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We obtain a domain wall solution in maximally gauged seven dimensional supergravity, which 
interpolates between two AdS spaces and spontaneously breaks a U (1) symmetry. We analyse frequency 
dependence of conductivity and find power law behaviour at low frequency. We consider certain fermions 
of supergravity in the background of this domain wall and compute holographic spectral function of the 
operators in the dual six dimensional theory. We find fermionic operators involving bosons with non-zero 
expectation value lead to gapped spectrum.
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1. Introduction

Gauge-gravity duality [1–3] has been proved to be extremely 
useful in studying strongly coupled fermionic systems. One can 
consider a custom gravity theory in accordance with the symme-
tries of the dual field theory and use the duality to analyse various 
aspects of the latter. The gravity theory with charged AdS black 
hole in one higher dimension provides necessary computational 
techniques to study the fermionic systems. Indeed, it leads to 
fermionic excitations with scaling behaviour of non-Fermi liquids 
[4–6]. Subsequently, study of low energy behaviour of the system 
with constant charge and mass as well as that of relation between 
scaling exponent and dimension of dual operator in general dimen-
sions appeared in [7]. It was found that turning on dipole coupling 
beyond a critical value gives rise to dynamically generated gap [8,
9] as found in Mott insulators. Charged Lifshitz black brane with 
dipole coupling was considered in [10,11], leading to gap around 
the Fermi surface. Effects of impurity in holographic system were 
studied in [12] where they found phase transition of fermionic sys-
tem from non Fermi liquid to Fermi liquid regime.

In addition to this flexible and informative approach, often it is 
advantageous to adopt the top-down approach where the dual the-
ory is known and variations of parameters within the theory helps 
to make identification of states in the dual theory. Such an ap-
proach was employed to study probe branes and N = 2 supergrav-
ity theories [13–17]. Though Fermi surface was not found in the 
case of N = 2 supergravity theories [15–17], analyses of maximally 
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symmetric gauged supergravity theories at zero temperature ap-
pear subsequently, leading to holographic Fermi surfaces [18–21]. 
Green’s functions of dual operators at finite temperature were also 
computed for these theories [22,23]. A similar study for gravity 
background having vanishing entropy at zero temperature [24] re-
ported fermionic fluctuations are stable within a gap around Fermi 
surface. Related discussions of Fermi surfaces appeared in [25–27].

There is an interesting class of backgrounds on the gravity 
side, which corresponds to condensation of charged scalar in holo-
graphic superconductors and gives rise to spontaneous breaking 
of U (1) symmetry. Domain wall solutions are natural candidates 
for zero temperature limit of these backgrounds [28,29]. Study of 
fermions for such a condensed phase of holographic superconduc-
tor at zero temperature [30] shows a spectrum similar to that 
obtained in APRES experiment. Perhaps it is interesting to un-
derstand the mechanism lying behind the appearance of such a 
gapped spectrum in these cases. [31] considered a study of Majo-
rana fermions with self coupling, coupled to a scalar (with twice 
charge) and found similar gapped spectrum. Holographic super-
conductors were constructed from string and M theory [13,32–35]
and studies of spectra for these backgrounds appread in litera-
ture subsequently. [36] considered generic fermions with a domain 
wall solution as the background in a four dimensional supergrav-
ity, that follows from compactification of M theory. They obtained 
bands of normalisable modes in the region ω2 < k2. Further stud-
ies of domain wall solutions with a symmetry breaking source in 
four dimensional gauged supergravity (dual to Aharony–Bergman–
Jafferis–Maldacena (ABJM) theory) [37] shows both gapped and 
gapless bands of stable excitations. Studies of similar solutions dual 
to states in ABJM theory with broken U (1) symmetry [38] also 
reported gapped spectrum. The gaps in the spectra have been at-
tributed to low fermionic charge and particle-hole interaction [38].
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The top-down approach has the advantage that it considers 
supergravity theories which are low energy limit of string/M the-
ory for which, dual theory is known and holographic dictionary 
provides identification of operators in the dual field theory with 
various supergravity modes. Therefore, it provides an arena where 
one can study role of the dual operators underlying various phe-
nomena and can address the field theory mechanism as well. In 
this vein, we consider a maximally symmetric gauged supergravity 
theory in seven dimensions, whose dual theory is a superconfor-
mal field theory in six dimensions and the operators dual to the 
various supergravity modes can be identified [39,40]. Being one 
of the three maximally superconformal field theories, it is inter-
esting in its own right. Field contents involve a tensor multiplet 
and symplectic Majorana–Weyl gauginos which are different from 
theories in three and four dimensions that have been analysed in 
this context [37,38]. We have obtained a domain wall solution, 
interpolating between two AdS geometries, in this seven dimen-
sional supergravity. The solution breaks a U (1) of the R-symmetry 
group spontaneously and thus may correspond to zero tempera-
ture of holographic superconductor. We have computed the opti-
cal conductivity numerically and find that in the low frequency 
limit it behaves as ω2�B +3 for certain constant �B , while for high 
frequency it goes as ω3 as expected for ultraviolet AdS7 geome-
try. The fermionic content of the supergravity theory consists of 
16 spin-1/2 fermions and we have considered only those modes, 
which do not couple to gravitino. In the background of the domain 
wall solutions we find there are only four such modes. We have 
studied spectral function for the operators dual to those modes 
and find in the spectrum there is a depleted region around ω = 0. 
We have also artificially dialled the value of the charges up to 
q = −2 to study its effect on the spectrum and find the gap per-
sists. Analysing the dual field theory, we find fermionic operators 
involving scalars with non zero expectation value, gives rise to 
gapped spectrum in these cases.

The plan of the article is as follows. In the next section, we de-
scribe the domain wall solution and study the optical conductivity. 
In section 3 we present Green’s function while section 4 consists of 
the numerical result. We conclude with a discussion in section 5.

2. Domain wall solution

We begin with a discussion of bosonic content of the seven 
dimensional supergravity theory [41–43]. There exists a consistent 
truncation of eleven dimensional supergravity to this theory with 
only the lowest massless modes [41] and solution of this theory 
are expected to remain solution of the full theory, when uplifted 
[44]. It involves a gauged S O (5)g and a composite S O (5)c and 
consists of a graviton, a Yang–Mills gauge field in adjoint of S O (5)g

and five rank-3 tensors in 5 of S O (5)g . In addition, there are 14 
scalar fields, which parameterise S L(5, R)/S O (5)c . The lagrangian 
is given by,

2κ2e−1Lboson = R + 1

2
m2(T 2 − 2Tij T

i j) − tr(Pμ Pμ)

− 1

2
(V i

I V j
J F I J

μν)2 + m2(V −1I
i Cμνρ I )

2

+ e−1
(

1

2
δ I J (C3)I ∧ (dC3) J

+ mεI J K LM(C3)I F J K
2 F LM

2 + m−1 p2(A, F )

)
(2.1)

Here I, J = 1, 2, .., 5 denote S O (5)g indices, and i, j = 1, 2, .., 5
denote S O (5)c indices. V i represent fourteen scalar degrees of 
I
freedom parametrising S L(5, R)/S O (5)c coset transforming as 5
under both S O (5)g and S O (5)c . The tensor Tij is given by Tij =
V −1 I

i V −1 J
j δI J and T = Tijδ

i j . There is a Yang–Mills gauge fields 
A J

μI transforming under adjoint of gauge group S O (5)g and co-

variant derivative of V i
I is given as DμV i

I = ∂μV i
I − ig(Aμ)

J
I V i

J . 
Pμ and Q μ are symmetric and antisymmetric parts of the covari-
ant derivative: V −1I

i DμV k
I δkj = (Q μ)[i j] + (Pμ)(i j) . In what follows 

we will set C3I = 0.
The bosonic part of the full theory is quite involved, so we con-

sider a truncation to make it simpler. Since the gauge group S O (5)

has rank two we have kept two Cartan gauge fields A12
μ = A(1)

μ

and A34
μ = A(2)

μ , while set other components of the gauge fields 
to be equal to zero. Considering a diagonal scalar vielbein V i

I will 
lead to U (1)2 gauge symmetry. Since we are interested in a back-
ground that would break one of the U (1), we consider the follow-
ing ansatz for the scalar vielbein

V i
I = exp[φ2Y2]exp[φ1Y1 + φ3Y3], Y1 = diag(1,−1,0,0,0),

Y2 =
(

0 1
−1 0

)
⊕ diag(0,0,0), Y3 = diag(0,0,1,1,−2),

(2.2)

where Y1, Y2 and Y3 are generators of S L(5). For such a choice 
the bosonic action turns out to be

2κ2e−1L = R − m2

2
V (φ1, φ3) − 2(∂φ1)

2

− 2 sinh2 2φ1(∂μφ2 + g A(1)
μ )2 − 6(∂μφ3)

2

− (F (1)
μν)2 − e4φ3(F (2)

μν)2,

where V (φ1, φ3) = −(e2φ1 + e−2φ1 + 2e−2φ1 + e4φ3)2

+ 2(e4φ1 + e−4φ1 + 2e−4φ3 + e8φ3).

(2.3)

In the above lagrangian we will set φ2 = 0 that breaks the U (1)

symmetry associated with A(1)
μ . From (2.2) we can observe that 

this is equivalent to choice of unitary gauge for the coset. From the 
equations ensuing from the lagrangian (2.3) we can further sim-
plify the action by setting φ3 = 0 and A(2)

μ = 0. From the equations 
of motion, that follows from the above lagrangian one can see that 
these correspond to consistent solution. The potential V (φ1, φ3)

will reduce to

V (φ1) = (2 cosh 2φ1 − 3)2 − 16. (2.4)

The potential (2.4) has extrema at φ1 = 0 and φ1 = 1
2 Log( 3±√

5
2 ). 

We will consider a domain wall solutions such that the scalar φ1

interpolates between these two extrema. In order to find such a 
solution, we choose the following ansatz for the metric and the 
gauge field

ds2 = e2A(−hdt2 + d�x2
5) + dr2

h
, A(1) = B1dt. (2.5)

With this ansatz, the equations of motion turn out to be

−5A′′ = 2
e−2A

h2
g2 sinh2 2φ1 B2

1 + 2φ′ 2
1 ,

h′′ + 6A′h′ = 4
e−2A

h
g2 sinh2 2φ1 B2

1 + 4e−2A B ′ 2
1 ,

4h[φ′′
1 + (6A′ + h′

)φ′
1] = −4

e−2A

sinh 4φ1 g2 B2
1 + m2 ∂V

,

h h 2 ∂φ1
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Fig. 1. Plots of different fields for domain wall solution.
B ′′
1 + 4A′B ′

1 = 1

h
g2 sinh2 2φ1 B1,

30(A′)2 + 5
h′

h
A′ = 2

e−2A

h2
g2 sinh2 2φ1 B2

1 + 2φ′ 2
1

− 2
e−2A

h
B ′ 2

1 − m2

2

1

h
V (φ1), (2.6)

where the last equation is a constraint. Once other equations are 
satisfied, this will remain valid over the range of r provided it is 
satisfied at some value of r.

We look for solution of above equations (2.6) with φ1 = φI R =
1
2 Log( 3±√

5
2 ) at IR (r → −∞) and φ1 = 0 at UV (r → ∞). The IR 

limit of the equation admits the following solution

φ1 ∼ φI R , h = 1, B1 = 0, A = r

LI R
, (2.7)

with exponentially suppressed corrections. With this solution, IR 
geometry turns out to be AdS with a radius LI R =

√
15

2m . Similarly at 
the UV limit, the geometry is also AdS with radius LU V = 2

m with 
A = r

LU V
.

In order to obtain a solution interpolating between these two 
extremes we need to specify the first corrections to the scalar and 
the gauge fields given in (2.7) at IR. We choose the following cor-
rections [32,33,45]

φ1(r) = φI R + aφe�φ(r/LI R ), B1(r) = aB e�B (r/LI R ), (2.8)

where �φ =
√

111
2 − 3 and �B =

√
91
2 − 2, as obtained from the 

equations of φ and B at the IR limit. As explained in [33] ab can 
be set to 1 by shifting r and rescaling t and x. Therefore, only 
parameter for the solution remains to be aφ .

At the UV limit the equation of motion implies φ1 behaves as 
e−2A and e−4A , which correspond to the source and expectation 
value of the dual operator respectively. Since we are interested 
in the solution, that will break the symmetry spontaneously, we 
impose the additional restriction that lim

r→∞φ1 ∼ e−4A . With this 
restriction, the parameter aφ can have only discrete values.

We have solved the equations (2.6) numerically subject to the 
boundary condition (2.8). We choose the value of aφ to be 1.717 as 
that gives the scalar field with least number of nodes and so cor-
responds to a solution most likely to be stable. The solutions of the 
different fields are given in Fig. 1. The relative speed of propaga-
tion of light in the ultraviolet and the infrared, given by the index 
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Fig. 2. Re(σ ) vs. ω.

of refraction, n = √
hU V /hI R [32,33,45] turns out to be 2.10845 in 

this case.
After obtaining the domain wall solution we study behaviour 

of conductivity with variation of frequency [32,33,45,46]. We add 
a time dependent perturbation to the gauge field in x direction, 
given by Ax = ax(r)e−iωt . Turning on a gauge field will also pro-
duce a metric perturbation in gtx . From the Maxwell’s equation 
and Einstein equation one will get two coupled linearised equation 
involving the perturbations, ax and δgtx , which give rise to the fol-
lowing equation for ax ,

a′′
x + (4A′ + h′

h
)a′

x + ω2

h2
e−2Aax − 4

h
e−2A(B ′

1)
2ax

= g2

h
sinh2 2φ1ax. (2.9)

The asymptotic behaviour of ax is given by

ax(r) ∼ a(0)
x + a(4)

x e−4A + ...., (2.10)

where the ellipses denote higher order terms. Solving the equation 
(2.9) subject to the infalling boundary condition one can obtain the 
expression of conductivity as

σ ∼ −i

ω

a(4)
x

a(0)
x

, (2.11)

where the constant of proportionality does not depend on ω.
At IR the infalling solution is given by

ax(r) = e−2r/LI R H (1)
�B+2(ωLI R e−r/LI R ), (2.12)

where H (1) is Hankel function of first kind.
We have numerically solved (2.9) subject to the boundary con-

dition (2.12) and evaluate conductivity as given in (2.11). We have 
plotted conductivity vs. frequency in the Fig. 2. In order to find out 
the behaviour of conductivity for small ω we introduce F [33,45]
as

F = −he4A a∗
x∂rax − ax∂ra∗

x

2i
, (2.13)

where ∂rF = 0, as follows from (2.9). At the IR limit, from (2.12)
one can see that F is independent of ω. Real part of σ is given by

Re(σ ) = F
4hU V

1
(0) 2

, (2.14)

ω|ax |
and so in order to determine ω dependence we need to find out 
how a(0)

x depends on ω. For the region LI R Log(ωLI R) << r << rI R

where deviation of geometry from AdSI R is negligible one can 
show,

ax ∼ −i
�(�B + 2)

π
(

2

ωLI R
)�B+2 Zx(r), (2.15)

where at the IR region, lim
r→−∞ e−�B r/LI R Zx(r) → 1. For large r the 

ω2 term in (2.9) is negligible and on the basis of that if we as-
sume following [33,45] similar ω dependence of ax will be valid 
for large r as well, then a(0)

x = lim
r→∞ax(r) ∼ ω−(�B +2) . From (2.14)

it follows

Re(σ ) ∼ ω2�B+3. (2.16)

From Fig. 2 one can observe that ω dependence of Re(σ ) agrees 
with this for small ω. For large ω limit, real part of conductivity 
goes as ω3, which is its behaviour for ultraviolet AdS7 geome-
try.

3. Fermionic action

The N = 4 gauged supergravity in seven dimensions [41–43]
consists of two kinds of fermions. One is gravitino ψ A

μ with spin-

3/2 transforming under S O (5)c as 4. Other is spin-1/2 field λA
i

which transform as 16 under S O (5)c and satisfy γ iλi = 0. A (A =
1, .., 4) and i (i = 1, .., 5) are spinor and vector indices respectively 
of S O (5)c . The terms in the Lagrangian consisting of only spin-1/2 
fields λi are given by [42]

e−1L f ermion = −1

2
λ̄i(�

μDμλi) − m

8
λ̄i(8T ij − T δi j)λ j

+ 1

32
λ̄iγ

jγ klγ i�μνλ j(Fμν)kl, (3.1)

representing kinetic term, mass term and Pauli term. The covariant 
derivatives for our background are given by

Dμλi = ∇μλi − ig cosh 2φ1[A(1)
μ ( J 12)i

j)λ
j + (A(1)

μ S12)λi], (3.2)

where J 12 and S12 are the vector and spinor representations of the 
generators of the gauge group U (1). ∇μ is the covariant derivative 
containing the spin connection and is given by

∇μ = ∂μ − 1

4
(ωμ)ab�

ab. (3.3)

The terms in the Lagrangian corresponds to coupling between 
gravitino ψμ and spin-1/2 fields λi are given by

e−1Lint = ψ̄μ(−m�μTijγ
iλ j + �ν�μ(Pν)i jγ

iλ j

+ 1

2
�νσ �μ(Fνσ )i jγ

iλ j). (3.4)

In order to simplify the notation we will use for S O (5) vec-
tor indices: v1± = 1√

2
(v1 ± iv2), v2± = 1√

2
(v3 ± iv4), v0 = v5, so 

that U (1) × U (1) charges associated are as follows: v1± and v2±
have charges (∓1, 0) and (0, ∓1) respectively while v0 has charge 
(0, 0). For S O (5) spinor indices we use λ(s12, s34), where s12, s34 =
± 1

2 are eigenvalues of S12 = −(i/2)γ 1γ 2 and S34 = −(i/2)γ 3γ 4

respectively. With this notation, 16 independent components of λ
can be organised as λ1±(s12, s34) and λ2±(s12, s34).

We would like to study the behaviour of fermions that do not 
couple to gravitino. The second U (1) (associated with A(2)

μ ) re-
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mains unbroken and gravitino has charges ± 1
2 with respect to it. 

Therefore spinor components with total charge ± 3
2 with respect 

to second U (1) will not couple to gravitino. So λ2−(s12, 12 ) and 
λ2+(s12, − 1

2 ), with s12 = ± 1
2 are decoupled from gravitino and we 

restrict ourselves to the case of these four fermions only. An ex-
plicit computation shows, for the present choice of V i

I , all the other 
fermions in 16 couple to gravitino.

Dirac equation satisfied by these fermions λi can be written as

(�μDμ + m

4
(5 − 2 cosh 2φ1) + i

s12

2
�μν F (1)

μν)λ = 0,

where, Dμλ = ∂μλ − ig(q cosh 2φ1 A(1)
μ )λ,

F (1)
μν = ∂μ A(1)

ν − ∂ν A(1)
μ ,

(3.5)

q are the charges associated with gauge field and is given by s12, 
but we have kept it generic. Both the mass term and the charge 
term depend on the scalar field φ1. At the IR limit φ1 = φI R and 
the mass turns out to be m/2, while at the UV limit φ1 = 0 and 
the mass becomes 3m/4.

We have chosen the following seven dimensional �-matrices:

�̂t =
(

�̂t
1 0

0 �̂t
1

)
, �̂r =

(
�̂r

1 0
0 �̂r

1

)
, �̂i =

(
�̂i

1 0

0 �̂i
1

)

�̂t
1 =

(
0 iσ2

iσ2 0

)
, �̂r

1 =
(

I 0
0 −I

)
, �̂i

1 =
(

0 σ1
σ1 0

)
,

(3.6)

where I is 2 × 2 is identity matrix, σ1, σ2 and σ3 are Pauli spin 
matrices. Due to the fact that relevant �-matrices have identical 
copies in both the diagonal blocks, we can choose, λ = (ψ, χ)T

where both the 4-component spinors ψ and χ will satisfy the 
same equations, and it is sufficient to consider only the upper 
component ψ . We absorb the effect of spin connection by suit-
ably redefining the spinors with appropriate prefactor and choose 
to write ψ = (ψ+, ψ−)T , and each component satisfies the follow-
ing equation:

(
√

h∂r + m

4
(5 − 2 cosh 2φ1))ψ

+

+ ie−A[kσ1 − (
ω + gq cosh 2φ1 B1√

h
− s12 B ′

1)iσ2]ψ− = 0,

(−√
h∂r + m

4
(5 − 2 cosh 2φ1))ψ

−

+ ie−A[kσ1 − (
ω + gq cosh 2φ1 B1√

h
+ s12 B ′

1)iσ2]ψ+ = 0.

(3.7)

We further write the two component spinors as ψ± = (ψ±
1 , ψ±

2 )

and obtain the equations for individual components,

(
√

h∂r − m

4
(5 − 2 cosh 2φ1))ψ

−
1

− ie−A[k − (
ω + gq cosh 2φ1 B1√

h
+ s12 B ′

1)]ψ+
2 = 0,

(
√

h∂r + m

4
(5 − 2 cosh 2φ1))ψ

+
2

+ ie−A[k + (
ω + gq cosh 2φ1 B1√

h
− s12 B ′

1)]ψ−
1 = 0.

(3.8)

As one can observe, the Dirac equation reduces to coupled equa-
tions for the two components (ψ−

1 , ψ+
2 ). A similar set of equations 

follows for the other two components,
(
√

h∂r − m

4
(5 − 2 cosh 2φ1))ψ

−
2

− ie−A[k + (
ω + gq cosh 2φ1 B1√

h
+ s12 B ′

1)]ψ+
1 = 0,

(
√

h∂r + m

4
(5 − 2 cosh 2φ1))ψ

+
1

+ ie−A[k − (
ω + gq cosh 2φ1 B1√

h
− s12 B ′

1)]ψ−
2 = 0.

(3.9)

These two sets of equations are related through flipping of signs 
of ω, q and s12. In what follows, we will be considering only the 
first set of equations (3.8). These equations cannot be solved an-
alytically and we will use numerical computation to solve these 
using appropriate boundary conditions. However, at the IR and UV 
limits one can find analytic expressions for the behaviour of the 
solutions.

IR limit: At the IR limit we have A ∼ r/LI R , h ∼ 1, B(1)
t ∼ 0, 

φ1 ∼ φI R . The geometry is AdS with radius LI R and the mass re-
duces to mI R = m/2. In order to solve the equations (3.8) we 
choose the infalling boundary condition [47], which are given by 
as follows: For space-like momenta, k2 ≥ ω2:

ψ−
1 (r) = e−r/2LI R KmI R LI R+ 1

2
(
√

k2 − ω2LI R e−r/LI R ),

ψ+
2 (r) = i

√
k + ω

k − ω
e−r/2LI R K−mI R LI R+ 1

2
(
√

k2 − ω2LI R e−r/LI R ),

(3.10)

where K±mI R LI R+ 1
2

are modified Bessel function. For time-like mo-

mentum, ω > |k| they are expressed in terms of Hankel function 
of first kind,

ψ−
1 (r) = e−r/2LI R H (1)

mI R LI R+ 1
2
(
√

ω2 − k2LI R e−r/LI R ),

ψ+
2 (r) = −i

√
ω + k

ω − k
e−r/2LI R H (1)

mI R LI R− 1
2
(
√

ω2 − k2LI R e−r/LI R ).

(3.11)

Similarly, for ω < −|k| they are expressed in terms of Hankel func-
tion of second kind.

UV limit: At the UV limit, we have A ∼ r/LU V , h ∼ hU V , φ1 ∼ 0. 
The geometry is once again AdS with radius LU V = 2/m and 
the mass reduces to mU V = 3m/4. In this limit the equations of 
fermions depend only on the mass terms and the asymptotic limit 
of the solutions are given by,

ψ−
1 (r) ∼ C−

1 em0r + D−
1 e−(m0+1)r,

ψ+
2 (r) ∼ C+

2 e(m0−1)r + D+
2 e−m0r,

(3.12)

where we have set m = 2 and defined m0 = mU V /
√

hU V .
For this set of fermions (ψ−

1 , ψ+
2 ) Green function is given by 

the following [6].

G R(ω,k) = i
D+

2

C−
1

, (3.13)

while the other set (ψ+
1 , ψ−

2 ) leads to a similar expression. These 
two comprises two diagonal components of Green’s function. In 
what follows, we will consider only the one given in (3.13). The 
spectral function is given by A(ω, k) = Im[G R(ω, k)]. We are inter-
ested in the spectrum as function of frequency and momenta. In 
the next section, we will numerically solve the Dirac equations for 
boundary conditions at IR.
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Fig. 3. Spectral function for fermionic mode with: Left: k = .09 (green), k = .1 (red), k = .11 (blue), k = .12 (black). Right: k = −.1 (green), k = −.11 (red), k = −.12 (blue), 
k = .13 (black). Coloured figure(s) are available in the web version of this article.
We conclude this section with the discussion of the dual field 
theory. According to the conjecture [1–3] the dual field theory is 
given by six dimensional (2, 0) conformal field theory. It has an 
R-symmetry group S O (5). Relevant field content is tensor multi-
plet consisting of a self-dual 2-form potential Bμν transforming as
1, five scalars �i transforming as 5 and four symplectic Majorana–
Weyl spinors ψ A transforming as 4 under the R-symmetry group. 
In our notation, U (1) × U (1) charges associated with various fields 
are as follows: �1± and �2± have charges (∓1, 0) and (0, ∓1)

respectively while charge of �0 is (0, 0). Four spinors can be rep-
resented as ψ(s12, s34) with s12, s34 = ±1/2.

In order to obtain the operators dual to the supergravity fields, 
B , � and ψ are taken to be in the adjoint representation of 
U (N) [39,40]. Operators dual to the spinors in the supergrav-
ity transforming under 16 are of the form tr(�ψ). So counting 
the U (1) × U (1) charges, those operators may be organised as 
tr(�1±ψ(s12, s34)) and tr(�2±ψ(s12, s34)) with s12, s34 = ±1/2.

The operators dual to the 14 scalars appearing in the coset 
are identified in the following way [48]. The symmetric tensor, 
T ab , a, b = 1, 2.., 5 can be written as (eS)ab , where Sab is a 5 × 5
traceless matrix. The operators dual to Sab are given by Oab =
�a�b − 1

5 δab(�c�
c). For our choice of scalars,

Sab = (−2φ1,2φ1,2φ3,2φ3,−4φ3),

Oφ1 ∼ −(�2
1 − 1

5
(�2

1 + ... + �2
5)) etc.

(3.14)

In this context it may be observed that there is a U (1) symme-
try that rotates between �3 and �4 and the fermionic operators 
dual to the four fermionic modes in the supergravity that we are 
considering involve �3 and �4 only.

4. Numerical result

In this section we have plotted the spectral function corre-
sponding to the operator in the boundary CFT dual to the fermionic 
mode λ2±( 1

2 , ± 1
2 ). The charges with respect to the first U (1), 

q = ± 1
2 and the coefficient of the Pauli term is ± 1

2 . The plots 
are given in Fig. 3 for different values of k. For positive q, given in 
Fig. 3a, one can observe, it shows a peak on the positive ω. The 
peak is highest for k = 0.11 and as k deviates from it the peak 
height decreases. On the negative side of ω it develops a hump. 
Fig. 4. Spectral function for fermionic mode with k = −.3 (green), k = −.2 (red), 
k = −.1 (blue), k = −.04 (black). Coloured figure(s) are available in the web version 
of this article.

For negative value of q, given in Fig. 3b, the peaks appear on the 
negative side of ω and the highest peak appears at k = −.12. As k
deviates from it peak becomes smaller. Humps appear once again, 
on the positive side of ω, this time. Since the humps are not vis-
ible in the main figure we have provided a magnified picture for 
positive ω in the inset. In both the cases, spectral function shows 
a depleted region around ω = 0 indicating a gap in the spectrum. 
We have checked the spectral function for further higher values of 
|q| upto q = −2. We find the depleted region continues to exist. 
However, more peaks appear as we increase the |q| and heights of 
the peaks also increase.

In the present case, asymptotic charges of fermions under the 
U(1) gauge group and Pauli terms are given by ± 1

2 and ± 1
4 respec-

tively. We have artificially dialled q to q = −2 and set Pauli term 
equals zero in order to check the effect of charge and Pauli term 
on the spectrum. Plot of the spectral function of the dual operator 
is given in Fig. 4. As we observe, the gap persists. With higher |q|
peaks starts appearing on the positive side of ω as well and these 
peaks are much higher and sharper compared to q = ±1/2. On the 
negative side, humps continue to exist along with small peaks for 
this value of q.
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5. Discussion

We have obtained a domain wall solution in seven dimensional 
gauged supergravity, which interpolates between two AdS geome-
tries of different radii. The scalar field takes a non-zero value at 
the IR, while at the UV it vanishes, both of which correspond to 
extrema of the potential. Presence of the scalar field breaks one of 
the U (1) in the Cartan of S O (5) spontaneously, and in that sense 
it is similar to holographic superconductor. We have studied the 
optical conductivity and find for small frequency real part of con-
ductivity obeys a power law ω2�B +3 for certain constant �B , while 
for large frequency it goes as cubic power of frequency as expected 
for ultraviolet AdS7 geometry.

We have considered the fermions with the domain wall as the 
background. It turns out, there are four fermionic modes (out of 
total 16) in the supergravity theory, that do not couple to the 
gravitino in this background. We have studied the spectral func-
tion associated with the dual operators to those modes and find 
all of them leads to gapped spectra. We have artificially increased 
the charge to |q| = 2 and set the Pauli term equals zero, and find 
the gap remains in the spectral function. Similar gapped spectrum 
was obtained in [30] for fermionic quasi particles in presence of 
condensate at zero temperature. Gapped spectra were also found 
in four dimensional gauged supergravity dual to ABJM model [37,
38], where the gap has been attributed to the low charge or parti-
cle hole interaction.

In order to analyse the field theory aspects, we consider the 
scalars in the dual field theory. Since the domain wall solution cor-
responds to expectation value of the scalars, they may play a role 
determining the spectrum. Indeed, as shown in [19] for N = 4
SYM theory, scalars play important role in determining nature of 
the Fermi surface. From the asymptotic behaviour of φ1 in the UV 
limit given in Fig. 2, we observe it corresponds to expectation value 
of dual operator Oφ1 to be negative. Furthermore, since φ3 = 0 for 
our solution, we can assume Oφ3 = 0. From the relation (3.14), 
it turns out 〈tr(�2

3) + tr(�2
4)〉 > 0. So either �3 or �4 or both 

have non-zero expectation value. On the other hand, the fermionic 
modes we have considered are dual to tr(�2±ψ(s12, s34)) with 
s12, s34 = ±1/2 and �2± = 1√

2
(�3 ± i�4). Therefore in the present 

case, the fermionic operators involving bosons with non zero ex-
pectation value, gives rise to gapped spectrum. It will be inter-
esting to understand the essential field theory mechanism that 
determines appearance of gap in the spectrum.

The domain wall we have considered interpolates between two 
conformal field theories and in that sense it is similar to renor-
malisation group flow. However, in this case it has a sponta-
neously generated expectation value of a symmetry breaking oper-
ator rather than adding relevant deformation. It may be interesting 
to address stability issues associated with this domain wall solu-
tion. It would also be interesting to obtain this solution as zero 
temperature limit of holographic superconductor. Regarding the 
fermionic spectrum, a clear picture of the roles played by various 
operators in the dual field theory would be quite useful, which 
requires models that can provide more precise and detailed anal-
ysis. In order to keep the analysis simple we have set one of the 
gauge fields and scalar fields to be zero. Considering a more gen-
eral background may be more informative. We have not considered 
the fermionic modes coupled to gravitini and a full fledged analy-
sis of all the modes including gravitini may lead to further insight.
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