from Holography, Phys. Rev. Lett. 106,
091602 (2011).

[10] M. Ammon, J. Erdmenger, M. Kaminski, and A. O’Bannon,
Fermionic operator mixing in holographic p-wave super-
fluids, J. High Energy Phys. 05 (2010) 053.

[11] K. Jensen, S. Kachru, A. Karch, J. Polchinski, and E.
Silverstein, Towards a holographic marginal Fermi liquid,
Phys. Rev. D 84, 126002 (2011).

[12] J. P. Gauntlett, J. Sonner, and D. Waldram, Spectral function
of the supersymmetry current, J. High Energy Phys. 11
(2011) 153.

[13] R. Belliard, S. S. Gubser, and A. Yarom, Absence of a Fermi
surface in classical minimal four-dimensional gauged super-
gravity, J. High Energy Phys. 10 (2011) 055.

[14] J. P. Gauntlett, J. Sonner, and D. Waldram, Universal
Fermionic Spectral Functions from String Theory, Phys.
Rev. Lett. 107, 241601 (2011).

[15] O. DeWolfe, S. S. Gubser, and C. Rosen, Fermi Surfaces in
Maximal Gauged Supergravity, Phys. Rev. Lett. 108,
251601 (2012).

[16] O. DeWolfe, S. S. Gubser, and C. Rosen, Fermi surfaces in
N ¼ 4 Super-Yang-Mills theory, Phys. Rev. D 86, 106002
(2012).

[17] O. DeWolfe, O. Henriksson, and C. Rosen, Fermi surface
behavior in the ABJM M2-brane theory, Phys. Rev. D 91,
126017 (2015).

[18] C. Cosnier-Horeau and S. S. Gubser, Holographic Fermi
surfaces at finite temperature in top-down constructions,
Phys. Rev. D 91, 066002 (2015).

[19] M. Berkooz, A. Frishman, and A. Zait, Degenerate rotating
black holes, chiral CFTs and Fermi surfaces I—Analytic
results for quasinormal modes, J. High Energy Phys. 08
(2012) 109.

[20] M. Berkooz, D. Reichmann, and J. Simon, A Fermi surface
model for large supersymmetric AdS5 black holes, J. High
Energy Phys. 01 (2007) 048.

[21] M. Berkooz and D. Reichmann, Weakly renormalized near
1=16 SUSY Fermi liquid operators in N ¼ 4 SYM, J. High
Energy Phys. 10 (2008) 084.

[22] O. DeWolfe, S. S. Gubser, and C. Rosen, Fermionic
response in a zero entropy state of N ¼ 4 super-Yang-Mills,
Phys. Rev. D 91, 046011 (2015).

[23] J. P. Wu, Emergence of gap from holographic fermions on
charged Lifshitz background, J. High Energy Phys. 04
(2013) 073.

[24] J. P. Wu, The charged Lifshitz black brane geometry
and the bulk dipole coupling, Phys. Lett. B 728, 450
(2014).

[25] S. Mukhopadhyay and N. Rai, Holographic Fermi surfaces
in the six-dimensional (2, 0) theory, Phys. Rev. D 96,
026005 (2017).

[26] H. Nastase, D. Vaman, and P. van Nieuwenhuizen, Con-
sistent nonlinear K K reduction of 11-d supergravity on
AdS7 × S4 and self-duality in odd dimensions, Phys. Lett.
B 469, 96 (1999).

[27] H. Nastase, D. Vaman, and P. van Nieuwenhuizen,
Consistency of the AdS7 × S4 reduction and the origin
of self-duality in odd dimensions, Nucl. Phys. B581, 179
(2000).

[28] M. Pernici, K. Pilch, and P. Van Nieuwenhuizen, Gauged
maximally extended supergravity in seven dimensions,
Supergravities in diverse dimensions, edited by A. Salam
and E. Sezgin (World Scientic, North-Holland, Amsterdam,
Singapore, 1989), Vol. 1, pp. 310–314; Phys. Lett. 143B,
103 (1984).

[29] J. T. Liu and R. Minasian, Black holes and membranes in
AdS7, Phys. Lett. B 457, 39 (1999).

[30] M. Cvetic, M. J. Duff, P. Hoxha, J. T. Liu, H. Lü, J. X. Lu,
R. Martinez-Acosta, C. N. Pope, H. Sati, and T. A. Tran,
Embedding AdS black holes in ten dimensions and eleven
dimensions, Nucl. Phys. B558, 96 (1999).

[31] E. Bergshoeff, E. Sezgin, and A. Van Proeyen, (2, 0) tensor
multiplets and conformal supergravity in D ¼ 6, Classical
Quantum Gravity 16, 3193 (1999).

[32] R. G. Leigh and M. Rozali, The large N limit of the
(2, 0) superconformal field theory, Phys. Lett. B 431,
311 (1998).

[33] N. Iqbal and H. Liu, Real-time response in AdS=CFT with
application to spinors, Fortschr. Phys. 57, 367 (2009).

[34] A. J. Nurmagambetov and I. Y. Park, On the M5 and the
AdS7=CFT6 correspondence, Phys. Lett. B 524, 185
(2002).

[35] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E.
Abrahams, and A. E. Ruckenstein, Phenomenology of the
Normal State of Cu-O High-Temperature Superconductors,
Phys. Rev. Lett. 63, 1996 (1989).

[36] S. S. Gubser and F. D. Rocha, Peculiar properties of a
charged dilatonic black hole in AdS5, Phys. Rev. D 81,
046001 (2010).

SUBIR MUKHOPADHYAY and NISHAL RAI PHYSICAL REVIEW D 96, 066001 (2017)

066001-8

https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.79.086006
https://doi.org/10.1126/science.1174962
https://doi.org/10.1103/PhysRevD.83.065029
https://doi.org/10.1103/PhysRevD.83.125002
https://doi.org/10.1103/PhysRevD.83.125002
https://doi.org/10.1103/PhysRevD.83.046012
https://doi.org/10.1103/PhysRevLett.106.091602
https://doi.org/10.1103/PhysRevLett.106.091602
https://doi.org/10.1007/JHEP05(2010)053
https://doi.org/10.1103/PhysRevD.84.126002
https://doi.org/10.1007/JHEP11(2011)153
https://doi.org/10.1007/JHEP11(2011)153
https://doi.org/10.1007/JHEP10(2011)055
https://doi.org/10.1103/PhysRevLett.107.241601
https://doi.org/10.1103/PhysRevLett.107.241601
https://doi.org/10.1103/PhysRevLett.108.251601
https://doi.org/10.1103/PhysRevLett.108.251601
https://doi.org/10.1103/PhysRevD.86.106002
https://doi.org/10.1103/PhysRevD.86.106002
https://doi.org/10.1103/PhysRevD.91.126017
https://doi.org/10.1103/PhysRevD.91.126017
https://doi.org/10.1103/PhysRevD.91.066002
https://doi.org/10.1007/JHEP08(2012)109
https://doi.org/10.1007/JHEP08(2012)109
https://doi.org/10.1088/1126-6708/2007/01/048
https://doi.org/10.1088/1126-6708/2007/01/048
https://doi.org/10.1088/1126-6708/2008/10/084
https://doi.org/10.1088/1126-6708/2008/10/084
https://doi.org/10.1103/PhysRevD.91.046011
https://doi.org/10.1007/JHEP04(2013)073
https://doi.org/10.1007/JHEP04(2013)073
https://doi.org/10.1016/j.physletb.2013.11.040
https://doi.org/10.1016/j.physletb.2013.11.040
https://doi.org/10.1103/PhysRevD.96.026005
https://doi.org/10.1103/PhysRevD.96.026005
https://doi.org/10.1016/S0370-2693(99)01266-6
https://doi.org/10.1016/S0370-2693(99)01266-6
https://doi.org/10.1016/S0550-3213(00)00193-0
https://doi.org/10.1016/S0550-3213(00)00193-0
https://doi.org/10.1016/0370-2693(84)90813-X
https://doi.org/10.1016/0370-2693(84)90813-X
https://doi.org/10.1016/S0370-2693(99)00500-6
https://doi.org/10.1016/S0550-3213(99)00419-8
https://doi.org/10.1088/0264-9381/16/10/311
https://doi.org/10.1088/0264-9381/16/10/311
https://doi.org/10.1016/S0370-2693(98)00495-X
https://doi.org/10.1016/S0370-2693(98)00495-X
https://doi.org/10.1002/prop.200900057
https://doi.org/10.1016/S0370-2693(01)01375-2
https://doi.org/10.1016/S0370-2693(01)01375-2
https://doi.org/10.1103/PhysRevLett.63.1996
https://doi.org/10.1103/PhysRevD.81.046001
https://doi.org/10.1103/PhysRevD.81.046001

