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Synopsis

According to the AdS/CFT correspondence, type IIB string theory on AdS5 × S5

is dual to the four-dimensional N = 4, SU(N) gauge theory on the boundary. In the

weak coupling limit and large curvature, the string theory can be approximated by

the gravity description and so gravity theory on (d+1) dimensional AdS spacetime

corresponds to gauge theory living on the d-dimensional boundary. Since this dual-

ity connects the weakly coupled gauge theory to strongly coupled gravity theory and

vice versa, this connection provides a way to describe strongly coupled problems of

the gauge theory in the set up of weakly coupled gravity theory, which can be anal-

ysed more easily. Soon it transpires that this can be extended to other field theories

as well. In fact the radial direction of the AdS space turns out to corresponds to the

energy scale of the dual field theory in the sense that theory living on d-dimensional

slices at definite values of radial variable in the bulk corresponds to field theory at

a definite energy scale. This duality has been widely applied to the context of var-

ious strongly coupled theories, such as quark-gluon-plasma or strongly correlated

systems in condensed matter theories, among others.

In this thesis we will discuss such applications in the context of superconduc-

tors. Being a finite density, finite temperature systems, dual of such systems can

be realised by charged black holes in gravity theory. It turns out that black holes in

presence of matter fields develop instability and below a critical temperature, config-

uration with condensation of matter fields becomes thermodynamically more stable,

which translates in field theory side into transition to a superconducting phase, more

commonly called as holographic superconductor. The holographic superconductors
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may correspond to condensation of scalar field (s-wave), vector field (p-wave) or

tensor field (d-wave). In general, the superconductors are spatially homogeneous

but in condensed matter there are ample examples of spatially modulated supercon-

ducting phases as well.

We are mostly interested in such superconducting states with spatial modula-

tion. We are motivated by the work [1], where authors have studied two different

phases, namely metallic and insulating phase. Indeed, superconductors admit in-

sulating phase characterised by antiferromagnetic properties and it has been sug-

gested [4] that such antiferromagnetic property may correspond to condensation of

scalar field, which are in adjoint of SU(2). In the spirit of that suggestion, we have

considered a model involves gravity coupled with SU(2)×U(1) gauge theory with a

scalar field in adjoint of SU(2) along with a Chern Simons term. The Chern-Simons

term plays a crucial role in condensation of the vector field. One of the solution of

our theory is RN-AdS black hole, which we have identified with the normal phase.

Below critical temperature, it gives rise to s wave phase through condensation of

scalar, p wave phase through condensation of SU(2) gauge field, or s+p wave phase

through condensation of both. We have studied the variation of free energy along

with temperature for all the phases. We found for a given temperature s wave phase

has least free energy, p wave phase has even higher and s+p wave phase has highest.

So we may conclude that in the thermodynamically most preferred state the scalar

field condenses. All the phases make transition to normal phase (i.e the phase with-

out any condensate) at critical temperature and all the phase transition are second

order in nature. For p wave phase, from the study of free energy vs temperature for

various pitches we observe that there is a value of pitch k for which free energy is

minimum. We have also studied ac conductivities of this model.

The abovementioned study was done within the context of Einstein gravity which

corresponds to a large N limit and superconducting phase corresponds to sponta-

neous breakdown of a U(1) symmetry. A similar feature appears in (2+1) dimen-

sional theory as well and in the light of Mermin-Wagner theorem it suggests that
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the fluctuations may get suppressed at large N limit. In order to study this scenario

as one deviates from large N limit, we consider further corrections coming from the

higher derivative terms. To be precise, we include Gauss Bonnet terms to the action

of the gravitational system. Similar to the Einstein gravity, this also admits black

hole solution as well as condensation of matter fields. We have studied the behaviour

of the free energy and the condensates with variation of temperature in this model.

We have found indeed the higher derivative correction suppresses the condensation

i.e the critical temperature decreases with the increase of the strength of higher cur-

vature correction. We have also studied AdS soliton solutions into which the black

hole may decay on variation of chemical potential. Such transition happens at zero

temperature, and from the consideration of the behaviour of the free energy on vari-

ation of chemical potential we find that the critical chemical potential increases with

the increase of the strength of higher curvature correction.

As mentioned above, since the radial direction in AdS space corresponds to

energy scale of the boundary theory, it provides a convenient set up for study of

renormalisation group flow and in the case of gauge/gravity duality it is called as

holographic RG flow, where in the gravity theory one considers flow of the space

time fields with radial direction of AdS space. In general, in the context of RG flow

one is interested in fixed points, which usually refer to those points on energy scale

where β function vanishes. Verlinde et. al. showed [2, 3] in gravity theory one can

construct similar β functions as well using holographic RG flow and the point where

the β function vanishes are associated with fixed points. Thus different phases arised

in condensed matter system can be identified as the fixed point of holographic RG

flow.

We have applied holographic RG flow in our model and have identified two dif-

ferent fixed points. One fixed point arises at vanishing v.e.v of scalar field, while for

the other, scalar field v.e.v lies on a circle. The model admits RN AdS black hole

solution for vanishing of scalar field and SU(2) field and it may be noted that [1] the

near horizon geometry of RN AdS black hole (along with some deformation) corre-
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sponds to metallic phase. The other phase corresponds to breaking of SU(2)→ U(1)

and expected to be insulating. It has been suggested that condensation of adjoint

SU(2) scalar field corresponds to antiferromagnetic phase [4]. So this study seems

to connect metallic and insulating antiferromagnetic phases through holographic RG

flow.

Another interesting arena is the strange metal phases which shows anomalous

scaling of transport coefficient with temperature. For example, resistivity shows

a linear temperature dependence for these phases, which is different from the be-

haviour predicted by Fermi liquid theory. It has been suggested that such anomalous

behaviour may holographically realised through hyperscaling violating asymptoti-

cally Lifshitz theories [8]. These theories show different scaling for time and space

coordinates and the duality proposed in the context of asymptotically AdS space-

time has been generalised to include other asymptotic geometries. Usual approach

to study such transport coefficients is to do near horizon analysis as done in [5–7].

This method, although quite efficient, does not accommodate different boundary

conditions and the boundary operators cannot be identified. Instead, we have chosen

a different approach proposed in [9] where one can accommodate different boundary

conditions. We consider a dyonic black hole solution as background and considering

the equations of motion of linear fluctuations in this we study the direct conductiv-

ity, Seebeck coefficients, Hall angle etc. The temperature dependence turn out to

be quite involved and we identified different scaling regime to obtain a simplified

power law behaviour for different ranges of parameters. To summarise we have stud-

ied differnt aspects of holographic superconductors, which shows a quite rich and

complex phase structures. Incorporation of further ingredients and generalisation of

the models considered here may provide better agreement with realistic phenomena

in condensed matter theories and may deepen our understanding of holography as

well.
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Chapter 1

Introduction

1.1 An Overview

Field theory have been proved to be extremely successful in describing various phe-

nomena in Physics. Ranging from high energy theories that governs the dynamics

of elementary particles to condensed matter theories involving strongly correlated

systems, field theory plays dominant roles. However, its most effective machineries

are essentially perturbative in nature and that creates a limitation in its applications

where the interaction is strong. Though various methods such as 1
N approximation,

lattice gauge theory, have been designed to tackle such problems, strong interaction

remains a challenge.

In the last century a fascinating connection was established between gauge the-

ories and theory of gravity. Actually, that such a connection exists was known for

quite some time. ’t Hooft [97] showed that Feynman diagrams of gauge theory

using double line techniques leads to triangulation of surfaces and therefore eval-

uating partition function are essentially connected to sum over geometries. But it

was first concretely realized through the AdS/CFT conjecture. Loosely speaking it

claims that a gauge theory in d dimensions is in a sense equivalent to gravity the-

ory in (d+1) dimensions. As it is this sounds quite unusual as gravity theories and

gauge theories quite diffrenet. However, these two appearances refer to two different
1



regimes of the coupling constants of the same theory. In particular, strongly coupled

regime of gauge theory is dual to a gravity theory in weakly coupled regime and

vice versa. This makes this conjecture extremely useful as it enables one to address

the issues of strogly coupled regime of one theory in a weakly copuled set up of

other theory. In particular, topics such as counting of degrees of freedom in a black

hole solution of gravitational theory may be explored in the set up of a gauge theory.

Similarly, strongly coupled phenomena of gauge theories, which were accessible to

lattice computations, can be discussed in terms of a weakly coupled gravity theory.

With classical gravity it can address the leading order phenomena of an 1
N expansion

and it is possible to unravel the higher order contribution in a systematic manner as

well.

Immediately after its advent, the correspondence have been applied to diverse

arena of physics [1] . In its initial form it relates gravity theory on certain spaces

called Anti de Sitter space in five dimension, denoted asAdS5, to certain Yang-Mills

theory with SU(N) gauge group and N=4 supersymmetry. This duality [98] is also

referred to as the holographic duality or the gauge/gravity correspondence. Though

in its original formulation, the correspondence related four-dimensional Conformal

Field theory (CFT) to the geometry of anti-de Sitter (AdS) space in five dimensions,

soon it transpired that this duality can relate strongly correlated many body systems

to the classical dynamics of gravity in one higher dimension in a much more general

setting.

Theories of condensed matter turns out to be one set of natural arenas for applica-

tion of this duality as frequently it involves strongly correlated systems of electrons.

In particular, it was realised that this duality may be applied to explore the behaviour

of superconductors and its various cousins. These kinds of systems are usually of fi-

nite temperature and finite charge density. Therefore charged black holes are natural

gravity duals for them as they are characterised by finite temperatures and finite den-

sity. The dual of superconductor in its simplest version [11] considered a scalar field

coupled to gravity and showed that below certain temperature, the stable configu-
2



ration corresponds to black hole solution with condensation of the scalar field. In

the dual theory it gets translated to a superconducting phase transition with a scalar

order parameter. In this case, order parameter corresponds to spinless operator and

such phases are termed as s-wave phase. Superconducting phases may corresponds

to condensation of fields of non-zero spins as well, such as vectors or spin two tensor

fields, which are termed as p and d-wave superconductors respectively. Examples

of p-wave superconductors are UPt3 in Sr2RuO4 and (TMTSF )2PF6, where the

former is heavy fermion materials while the latter is organic materials. Similarly, d-

wave superconductors occur in high Tc cuprate materials. In literature, black holes

corresponding to all these three phases have been constructed. These black holes

are usually spatially homogeneous and the superconductors are also characterised

by similar homogeneity.

However, holographic superconductors may have inhomogeneous features of

various kinds. In many cases, investigations have found that the homogeneus config-

uration suffers from instabilities giving rise to inhomogeneous ground states. Such

features are present in the models of holographic QCD such as Sakai-Sugimoto

model and as in certain (2+1)-dimensional brane models [99]. In the holographic

applications black hole solutions are found that have instabilities leading to charge

density wave or striped phases. In many of the cases, the essential mechanism re-

sponsible for such inhomogeneity is presence of Maxwell Chern-Simons term with

a constant electric field. Such spatially modulated phases are widely seen in con-

densed matter applications.

In the present work we will begin with a certain model that gives rise to su-

perconducting states with spatial modulation. We are motivated by the work [74],

where authors have studied transition between metallic phase and an insulating

phase. They considered a gravity theory coupled to two U(1) gauge fields, with

the presence of Chern Simons term. This gravity theory, along with certain defor-

mation, which can be identified as a fixed point, corresponding to metallic phase.

However, an instability around this configuration triggers a flow and the system de-
3



velops another fixed point solution which is related to insulating phase. Indeed,

superconductors admit insulating phase characterised by antiferromagnetic proper-

ties. But incorporation of such a feature may require further generalization of this

model. It was shown in [36] that antiferromagnetism of a condensed matter system

is realized in terms of condensation of a scalar field in the adjoint representation

of SU(2), with spontaneous breakdown of symmetry SU(2) → U(1). To this end

we adopt a bottom-up approach and consider a phenomenological model of gravity

in five dimensions. It consists of gravity coupled to SU(2) × U(1) gauge theory

with the scalar field in the adjoint representation in the presence of Chern Simons

term. This model admits RN-AdS black hole as well as a helical configuration with

condensation breaking SU(2) to U(1). As we will observe this model has a rich

and complex phase structure. It admits both s-wave and p-wave phases as well as

admixtures of the same. By varying the parameters we have studied the competition

and coexistence of these various phases of this model in the third chapter.

One of the limitations of the analysis of the SU(2)×U(1) model stems from the

fact that in this bottom up approach we have restricted ourselves to the gravity up to

quadratic terms. Indeed it would have been satisfactory to incorporate the model in a

string theoretic framework which will enable us to study the theory as well. Though

such an incorporation has not been done, one can explore the qualitative modifica-

tions of the picture by adding suitable higher derivative terms in the gravity action.

In that vein, we consider the SU(2) × U(1) model coupled to gravity theory with

Gauss-Bonnet term. The reason for addition of Gauss-Bonnet term is the fact that

an analogue of AdS black hole solution is admitted by it and study of behaviour of

different phases with such a black hole in the background may reveal the changes in

the behaviour. We have studied the effect of higher derivative terms on the boundary

theory numerically and find the superconducting transition temperature will be more

and more suppressed as the higher derivative terms becomes more and more strong.

This result is in keeping with Mermin-Wagner theorem and is consistent with the

study of role of higher derivative terms in other settings [38] .
4



We have also investigated similar phenomenon in the context of AdS soliton.

Superconducting phase in this model is continuously connected to charged AdS

black hole and below the critical temperature the superconducting phase is favoured

thermodynamically. There are solitonic configuration in which charged AdS black

hole may decay into, obtained by making a double Wick rotation. This undergoes

a critical phase transition due to variation in chemical potential at zero temperature

in the sense that there exists a critical value of chemical potential above which the

scalar field condenses giving rise to a superconducting phase of AdS soliton. We

have found the critical chemical potential increases with the increase of the strength

of higher curvature correction. This result is also along the line of the conclusion we

obtained for black hole solution. The study pertaining to higher derivative gravity

appears in the fourth chapter.

Holographic theories provide natural arena for renormalisation group flow, be-

cause different slices at different values of radial coordinates may be considered as

the boundary theory at different energy scales. Since in holography, couplings in the

boundary theory arises as space-time fields in the gravity theory, one can consider

the variation of the fields with radial distance through Callan-Symanzik equations

obtained by using holographic technique. We mentioned earlier the SU(2) × U(1)

model admits RN AdS black hole, whose near horizon geometry (along with certain

deformation) is considered to be dual to metallic phase [74], while the condensed

phase of the spatially modulated helical black hole is characterised by breaking of

SU(2) down to U(1). Therefore it is natural to consider possible phase transitions in

this model using holographic renormalization group flow between these two phases.

For the present model we have obtained the gravitational Callan-Symanzik equa-

tion and β function. From the zeros of β functions we have identified two different

fixed points, one of which is suggestive to be metallic nonmagnetic phase while the

other turns out to be associated with spontaneous breakdown of SU(2) into U(1).

The general phases of high temperature superconductors in Figure(1.1) suggests that

such a phase may be identified with antiferromagnetic insulating configuration. It
5



Figure 1.1: Different phases of high temperature superconductor

is known that by varying doping one can obtain such a phase in cuprate and iron

based superconductors. A more explicit realisation of it would be very useful. This

analysis of holographic renormalization appears in fifth chapter.

Next we turn towards transport properties. There are some materials such as

heavy fermion superconductors and cuprate high Tc superconductors, which exhibit

anomalous scaling of transport coefficients with temperature. That motivates us

to consider hyperscaling violating theories, which may reproduce such anomalous

behaviour [100]. However, such theories are substantially different from the asymp-

totically AdS theories that we have considered so far. In particular, we will be

considering hyperscaling violating asymptotically Lifshitz theories. In such cases

the boundary theories do not respect the Lorentz invariance and spatial and tempo-

ral coordinates scale in different ways. Example of such scaling can be given by the

symmetry of metric under t → λzt ; ~x → λ~x, where z determines the critical

dimension of interactions e.g. z = 1 is relativistic invariant theory, z = 2 and 3 are

characterised by onset of antiferromagnetism and ferromagnetism respectively [4].

In order to make contact with strange metallic phase of high temperature super-

conductor, we study the transport coefficients, such as direct conductivity, Seebeck

coefficients, Hall angle etc. for such hyperscaling violating theories. One approach

to study the transport properties is to compute various coefficients from the near

horizon data [94], which is though quite efficient, does not accommodate different
6



boundary conditions. In the present thesis, we have chosen a different approach [88],

which admits incorporation of Dirichlet or Neumann or a mixed boundary condi-

tions and gives rise to different transport properties for different boundary condi-

tions. We have directly solved the equations of motion and comparing the boundary

expressions we obtain thermoelectric conductivities, Hall angles etc. Though the

expression of the temperature is quite involved, we have identified clean scaling

regime and find, for different parameters the thermoelectric coefficients behave in

different manners. These studies are accommodated in the sixth chapter of the the-

sis.

Since the AdS/CFT correspondence will be central machinery in these studies

we need to have a clear idea about the essential structure of the correspondence.

The correspondence was proposed and justified in the framework of string theory,

which is a quantum theory of gravity. A concrete description of the correspondence

then requires cursory review of some of the essential ingredients of string theory,

gauge theory and D-brane. In the rest of this chapter we will very briefly mention

the essential elements of this correpondence.

1.2 String theory and D branes

In this section we will briefly review the essetial elements of string theory and D

branes following [101, 102, 117]. First we introduce the bosonic strings and super-

string theory. Then we introduce the concept of D brane.

1.2.1 Bosonic strings and superstring theory

String theory is quantized theory of relativistic strings. A moving string parameter-

ized by 1+1 dimensional world sheet described by (σ, τ) where σ is the worldsheet

length and τ is worldsheet time. The string-space-time coordinates are scalar from

the point of view of the world sheet, called Xµ(σ, τ). String theory action is given

by, string tension times area of the world sheet
7



S = T

∫
dA . (1.2.1)

In order to express this action in terms of Xµ(τ, σ), we define induced metric hab

hab = ∂aX
µ∂bX

νηµν , (1.2.2)

where a,b runs over world sheet coordinate τ, σ. String action is then given by

Nambu Goto action

SNG =

∫
M

dτdσLNG

LNG =
1

2πα′
(−dethab)

1
2 , (1.2.3)

where T = 1
2πα′ . We can however write it as a Polyakov action

S = − 1

4πα′

∫
dτdσ

√
−γγab∂aXµ∂bX

νηµν . (1.2.4)

It depends on intrinsic worldsheet metric γab and the coordinate Xµ(τ, σ). De-

pending on boundary condition satisfied by the string coordinate Xµ(τ, σ) at the

spatial boundary of worldsheet, we can have two types of strings, open strings and

closed strings [101].

To write the action for superstring we want to generalize Polyakov action (1.2.4)

in terms of manifestly supersymmetric objects. We define

Πµ
a = ∂aX

µ + θ
A

Γµ∂aθ
A , (1.2.5)

which are manifestly supersymmetric under global supersymmetry transforma-

tion

δθA = εA ; δθ
A

= εA

δXµ = −εAΓµθA , (1.2.6)
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where Γµ is ten dimensional gamma matrices(for SO(9, 1)) satisfies Clifford algebra

{Γµ,Γν} = 2ηµν . So kinetic term of the action will be

Skin = − 1

4πα′

∫
d2σ
√
γγabΠµ

aΠbµ . (1.2.7)

It was realized that one needs to add another term in the action, called Wess Zumino

term

Swz =
1

2πα′

∫
d2σ

[
εab∂aX

µ(θ
1
Γµ∂bθ

1 − θ2
Γµ∂bθ

2)− εab(θ1
Γµ∂aθ

1)(θ
2
Γµ∂bθ

2)
]
.

(1.2.8)

- The WZ term is supersymmetry invariant for N = 2 since we have two θ’s, θ1, θ2,

but one can write an N = 1 invariant action as well. Then the action Skin + Swz

is called Green-Schwarz action for superstring. One can define another formal-

ism where the manifest supersymmetry is worldsheet one which is called Neveu

Schwarz Ramond (NSR) action. It is written in terms of fermionic variables which

are now worldsheet spinors and spacetime vector and is given by

S = − 1

4πα′

∫
d2σ[∂aX

µ∂aXµ + ψ
µ
γa∂aψ

µ] , (1.2.9)

where Dirac matrices in 1+1 dimension are given by

γ0 =

∣∣∣∣∣∣ 0 −1

+1 0

∣∣∣∣∣∣ = −iσ2 , (1.2.10)

γ1 =

∣∣∣∣∣∣0 1

1 0

∣∣∣∣∣∣ = σ1 . (1.2.11)

The action has worldsheet supersymmetry given by

δXµ = εψµ

δψµ = γa∂aX
µε , (1.2.12)
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When we vary the action in order to get equation of motion, apart from the bosonic

boundary term, we also get a fermionic boundary term (in open string case)

ψ+δψ+ − ψ−δψ−|π0 = 0 . (1.2.13)

This means we have to impose the boundary condition ψ+ = ±ψ−. We can put

ψ+(0, τ) = ψ−(0, τ), but then we are left with the condition

ψµ+(π, τ) = ±ψµ−(π, τ) . (1.2.14)

The condition with a + sign is called Ramond boundary condition and leads to

spacetime fermionic states, and the condition with a –sign is called Neveu Schwarz

(NS) boundary condition, and leads to spacetime bosonic states. Superstring theory

is defined in 10 dimension. One can quantize the theory to have NS and R spectra

for open strings while for closed strings we can independently put these boundary

conditions for the left and right moving states, gives rise to NS NS, R R, NS R and R

NS states. In 10 dimension massless particle states are classified by their behaviour

under SO(8) rotation. According to SO(8) spin, we have further classification of

states NS±, R±. A possible closed string sector thus have many possibilities, like,

(R+, NS-) and so on. However it was shown in [102] that there are several con-

straints which removes out many possibilities. The permissible string sectors can be

classified as five different superstring theories, type I, type IIA, type IIB, E8 × E8

heterotic, SO(32) heterotic. Type II theories has N = 2 supersymmetries, while

the other three has N = 1 supersymmetries. In order to discuss AdS/CFT duality

we will focus on supergravity limit, i.e massless spectra of the superstring theory.

In α′ → 0 limit we obtain theory of massless fields of strings. Superstring theory

lives in ten dimension, include the metric gµν , so that they describe supergravity

theory, basically type IIA and IIB supergravity. For NS-NS sector, field content is

gµν , antisymmetric tensor Bµν and a scalar φ. The effective action for these fields

are obtained by demanding invariance under Weyl symmetry and they matches with
10



known supergravity action.

In the case of type IIA theory RR sector contains a gauge field Aµ with field

strength Fµν = ∂µAν − ∂νAµ, is called F2 in the form language. Also there is

antisymmetric tensor Aµνρ given by field strength Fµ1....µ4 = 4∂[µ1
Aµ2µ3µ4], is called

F4 in the form language. The field strength of the NS NS field, Bµν is Hµνρ =

3∂[µBνρ], called H3 in the form language. The bosonic part of the supergravity

action in string frame, i.e. in terms of the metric appearing in the Polyakov action

for the string, is

SIIA =
1

2κ2
10

∫
d10x

{√
−G

[
e−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H3|2

)]}
+ SIIA,flux

(1.2.15)

and SIIA,flux is the part of the action given by RR form fields in IIA theory and their

coupling to NS NS field B, given by

SIIA,flux =
1

2κ2
10

∫
d10x

{√
−G

[
−1

2
|F2|2 −

1

2
|F̃4|2

]
− 1

2
B2 ∧ F4 ∧ F4

}
,

(1.2.16)

where |Fn|2 = 1
n!Fµ1....µnF

µ1....µn and

F̃4 = dA3 − A1 ∧ F3 . (1.2.17)

For type IIB supergravity, RR sector contain a scalar A0 with field strength Fµ =

∂µA0 called F1 in form language, a two index antisymmetric tensor Aµν with field

strength Fµνρ = 3∂[µFνρ], called F3 in form language, and a 4-index antisymmetric

tensor field A+
µνρσ with modified field strength F̃+µ1....µ5( also called F̃+

5 in form

language), which is self dual

F̃+
µ1...µ5

=
1

5!
ε µ6....µ10
µ1...µ5

F̃+
µ6....µ10

. (1.2.18)
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Since there is the self-dual field strength consequently there is no known fully

covariant form for the type IIB action. However if one imposes the self-duality as a

constraint after varying the action, we have the bosonic supergravity action for type

IIB string is

SIIB =
1

2κ2
10

∫
d10x

{√
−G

[
e−2φ

(
R + 4∂µφ∂

µφ− 1

2
|H3|2

)}]
+ SIIB,flux ,

(1.2.19)

and SIIB,flux is the part of the action given by RR form fields in IIB theory, given by

SIIB,flux =
1

2κ2
10

∫
d10x

{√
−G

[
1

2
|F1|2 −

1

2
|F̃3|2 −

1

2
|F̃5|2

]
− 1

2
A4 ∧H3 ∧ F3

}
,

(1.2.20)

where we have

F̃3 = F3 − Ao ∧H3

F̃5 = F5 −
1

2
A2 ∧H3 +

1

2
B2 ∧ F3 . (1.2.21)

The string theory has another most important object called D brane which is an

essential ingredient of AdS/CFT duality. We will discuss about it in the next sub-

section.

1.2.2 D branes

We have mentioned type II theory have different form fields. In order to carry the

charge of p + 1 form, one needs to introduce extended p dimensional objects. In

string theory, such objects are also the ones on which open string end-points obey-

ing Neumann boundary condition along p + 1 space time direction and Dirichlet

boundary conditions in (10 –p –1) spatial directions, can attach; they are known as

Dirichlet-p branes or in short Dp branes. The Dirichlet boundary conditions mean

that the endpoints of open strings are fixed and the Neumann boundary conditions
12



mean they are free and move at the speed of light. However we can consider these

conditions independently for each coordinate, in particular we can choose p + 1

string coordinates to satisfy Neumann boundary conditions for p spatial dimensions

of Dp brane and time and 10 –p –1 coordinates to satisfy Dirichlet boundary condi-

tions on perpendicular direction to Dp brane. This implies that the endpoints of the

open string are constrained to exist on a p + 1-dimensional wall in spacetime, which

we are referring as D-p-brane. Dai,Leigh and Polchinski proved [103] that this wall

where open string end point lies is dynamical, carry RR charge(as we mentiond ) so

that the form field as we discussed, coupled to this object. It can also fluctuate and

respond to external interactions. A Dp brane has action minimizing world volume

in the same way as string has an action(1.2.3) minimizing the area of its worldsheet

and the coefficient of the action should be the p-brane tension, i.e. energy (mass)

per unit volume, namely

Sp = −Tp
∫
dp+1ξ

√
−det(hab) , (1.2.22)

where hab is the induced metric on worldvolume, given by

hab =
∂Xµ

∂ξa
∂Xν

∂ξb
gµν(X) . (1.2.23)

This is a straightforward generalization of the case of the Nambu Goto string action

(1.2.3), which is expressed in terms of the induced metric on the string worldsheet.

We have seen the action(1.2.22) for a p-brane coupled to a spacetime metric.

Recall NS NS sector massless spectra contains metric gµν , antisymmetric tensorBµν

and dilaton φ. In order to include the effect of complete closed string background in

α′ → 0 limit, D brane action action is given by [101, 102, 117]

Sp = Tp

∫
dp+1ξe−φ

√
−det

(
∂Xµ

∂ξa
∂Xν

∂ξb
(gµν + α′Bµν)

)
. (1.2.24)

.However open string massless modes also lives on D brane gives rise to F abFab
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term. So simplest form of bosonic D brane action is given by Dirac-Born-Infeld

(DBI) action

SDBI = Tp

∫
dp+1ξe−φ

√
−det (hab + α′Bab + 2πα′Fab) . (1.2.25)

Finally we need to consider RR form fields to D brane. It was shown [117] that

coupling of the form fields given by Wess Zumino action

Sp,WZ = µp

∫
p+1

[
exp(α′Bab + 2πα′Fab) ∧

∑
n

A(n)

]
, (1.2.26)

where µp is Dp brane charge and for each given A(n) we keep only the term in

the expansion of the exponential that completes to a p + 1-form, and of course the

exponential is understood formally in terms of wedge product.

Let us consider a situation where there are N parallel D branes. So the respective

open strings can have their endpoints on same D brane or different D branes. Con-

sequently on the endpoints of open strings we can add labels |i〉, with i going from

1 to N, which are called Chan-Paton factors. Then the open strings, with one end in

the N representation of U(N) and the other in the Ñ representation of U(N), can be

considered to be in the adjoint representation [117]. Considering the matrices λAij in

the adjoint of U(N), the open string wave functions can be expressed as

|k;A〉 =

N∑
i,j=1

|k, ij〉λAij . (1.2.27)

Therefore, when there are N parallel D-branes we expect a U(N) gauge theory. So

naturally the action for scalar and U(N) gauge field are now nonabelian. At the

quadratic level the action for scalar and gauge field living on D brane is given by

Sp =

∫
dp+1ξ(−2)Tr

[
−1

2
Da

~φDa~φ− 1

4
FabF

ab + ....

]
. (1.2.28)

In the next subsection we are going to discuss the special case of N parallel D3

branes which is the essential ingredient of AdS/CFT duality.
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1.2.3 Multiple D3 branes and N=4 SYM limit

For discussion of AdS/CFT duality, the configuration of N parallel D3 branes plays

an important role. Since it is known from the consideration of massless mode that

the open string theory on N parallel D3 branes is N = 4 supersymmetric gauge the-

ory, so first we briefly review N = 4 SYM. In 10 dimensions the minimal spinor is

Majorana-Weyl, i.e out of 32 complex components of Dirac spinor, 16 real compo-

nents remains. At on shell we loose half the components, left with 8 real fermionic

degrees of freedom. This matches with 10 − 2 = 8 physical degrees of freedom of

vector field. Therefore the field ofN = 1 super Yang Mills in 10 dimensions are the

vector AM , M = 0, ....9, and the spinor ψπ, π = 1, ...16, satisfying

Γ11ψ = ψ ; ψ = ψTC10 , (1.2.29)

where Γ11 is the product of gamma matrices given by Γ11 = Γ0Γ1Γ2....Γ9. The

action is given by

S10d,N=1SYM =

∫
d10xTr

[
−1

4
FMNFMN −

1

2
λΓMDM .λ

]
(1.2.30)

We consider dimensional reduction of the theory from 10 to 4 dimension, as the

dimension of D3 brane is. First the Γ matrices are being decomposed as

ΓM = (γµ⊗I, γ5⊗γm) , i.e Γµ = γµ⊗I , Γm = γ5⊗γm , Γ11 = γ5⊗γ7 . (1.2.31)

The 10 dimensional Majorana conjugate in 4 dimensional notation is given by

ψM = ψTC4 ⊗ C6 , (1.2.32)

whereCn is the charge conjugation matrix in respective dimension. Then 10-dimensional

Weyl condition restricts the 10-dimensional spinors to decompose into four 4-dimensional

spinors ψΠ = ψα i, i = 1, ...4. The 10 dimensional vector AM decomposes 4-
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dimensional vector Aµ and six scalars φm, m = 1,...6. Finally the 10 dimensional

action reduces to 4 dimensional N = 4 SYM

S4d,N=4SYM = (−2)

∫
d4xTr[−1

4
FµνF

µν − 1

2
ψiγ

µDµψ
i − 1

2
DµφijD

µφij

− gψ
i
[φij , ψ

j ]− g2

4
[φij , φkl][φ

ij , φkl]]

= (−2)

∫
d4xTr[−1

4
FµνF

µν − 1

2
ψiγ

µDµψ
i − 1

2
DµφmD

µφm

− gψ
i
[φn, ψ

j ]γn[ij] −
g2

4
[φm, φn][φm, φn]] , (1.2.33)

where φ[ij] = φmγ
m
[ij] and Dµ = ∂µ + g[Aµ, ]. The N = 4 SYM has SO(6) global

symmetry which is known as R symmetry. The spinor ψi are in spinor representation

of SO(6).

We consider D3 branes in type IIB superstring theory. Clearly there are 6 scalars

and gauge field in the worldvolume together with fermions that fills supersymmetric

multiplet. We have six scalars that have six on-shell degrees of freedom, and one

4-dimensional gauge field with two on-shell degrees of freedom, for a total of eight

bosonic on-shell degrees of freedom. On the other hand, a minimal 4-dimensional

fermion has two on-shell degrees of freedom. This implies for a supersymmetric

theory we need to have four fermions ψI , I = 1, ...4., all fields are in adjoint repre-

sentation of U(N) gauge group (as we saw due to Chan Paton factors). So the total

field content is AAa , φiA, ψIA that precisely matches withN = 4 SYM theory in four

dimension. We can also find explicitly that the D3-brane action is invariant under

four supersymmetries in four dimensions, i.e. 16 supercharges, which corresponds

to half of the total supercharges of type IIB superstring theory. For D3 branes we

must have the supersymmetry conditions

Γ0Γ1....Γ3ε = ε , (1.2.34)

where ε is the supersymmetry parameter. This halves their number of components
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from the 32 of the type IIB theory in ten dimensions. Then we must have that the

quadratic action on N D3-branes is in fact N = 4 SYM.

1.3 Introduction to AdS/CFT correspondence

AdS/CFT correspondence relates type IIB theory on five dimensional Anti de Sitter

space to Super Yang Mills in four dimension, which is a conformal field theory. In

this section we will briefly review the argument that leads to conjecture of such cor-

respondence. A first look into this correspondence shows that the isometry group

of AdS5 is SO(4, 2) which matches with the symmetry group of 4-dimensional con-

formal field theories which arises from the theory of N = 4 SYM living on the

boundary of AdS5. On the otherhand the isometry group of S5 is SO(6) ' SU(4)

which is same as that of R symmetry group of N = 4 SYM.

Before reviewing the argument of the duality in details, let us introduce Anti de Sit-

ter space and conformal group in the following two subsections. Then we will move

to the correspondence.

1.3.1 The Anti De Sitter space

Anti de Sitter space plays an important role in the AdS/CFT correspondence and

therefore we describe Anti de Sitter space in this subsection. The p+2 dimensional

Anti De Sitter (AdSp+2) space is given by the hyperboloid

X2
0 +X2

p+2 −
p+1∑
i=1

X2
i = L2 , (1.3.1)

in the flat p+3 dimensional space. The space is described by the metric

ds2 = −dX2
o − dX2

p+2 +

p+1∑
i=1

dX2
i . (1.3.2)
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In addition to the global parameterization of AdS(1.3.1,1.3.2), there is another set

of coordinates (u, t, ~x, 0 < u, ~x ∈ Rp), defined as

X0 =
1

2u

(
1 + u2(L2 + ~x2 − t2)

)
, Xp+2 = Lut

Xi = Luxi , (i = 1, ..p)

Xp+1 =
1

2u

(
1− u2(L2 − ~x2 + t2)

)
. (1.3.3)

These coordinates cover one half of the hyperboloid given in (1.3.1). Substituting

this in(1.3.2), we obtain another form of AdS metric

ds2 = L2

(
du2

u2
+ u2(−dt2 + d~x2)

)
. (1.3.4)

The isometry group of (d+1)-dimensional AdS space is SO(d, 2).

1.3.2 Conformal Group

The correspondence relates string theory on Anti de Sitter space with conformal

field theory on the boundary. Conformal field theories are the usual field theories

with conformal symmetry, which attributes additional structure to them. The group

associated with conformal symmetry is called conformal group. Conformal group

is the group of transformation of space time which preserves the metric upto an

arbitrary factor

gµν(x)→ Ω2(x)gµν(x) . (1.3.5)

The conformal group of the Minkowski space is generated by two transformations:

1. Scale transformation

xµ → λxµ , (1.3.6)

2.Special conformal transformation .

xµ → xµ + aµx2

! + 2xνaν + a2x2
. (1.3.7)
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We denote generator of these transformation as

Mµν : for Lorentz transformation,

Pµ :for Translation,

D : for Scaling transformation,

Kµ:for Special conformal transformation.

They satisfy conformal algebra

[Mµν , Pρ] = −i(ηµρPν − ηνρPµ); [Mµν , Kρ] = −i(ηµρKν − ηνρKµ);

[Mµν ,Mρσ] = −iηµρMνσ ± (Permutations); [Mµν , D] = 0; [D,Kµ] = iKµ;

[D,Pµ] ,= −iPµ; [Pµ, Kν ] = 2iMµν − 2iηµνD (1.3.8)

with all other commutators vanishing. This algebra is isomorphic to the algebra of

SO(d, 2) and can be put in the standard form of SO(d, 2) algebra with generators Jab

by defining

Jµν = Mµν ; Jµd =
1

2
(Kµ − Pµ); Jµ(d+1) =

1

2
(Kµ + Pµ); J(d+1)d = D . (1.3.9)

1.3.3 AdS CFT correspondence

Here we will review the argument connecting type IIB string theory compactified

on AdS5 × S5 to N = 4 Super Yang Mills theory following [98]. We will start our

description from string theory side. Consider a system of N parallel D3 branes. The

D3 branes are extended along a (3 + 1) dimensional plane in (9 + 1) dimensional

spacetime. String theory in this background posses two types of perturbative exci-

tations, closed string and open strings. Closed strings are excitations of 10 dimen-

sional space whereas open strings ends on D brane and describe the excitations of

D brane. If we consider the system at energy lower than string scale 1/ls, then only

massless states will be excited. The field content of closed strings massless states
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is gravity supermultiplet in ten dimensions. The low energy effective Lagrangian

corresponds to this gravity supermultiplet is type IIB supergravity. The open string

massless states gives an N = 4 vector supermultiplet in four dimensional world

volume of D3 brane where the low energy effective Lagrangian is that of N = 4

U(N) Super Yang Mills theory [101, 102], [104]. The complete effective action of

the massless modes consists of three parts

1. Bulk action: This represents the formal action of ten dimensional supergravity

and its correction with higher derivative terms

2. Brane action : This is the brane action on 3+1 dimensional D3 brane world

volume and describes N = 4 Super Yang Mills theory with higher derivative cor-

rection

3. Interaction Lagrangian: The action represents the interaction between the

brane modes and bulk modes

Let us observe the complete theory in the limit, string length scale ls → 0(α′ →

0), while all the other dimensionless parameters namely string coupling constant gs

and the number of D3 branes are fixed. In this limit we also have gravitational cou-

pling constant κ ∼ gsα
′2 → 0. So the interaction Lagrangian relating the bulk and

brane vanishes. Also all the higher derivative terms in the brane action vanish (since

these terms are getting α′ correction), leaving just N = 4 U(N) gauge theory in 3+1

dimensional brane worldvolume, which is known to be a conformal field theory, as

we mentioned. Since the interaction Lagrangian vanishes, the supergravity theory in

the bulk becomes free. We see that in this low energy limit we have two decoupled

systems : free gravity in the bulk and the four dimensional gauge theory.

Here we study the same system from a different point of view. We have men-

tioned in the section 1.2.2 that the D branes are massive charged object which act as

a source of various supergravity fields. D3 brane solution of supergravity is given

by [113]
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ds2 = g−
1
2 (−dt2 +

3∑
i=1

dx2
i ) + g

1
2 (dr2 + r2dS2

5),

F5 = (1 + ∗)dtdg−1
3∏
i=1

dxi

g = 1 +
L4

r4
, L4 = 4πgsα

′2N , (1.3.10)

where dS2
5 is the metric over five dimensional sphere. In this geometry, the energy

Ep of an object measured by an observer at constant position r, and the energy E

measured by an observer at r →∞ are related by the redshift factor

E = g−
1
4Ep . (1.3.11)

The above relation implies that the same object brought closer and closer to r = 0

would appear to have lower and lower energy for the observer sitting at r →∞. Let

us consider the theory at low energy limit in the background described by (1.3.10).

Standing at infinity an observer’s observation is directed on the existence of two

types of low energy excitation:

1. Massless particle propagating in the bulk with wavelength very large ,

2.One can have the kind of excitation, that one can bring closer and closer to r = 0.

This two types of excitations decouple from each other in the low energy limit.

The bulk massless particles get decoupled from the near horizon region (around

r = 0) because the low energy absorption cross section goes like σ = ω3L8 where ω

denotes energy. Similarly, the excitations that live very close to r = 0 find it harder

and harder to climb the gravitational potential and escape to the asymptotic region.

So the low energy theory described in the above geometry (1.3.10) consists of two

decoupled parts, one is free bulk supergravity and the second is the near horizon

region of the geometry. In the near horizon region, r << L, we can approximate
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g = 1 + L4

r4 ∼
L4

r4 , and the near horizon geometry is given by the metric

ds2 =
r2

L2
(−dt2 +

3∑
i=1

dx2
i ) + L2dr

2

r2
+ L2dΩ2

5 (1.3.12)

From (1.3.4) we can identify that this is the geometry ofAdS5×S5. We see that both

from the viewpoint of a field theory of open strings living on the brane, and from the

viewpoint of the supergravity description of closed string massless spectra, we have

two decoupled theories in the low-energy limit. In both cases we have one of the

decoupled systems is supergravity in flat space. So, it is natural to identify the sec-

ond system which appears in both descriptions. Practically this leads to guess that

N = 4 Super Yang Mills theory in 3+1 dimension is in one to one correspondence

with type IIB superstring theory on AdS5 × S5 [1] .

We will now make the conjecture more precise relating the field theory on the

boundary of the AdS space and gravity in the bulk. Let us consider φ be the scalar

field on AdSd+1, coupled to gravity. Let φo be the boundary value of φ on the

boundary of AdSd+1. We will also assume that φo should be considered to couple to

a conformal field O, on the boundary through the coupling
∫
Sd
φoO. This assump-

tion naturally appears in the AdS/CFT correspondence in the interactions of fields

with branes. We would like to compute correlation function 〈O(x1)O(x2)....O(xn)〉

for distinct points x1, x2, .......xn on the boundary of AdSd+1. Let ZS(φo) be the

gravity partition function on AdSd+1 computed with the boundary condition that φ

approaches a given function φo at infinity. In the approximation of classical gravity,

one computes ZS(φ0) by simply extending φ over the boundary of AdSd+1 with the

given boundary value where φ is the solution of the classical gravity equations, and

then writing

ZS(φo) = exp(−Is(φ)) , (1.3.13)

where Is is the classical gravity action. On the otherhand one would like to define the

generating functional 〈exp(
∫
Sd
φoO)〉CFT (the expectation value of the exponential

described here in the conformal field theory on the boundary of AdSd+1 ). Our
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ansatz for the precise relation of conformal field theory on the boundary to AdS

space is that

〈exp(

∫
Sd

φoO)〉CFT = ZS(φo) (1.3.14)

Hence one can compute n-point correlation function

〈O(x1)O(x2)....O(xn)〉 =
∂n

∂φo(x1)......∂φo(xn)
ZS(φo) . (1.3.15)

1.3.4 Gravity theory for non-zero temperature

Since we will be applying AdS/CFT correspondence in the case of strongly corre-

lated systems at finite temperature it is relevant to explain briefly how the tempera-

ture appears on the gravity side. In order to understand the concept of temperature in

the theory of gravity we need to consider a general version of AdS/CFT correspon-

dence. The version of the correspondence that we will use asserts that conformal

field theory on an n-manifold M is to be studied by summing over contributions of

Einstein manifolds B of dimension n + 1. The correspondence is saying the field

theory on n-manifold must have a gravity dual on B. On the field theory side one

can achieve finite temperature by putting the theory on Mn = S1
β × An−1 where

Euclidean time circle S1
β has period β = 1/T where T is identified with temperature

and An is the spatial manifold. The dual spacetime should have a natural thermal

interpretation. It is a well-known fact that if we go back to the seminal works of

Bekenstein and Hawking [105, 106], we can see from there that black hole space-

times with non-degenerate event horizons exhibit features associated with thermal

physics. This leads one to expect that black hole spacetimes can play a role in de-

scribing the dual of a finite temperature field theory. So we understand that in order

to have a finite temperature condensed matter theory on M, we need to consider a

black hole in B on the gravity side.

To summarise, in this chapter we have reviewed the essential conjecture of

AdS/CFT correspondence. In the following chapters we will be considering ap-
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plication of this correspondence to explore various aspects of strongly correlated

systems in condensed matter. In particular we will be concerned with undestanding

different behaviours and properties of the superconductors using holographic tech-

niques. Since those are finite temperature systems, on the gravity side we will be

considering black hole solutions as the background.

In the next chapter we will briefly review some of the relevant aspects of holo-

graphic superconductors which will be necessary for describing the works in the

following chapters.

,
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Chapter 2

Introduction to holographic

superconductor

In this section we will review holographic superconductor following [6, 11, 16, 20,

25, 26, 74, 76]. We have mentioned, Gauge/gravity duality has been proved to be

an efficient tool to compute various aspects of strongly coupled systems in terms

of weakly coupled gravity theory. Here we will discuss how this new tool comes

into play for understanding high temperature superconductor. We will begin with a

brief description of superconductor in condensed matter theory. Such systems can

be realized on a boundary theory by using appropriate gravity model in the bulk.

We review the simplest gravity model to realize the superconductor using AdS/CFT

correspondence. We also describe various types of holographic superconductors

namely s wave, p wave. d wave etc. within this set up.

Due to the fact that radial variable corresponds to energy scale in a gauge/gravity

duality makes the latter natural arena for addressing renormalization group flow. We

will mention about renormalization group flow in QFT and briefly describe how it

is realized in gravity theory using AdS/CFT correspondence, which is called holo-

graphic RG flow. In order to demonstrate this, we will also consider one particular

gravity model [51] and describe the realization of holographic RG flow.

Another interesting properties of superconductors are their transport properties.
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Some of its phases exhibit anomalous behaviour so far transport properties are con-

cerned. Towards the end of this chapter we will briefly review the essential tech-

niques for studying direct conductivity of holographic superconductors.

2.1 Superconductivity

It was found that many materials, in particular metals, shows zero electrical resis-

tivity below a certain critical temperature Tc and was termed as superconductors.

Eventually it turns out their magnetic properties are quite different in the sense that

they show perfect diamagnetism by expelling magnetic fields, a feature known as

Meissner effect, which does not follow from zero resistivity. A phenomenological

description was given by London et. al. showing decay of magnetic field inside a

superconductor.

Later, Landau and Ginzberg proposed an effective theory and described super-

conductivity in terms of a second order phase transition. They introduced an order

parameter which is a complex scalar field φ [108] related to density of supercon-

ducting electrons n through n = |φ(x)|2. The expression of free energy in terms of

φ can be written as [6]

F = a(T − Tc)|φ|2 +
b

2
|φ|4 + ..., (2.1.1)

where a and b are positive constants and the above series is continued to gradient

and higher powers of φ. Because of the structure of the free energy it gives rise to

spontaneous symmetry breaking as for T > Tc the minimum of the free energy lies

at φ = 0 while for T < Tc, the minimum is at nonzero value of φ, which is given by

φ∗,

|φ∗|2 =
a

b
(Tc − T ) . (2.1.2)

A more complete theory of superconductivity was given by Bardeen, Cooper

and Schrieffer in 1957 and is known as BCS theory [109]. They showed that in-
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teractions of electrons with phonons can cause pairs of elections which are having

opposite spins to bind and form a charged boson called a Cooper pair. Below a criti-

cal temperature Tc, there is a second order phase transition and these bosons(cooper

pair) condense. Consequently DC conductivity turns out to be infinite to form a

superconductor.

Subsequently various other materials were discovered to have superconductiv-

ity with higher crtical temperatures. They are cuprates (showing superconductivity

along copper oxide planes), mercury-barium-copper oxide compounds. Another

class of superconductors were discovered, which are based on irons instead of cop-

pers. It is believed that for these high Tc superconductors, pair formation of electrons

are responsible for superconductivity. However, the essential mechanism turns out

to be due to strong coupling and differs from that of BCS. Within the regime of con-

densed matter not many tools are available to study such strongly coupled system.

Fortunately, Gauge/Gravity provides new machinery to analyse strongly coupled

field theories. In particular, this can be employed to explore transport properties

of strongly coupled systems. As discussed below, we will see simple gravitational

theories can reproduce superconductors and capture various features of them.

2.2 Gravitational dual of superconductor

As mentioned earlier, gravitational duals of finite temperature, finite density con-

densed matter systems are charged black holes. Black holes have temperature re-

lated to its surface gravity. In order to make use of the correspondence we look for

black holes with asymptotically AdS spacetime. Asymptotically AdS black holes

have positive specific heat like nongravitational systems.

The superconducting phases are usually characterised by condensate and this is

realized on gravity side through condensation of some fields coupled to gravity. A

nonzero condensate corresponds to a static nonzero field outside a black hole called

black hole hair. Usually black holes do not admit hair though there are exceptions.
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In superconducting materials, superconductivity arises below a critical temperature.

In the dual gravitational model, this phenomena is represented through the fact that

black holes does not admit hair at high temperatures. However, as temperature is

lowered it shows instability towards formation of hair and thus gives to condensates.

Gubser [10] and others showed that a charged black hole which is surrounded by a

charged scalar field around it bears the desired property [68]. We will review the

simplest holographic superconductor following [6]. The necessary action is given

by gravity theory coupled to U(1) gauge field and complex scalar field,

S =

∫
d4x
√
−g[R +

6

L2
− 1

4
FµνF

µν − |∇Ψ|2 − e2B2|Ψ|2

+ ieBµ(ψ∇µψ∗ − ψ∗∇µψ)−m2|Ψ|2] . (2.2.1)

Here charged scalar field Ψ has mass m and charge e. Fµν = ∂µBν − ∂νBµ where

Bµ is the U(1) gauge field. In this perspective the theory has been considered in

the probe limit in which back reaction of the matter field has been ignored on the

geometry. Consequently we consider a planar Schwarzschild anti-de Sitter black

hole solution as the background geometry in four dimension. The metric and the

temperature are as follows:

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2) , (2.2.2)

g(r) =
r2

L2
(1− r3

o

r3
) , (2.2.3)

where the horizon size ro determines Hawking temperature of the black hole

T =
3ro

4πL2
. (2.2.4)

In the probe approximation considering the metric to be given by (2.2.2,2.2.3) we

solve the Maxwell and scalar equations in this background. Assuming spherically
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symmetric time independent ansatz for the scalar and the gauge fields,

Ψ = ψ(r) ; Bt = φ(r) , (2.2.5)

with Bx = Br = By = 0 we substitute these in equations of motion. From

Maxwell”s equation it turns out that the phase of ψ must be constant and with-

out loss of generality we take ψ to be real. With this choice, the equations for the

scalar field and Maxwell’s equation lead to following set of coupled equations

ψ′′ +

(
g′

g
+

2

r

)
ψ′ +

φ2

g2
ψ − m2

g
ψ = 0

φ′′ +
2

r
φ′ − 2ψ2

g
φ = 0 . (2.2.6)

As one may observe, φ
2

g2ψ is coming in the opposite sign ofm2 term in (2.2.6), which

provides an effective negative mass-square term to the scalar field ψ causing scalar

hair to form at low temperature. We will consider the mass-square m2 = − 2
L2 ,

which is above BF bound, where the BF bound m2
BF in four dimension is given by

m2
BF = − 9

4L2 [110] .

Solving the set of differential equations given in (2.2.6) require boundary condi-

tions. For the boundary at horizon, we consider the gauge field Bt = φ(r) vanishes

at horizon because of the following argument [6]. In order to describe thermal prop-

erties of the black hole, we should use the Euclidean solution. Note that the Wilson

loop of U(1) gauge field Bt around the Euclidean time circle is gauge invariant and

finite. If Bt does not vanish at horizon, the Wilson loop remains nonzero around a

vanishing circle which means that the Maxwell field is singular. So we see that U(1)

gauge field must vanish at the horizon in the case of a static black hole.

For the asymptotic boundary at infinity, we expect

Ψ =
Ψ(1)

r
+

Ψ(2)

r2
+ ............

φ = µ− ρ

r
+ ... . (2.2.7)

29



Here we will proceed with the boundary condition Ψ(1) = 0.

Once we impose the above asymptotic boundary condition, we obtain a one pa-

rameter family of solutions, which one can find numerically [11]. We can see from

(2.2.6) that φ is a monotonic function. It starts with the value zero at horizon and

at any local maximum we have φ′′ = φ. So it can neither have a positive maximum

nor a negative minimum. If it starts with increasing mode away from the horizon, it

continues to increase and it asymptotically approaches the constant value µ as given

in (2.2.7). We also note that for ψ(r), there is discrete infinite family of solutions.

These solutions may not need to be monotonic.

Since we are considering the gravity theory in four dimension the dual theory

is a 2+1 dimensional conformal field theory (CFT) at the temperature T (2.2.4).

Properties of the dual field theory can be read off from the asymptotic behaviour of

the solution of the bulk equations of motion. The asymptotic behaviour (2.2.7 ) of φ

gives the chemical potential µ and charge density ρ of the field theory.

The dual theory must have an operator which is charged under the U(1) and dual

to ψ. As the scalar mass term close to BF bound has been chosen it has been as-

summed on the existence of two possible operators depending on how we quantize

the theory in the bulk [111] . If we define the modes with the standard boundary

condition (faster falloff) for ψ in the bulk(i.e nonzero Ψ(1)), the dual operator has

dimension two. In this context, it is assumed that there exist a nonzero Ψ(1) which

indicates that there is a source for this operator in the CFT and the nonzero expecta-

tion value of the dual operator O2 is indicated by nonzero Ψ(2)

O2 = Ψ(2) . (2.2.8)

Since here we want the condensate to turn on without being sourced, we set Ψ(1) =

0. It is to be mentioned that there is a possibility of existence of alternative quanti-

zation of ψ in the bulk. In that case interchange of role of Ψ(1) and Ψ(2) can be done.

It is now established that ψ is now considered to be dual to a dimension one oper-
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ator. This condition can be studied considering the boundary condition remaining

Ψ(2) = 0. In that case the consideration will be made for the first case only.

In order to check superconductivity we need to know how the condensate O2

in (2.2.8), behave with temperature T in (2.2.4). We also expect there exist a crit-

ical temperature TC above which there will not be any condensate and this critical

temperature will coincide with superconductor transition temperature. Before that

discussion we need to present an important scaling symmetry. In any conformal

field theory on Rn one can change the temperature by a simple rescaling. In the

bulk this is given by

r → ar ; (t, x, y)→ (t, x, y)/a ; ro → aro . (2.2.9)

This leaves the form of the black hole metric (2.2.2) invariant with g → a2g. Since

the temperature is given by g′(ro)
4π , so change of scaling factor a, changes the tem-

perature. One can check that Maxwell field equations are invariant with rescaling

(2.2.9) with φ → aφ and ψ → ψ, i.e ψ is unchanged. In this perspective we are

interested to see that how the dimensionless measure of the condensate changes as

a function of a dimensionless measure of the temperature rather than discussing this

trivial dependence on temperature which simply reflects the scaling dimension. It

is convenient here that one can use the chemical potential µ, to fix the scale and
√
O2/µ is studied as a function of T/µ. The curve we obtain here in Figure (2.1)

is qualitatively similar to the one which is obtained from BCS theory, and observed

in many materials, where we see that the condensate rises quickly as the system is

cooled below the critical temperature and goes to a constant as T → 0. A square

root behaviour has been observed near Tc with O2 = 100T
3
2
c (Tc − T )

1
2 . Also this is

the expected behaviour, as predicted by Landau-Ginzburg theory. Nonzero conden-

sate implies that the black hole develops a scalar hair. If the free energy of this hairy

configuration has been computed and compared to the black hole with same charge

and chemical potential but no scalar hair, it is visualized that free energy has been
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Figure 2.1: The condensate as a function of temperature

found to be always low for hairy configuration and becomes equal as T → Tc [11].

The second order phase transition has been shown by the difference of free energies

scales as (Tc − T )2

2.3 A.C. Conductivity

Here we give formalism for computing a.c. conductivity as a function of frequency.

Let us consider a scenario, where there is an alternating vector potential of frequency

ω in x direction, in the context of above model ( 2.2.1). The equation of motion of

Bx is given by

B′′x +
g′

g
B′x +

(
ω2

g2
− 2ψ2

g

)
Bx = 0 . (2.3.1)

We are going to solve the above with ingoing boundary condition at horizon.

Asymptotically

Bx = B
(0)
x +

B
(1)
x

r
+ ... . (2.3.2)

The gauge/gravity duality says the limit of the electric field in the bulk is the electric

field on the boundary,

Ex = −Ḃ(0)
x , (2.3.3)

32



and the expectation value of the induced current is

Jx = B
(1)
x . (2.3.4)

From Ohm’s law we get

σ(ω) =
Jx
Ex

=
Jx

Ḃ
(0)
x

= − iJx

ωB
(0)
x

= − iB
(1)
x

ωB
(0)
x

. (2.3.5)

The real part of the conductivity is shown in Figure (2.2). Above the critical tem-

perature the conductivity is constant. As we start to decrease the temperature a gap

opens up at lower frequency region. There is also a delta function at the value ω = 0

for all T < Tc. One can see it from the Drude model of a conductor. Suppose

we have charge carriers with mass m, charge e, and number density n in a normal

conductor. They satisfy

m
dv

dt
= eE −mv

τ
, (2.3.6)

where in the above the last term is a damping term and τ is the relaxation time

due to scattering. The current J = env. So if E(t) = Ee−iωt the conductivity is

σ(ω) =
kτ

1− iωτ
, (2.3.7)

where k = ne2

m . So

Re[σ] =
kτ

1 + ω2τ2
; Im[σ] =

kωτ2

1 + ω2τ2
. (2.3.8)

A more general derivation follows from the Kramers-Kronig relations. The rela-

tion actually relate the real and imaginary parts of any causal quantity, such as the

conductivity, when expressed in frequency space. One of such relation is

Im[σ[ω]] =
−1

π
P
∫ ∞
−∞

Re[σ[ω′]]dω′

ω − ω′
. (2.3.9)
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Figure 2.2: When the temperature is lowered below the level of critical temperature
a gap is formed in the real part of the conductivity. The curves describe successively
lower temperatures. There is also a delta function at ω = 0. Figure is for the dimension
two condensate

It can be visualized from the above formula that if the imaginary part of the

conductivity has pole the real part of the contains a delta function. One can find

there is indeed a pole in Im[σ] at ω = 0 for all T < Tc.

2.4 s wave, p wave and d wave holographic supercon-

ductor

We have discussed in the earlier section that U(1) theory with charged scalar in the

background of charged black hole solution develops instability so that scalar hair

forms at low temperature. Here superconductivity is achieved by condensation of

a scalar field. This is the example of s wave superconductor, which was first con-

structed in [11]. Similar studies about vortex-like solutions [13, 14] and anisotropic

Abelian model [15] also appeared.

p wave superconductor are those materials, where superconductivity arises due

to condensation of a vector field. [16–19]. Here we briefly describe an example [16]

of holographic p wave superconductor. The gravity model is described by

S =
1

2κ2

∫
L , (2.4.1)
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with

L = R +
6

L2
− 1

4
(F aµν)2 , (2.4.2)

where

F aµν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν . (2.4.3)

Here g is SU(2) gauge field coupling constant. In an attempt to see symmetry

breaking solution first we choose the metric ansatz

ds2 = e2a(−hdt2 + dx2
1 + dx2

2) +
dr2

e2ah
,

A = Φτ3dt+ w(τ1dx1 + τ2dx2) , (2.4.4)

where τa = σa

2i where σa is Pauli matrices. Also a, h,Φ, ω are function of r.

The boundary condition is obtained from the fact that electrostatic potential Φ must

have to vanish at the horizon in order to A to be well defined at horizon. Here

the condensate w(τ1dx1 + τ2dx2) breaks the U(1) rotation symmetry in x1 − x2

plane and also breaks U(1) gauge symmetry generated by τ3, however it preserves a

combination of the two.

System of equations has a two-parameter family of black hole solutions with a

non-vanishing, condensate giving vector hair.

In order to generate the d-wave condensate in the boundary theory, we have

to have a massive, charged spin two field, condense in an asymptotically AdSd+1

geometry. Here by means of a massive spin 2 field in d+1 spacetime dimension

we imply that a field that transforms locally in (d + 2)(d − 1)/2 dimensional irre-

ducible representation of the little group SO(d) of the Lorentz group SO(1,d). The

Lagrangian for such field is given by [20]

L =
1

4

[
−∂ρφµν∂ρφµν + 2φµφ

µ − 2φµ∂
µφ+ ∂µφ∂

µφ−m2(φµνφµν − φ2)
]
,

(2.4.5)
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where we have φρ = ∂µφµρ and φ = φρρ.

To look for a thermal state on the boundary theory in which the spin two field

presumably condenses, we need to solve the equations of motion in a black hole

background. Here we choose the black hole background to be

ds2 =
L2

z2

(
−g(z)dt2 + d~x2

d−1 +
dz2

g(z)

)
g(z) = 1−

(
z

zh

)2

. (2.4.6)

The black hole horizon is located at z = zh , while the conformal boundary of

the spacetime is located at z = 0. It was shown in [20], if one keeps the chemical

potential µ as constant, there exist a critical temperature below which spin two field

condenses.

2.5 Helical superconductors

So far we have discussed about superconducting systems which are homogeneous.

However instabilities in homogeneous systems may lead to inhomogeneous config-

uration such as striped phases consisting of charge density waves or spin density

waves, among others. Spatially modulated phases appear frequently in condensed

matter systems and as mentioned in the introduction, one mechanism for obtain-

ing such instabilities is to have a constant electric field in Maxwell Chern Simons

term. Since part of our work involves such spatially modulated system, namely, one

with a helical symmetry we review the essential stuff about helical system follow-

ing [25, 26, 76].

Helical phases, which does not have full translational symmetry but have only a

helical symmetry can be obtained by considering appropriate black hole solution in

gravity theory. Helical superconductors in the context of holography was introduced

in [25], [26], [76]. This was first obtained in a probe approximation by ignoring the

back reaction of the matter on the geometry. They begin with aD = 5 action with an
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SU(2)× U(1) gauge theory coupled with gravity along with a Chern-Simons term.

This system admits and electrically charged AdS black brane solution. Considering

linearised perturbations around such black brane in a probe approximation they have

shown that there are instabilities which gives rise to condensation of vector fields

leading to a p-wave superconducting phase with helical symmetry. For specific

values of parameters, this analysis may also be pertinent for Roman’s N = 4 gauged

supergravity.

Subsequently, a full fledged helical black hole solution has appeared. Moreover,

it was also shown that RN-AdS blck hole may decay into such configuration. The

action has been chosen to be

S =

∫
d5x
√
−g
[
R + 12− 1

4
FµνF

µν

]
− γ

6

∫
F ∧ F ∧ A . (2.5.1)

Corresponding equations of motion are given by

Rµν = −4gµν +
1

2

(
FµρF

ρ
ν −

1

6
F 2gµν

)
d ∗ F +

γ

2
F ∧ F = 0 . (2.5.2)

It turns out that this system admits RN-AdS black hole as well as a helical black

hole. The helical symmetry can be given as follows. For D = 5, considering

x1, x2, x3 describing the transverse directions, the killing vectors associated with

the black hole are given by ∂x2 , ∂x3 and ∂x1 − p(x2∂x3 − x3∂x2), where p is a con-

stant (known as the pitch of the helix). They generate a helical motion consisting of

a translation in the x1 direction combined with a simultaneous rotation in (x2, x3)

plane.

For the sake of completeness, we briefly mention the helical black hole solution

following from the above action (2.5.1). The ansatz was considered in [76]

ds2 = −gf2dt2 +
dr2

g
+ h2ω2

1 + r2e2α(ω2 +Qdt)2 + r2e−2αω2
3

A = adt+ bω2 , (2.5.3)
37



where f , g, h, , Q, a and b are functions of the radial coordinate r only. By analysing

the equations of motion we can construct the following asymptotic expansion as

g = r2(1− M

r4
+ .....) ,

f = fo(1−
ch
r2

+ .....) ,

h = r(1 +
ch
r4

+ ....) ,

α =
cα
r4

+ .... ,

Q = fo(
CQ
r4

+ ....) ,

a = fo(µ+
q

r2
+ ....) ,

b = (
cb
r2

+ ...) . (2.5.4)

The near horizon (r = r+) expansion is given by

g = g+(r − r+) + ..... ,

f = f+ + .... ,

h = h+ + .... ,

α = α+ + ..... ,

Q = Q+(r − r+) + ... ,

a = a+(r − r+) + ... ,

b = b+ + ...... . (2.5.5)

For γ > γc where γc = 1.1584 the equations of motion were solved numerically for

ansatz (2.5.3) with the asymptotic boundary given by (2.5.4) and the horizon given

by (2.5.5) giving rise to a black hole solution with helical symmetry.

It turns out that the stable phase of the system at high temperature is RN-AdS

black hole. As the temperature decreases at some critical temperature the preferred

phase corresponds to the helical black hole. An explicit thermodynamic analysis of
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the free energies of these two configuration confirms such transition. This helical

black hole has been found to be dual to a helical current phase of the boundary

system.

This helical black hole, or rather its near horizon geometry plays interesting role

in another related context. In [74], authors consider a model described by action

∫
d5x
√
−g
(
R + 12− 1

4
FabF

ab − 1

4
WabW

ab − m2

2
BaB

a

)
− κ

2

∫
B ∧ F ∧W ,

(2.5.6)

where F = dA, W = dB are field strength. One can obtain an AdS2 × R3 along

with a set of specific deformations as the solution of this system. The deformation

will ensure that the solution is asymptotically AdS. This solution, as has been shown

in [74] corresponds to a metallic phase.

However, as explained in [74] stability of this phase depends on the coefficients

and exponents chosen for the deformation. For certain range this is stable, while

for other ranges it may trigger instability. From the relations between the exponents

of the deformations and the weights of the dual conformal operators it appears that

the instabilities corresponds to relevant perturbations, which may lead the system to

some other stable configuration. The zero temperature infrared limit of the helical

black hole has been shown to be a possible stable configuration. It has also been

found that it corresponds to an insulating phase. Thus such flow under relevant

perturbation may be thought of as a transition from metallic to insulating phase.

2.6 Holographic renormalization group

We have seen in the previous section, there are two different configurations, which

are connected through relevant perturbations and gives rise to metal-insulator tran-

sition. This provides a set up for the application of renormalisation group. Renor-

malization group flow in quantum field theory implies flow of the parameters of the

theory with energy scale. According to AdS CFT correspondence, coupling con-

stants etc. maps to spacetime fields and the energy scale maps to radial distance of
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AdS space. From the viewpoint of gravity RG flow implies the flow of the spacetime

fields along with radial distance of AdS space. In field theory the stable systems are

described by zeros of β functions. β functions can be obtained from an equation

involves the change of various parameters with respect to energy scale, known as

Callan Symanzik equation. In the dual gravity theory one can obtain a similar equa-

tion from the quantum effective action. Like field theory case, one can also find the

β function. We are interested to obtain the fixed point with simultaneous zero of all

the β functions which describe the theory with certain vacuum field configuration

and stable spacetime geometry.

Since in our work we have used application of holographic RG flow, we will re-

view it with a model following [51] using Hamilton Jacobi formalism. In Hamilton

Jacobi formalism, one construct the Hamiltonian with the radial direction replacing

the time direction, i.e canonically conjugate momentum are defined accordingly. In

a generally diffeomorphism invariant theory Hamiltonian is identically zero. Thus

the hamiltonian gives sum over constraints. From these constraints only we will

develop gravitational Callan Symanzik equation, which is the equation for gravita-

tional quantum effective action and involves β functions.

We define our theory on a manifold Md+1, which has boundary Σd defined at

constant r. Provided the radial coordinate r to the boundary is sufficiently large, Σd

is diffeomorphic to the boundary ∂M at infinity. On such space, we start with the

action in d+1 dimensional spacetime

S =

∫
Md+1

dd+1x
√
γ

{
V (φ)−Rd+1 +

1

2
LIJ(φ)γµν∇µφI∇νφJ +

1

4
J(φ)F aµνF

aµν

}
− 2

∫
Σd

ddx
√
gK . (2.6.1)

In order to keep this example general enough we have considered a system consist-

ing of gravity, scalar field and vector fields. We have mentioned that the flow of

the parameters along energy scale in the boundary theory corresponds to flow of the

spacetime fields along radial direction in the bulk theory. So in order to describe
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the bulk dynamics in Hamiltonian language we need to decompose bulk variables

in the component along radial direction and perpendicular to radial direction, since

the real time is replaced by radial direction in this description. We can write the d+1

dimensional metric, under ADM decomposition using Lapse and shift function as,

ds2 = (N2 +gµν(x, r)NµNν)dr2 +gµν(x, r)dr(Nµdxν+Nνdxµ)+gµν(x, r)dxµdxν ,

(2.6.2)

where gµν is the induced metric on d dimensional hypersurface Σd := {X ∈Md+1|r =

constant}We wrote γ = detγµν , g = detgµν

Using ADM decomposition (2.6.2), on each slice Σ (at constant r), we define

extrinsic curvature as

Kµν =
1

2N
(∂rgµν −∇µNν −∇νNµ) . (2.6.3)

The covariant derivative are defined as

∇µφ
I = ∇µφI − iAaµ(T aφ)I . (2.6.4)

Here∇µ is the covariant derivative associated with Levi-Civita connection Γµνρ, con-

structed from γµν . T a is the generator of the gauge group G. Since we want to im-

plement φ as real coupling functions so we restrict the symmetry group G to a group

which has real representation. Working in Hamiltonian formalism with r considered

as time direction the action can be rewritten in terms of decomposition (2.6.2)

S =

∫
ddxdr

√
g{πµν∂rgµν + πI∂rφ

I + πµa∂rA
a
µ}

+ N [
1

d− 1
(πµµ)2 − π2

µν −
1

2
LIJ(φ)πIπJ − 1

2J(φ)
hµνπaµπ

a
ν

+ V (φ)−R(d) +
1

2
LIJ(φ)hµν∇µφI∇νφJ +

1

4
J(φ)F aµνFaµν ]

+ Nµ[2∇νπµν − πI∇µφI − F aµνπaν ]

+ Aar [∇abνπ
bν − i{T aφ}IπI ]} . (2.6.5)

41



In Hamiltonian formalism, since the time is replaced by radial direction, so the

canonically conjugate momenta to a field is defined as derivative of Lagrangian w.r.t

the radial derivative of the field. Here canonical momentum conjugate to gµν , φI ,

Aaµ, respectively computed to be

πµν =
∂Ld+1

∂(∂rgµν)
= Kµν − gµνK ,

πI =
∂Ld+1

∂(∂rφI)
=

1

N
LIJ(φ)(∇rφJ −Nµ∇µφj) ,

πaµ =
∂Ld+1

∂(∂rAaµ)
=

1

N3
J(φ)[N2gµνF arν −Nν(N2gρµ +NρNµ)F aνρ] .(2.6.6)

Since N,Nµ, Ar are auxiliary field in (2.6.5), their equation of motion gives first

class constraint

H =
1
√
g

δS

δN
=

1

d− 1
(πµµ)2 − π2

µν −
1

2
LIJ(φ)πIπJ −

1

2J(φ)
gµνπaµπ

a
ν

+ V (φ)−Rd +
1

2
LIJ(φ)gµν∇µφI∇νφJ +

1

4
J(φ)F aµνF

aµν = 0 ,

Pµ =
1
√
g

δS

δNµ
= 2∇νπµν − πI∇µφI − F aµνπaν = 0 ,

Ga =
1
√
g

δS

δAar
= ∇abµπ

bµ − i(T aφ)IπI = 0 . (2.6.7)

In the above, first two are Hamiltonian and momentum constraint respectively

while third one is the Gauss’s law constraint due to Gauge symmetry. Alternatively,

from (2.6.5) we can write

H =

∫
ddx
√
g
[
{πµν∂rgµν + πI∂rφ

I + πµa∂rA
a
µ} − L

]
=

∫
ddx [NH +NµPµ + AarG

a] . (2.6.8)

So from (2.6.7) we see that the Hamiltonian H is expressed as sum over constraints.

From this constraint equations we are going to develop gravitational Callan Symanzik

equation. Let us say we find the solution of equation of motion with the above con-
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straints (2.6.7) under a Dirichlet boundary condition at r = ro which is given by

g(x, r = ro) = gµν(x) ; Aµ(x, r = ro) = Aµ(x) ; φ
I
(x, r = ro) = φI(x) . (2.6.9)

Here the bulk fields with a bar means on-shell. Substituting the classical solution to

the action, from (2.6.5) it follows that on-shell action as a functional of the boundary

values

S[gµν(x), φI(x), Aµ(x); ro] =

∫
ddx

∫ ∞
ro

√
g
{
πµν∂rgµν + πI∂rφ

I
+ πµa∂rA

a
µ

}
.

(2.6.10)

Following the standard procedure in the Hamilton-Jacobi formalism, it is checked

that the variation of the on-shell action(2.6.10) under the boundary values at the lo-

cation of Σd is given by

δS[gµν(x), φI(x), Aµ(x); ro] =

∫
ddx
√
g{πµν(x, ro)δgµν(x) + πI(x, ro)δφ

I(x)

+ πµa(x, ro)δA
a
µ(x)} . (2.6.11)

We then obtain the canonically conjugate momenta for every field as the functional

derivative of the on shell action w.r.t the field

πµν(x, ro) = − 1
√
g

δS

δgµν(x)
; πI(x, ro) = − 1

√
g

δS

δφI(x)
; πaµ(x, ro) = − 1

√
g

δS

δAµa(x)
;

δS

δro
= 0 . (2.6.12)

We now focus on Hamiltonian constraint (first equation of (2.6.7)), which reflects

the invariance under radial diffeomorphism, i.e invariance of the action under local

shift r → r + δr(x). In this constraint, we insert the expression of canonically

conjugate momentum with the expressions in (2.6.12). Hamiltonian constraint then
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can be expressed in the following form

H = {S, S} − Ld = 0

⇒ {S, S} = Ld , (2.6.13)

where

{S, S} =

(
1
√
g

)2

[− 1

d− 1

(
gµν

δS

δgµν

)2

+

(
δS

δgµν

)2

+
1

2
LIJ(φ)

δS

δφI
δS

δφJ

+
1

2J(φ)
gµν

δS

δAaµ

δS

δAaν
] , (2.6.14)

and Ld is the Lagrangian reduced to d dimension and is given by

Ld = V (φ)−R(d) +
1

2
LIJ(φ)∇µφI∇µφ

J +
1

4
J(φ)F aµνF

aµν . (2.6.15)

Here

∇µφ
I = ∇µφI − iAaµ(T aφ)I , (2.6.16)

where∇µ denotes the covariant derivative, which is associated with Levi-Civita con-

nection Γµνρ, constructed from boundary metric gµν . The above equation (2.6.13) is

identified as RG flow equation. It was shown that [51] momentum constraint and the

Gausss law constraint ensures d-dimensional transverse diffeomorphism invariance

and gauge invariance of the on-shell action, respectively. Following [54](see [53]

for review), we consider the fact that, at the energy scale of cut off µc ∼ eλro (where

λ is characteristic constant) the action is non local. But at the energy scale µ << µc,

a part of the action S can be represented as local action. So in that case the action S

can be decomposed as local and non local part in the following way

1

2κ2
d+1

S[g(x), φ(x), A(x)] =
1

2κ2
d+1

Sloc[g(x), φ(x), A(x)] + Γ[g(x), φ(x), A(x)] ,

(2.6.17)
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where Sloc can have further derivative decomposition

Lloc =
∑

w=0,2,4

[Lloc]w , (2.6.18)

where number of derivatives is denoted by w with

[Lloc]0 = W (φ)

[Lloc]2 = −Φ(φ)Rd +
1

2
MIJ(φ)∇µ(φI)∇µφI . (2.6.19)

We call the terms W (φ),Φ(φ),MIJ(φ) as potentials. We also define

Sloc;w−d =

∫
ddx
√
g|Lloc|w . (2.6.20)

Γ[g(x), φ(x), A(x)] is the quantum effective action, contains higher derivative terms

and the non local part. Inserting (2.6.17) into the flow equation (2.6.13), we see that

the flow equation is being decomposed into couple of equations, each is identified

with certain derivative number (or weight) given as supescripts as following

{
S

(0)
loc , S

(0)
loc

}
− L(0)

d = 0 ,{
S

(0)
loc , S

(2)
loc

}
− 1

2
L(2)
d = 0 ,{

S
(4)
loc ,Γ

}
+

1

2

{
S

(2)
loc , S

(2)
loc

}
− 1

2
L(4)
d = 0 . (2.6.21)

Here first equation in (2.6.21) is defined with total weight 0 both side, second

equation is weight 2 and so on. However we are still left with the task, that, we have

to assign some weight to each component of Sloc to get certain total weight . For

r.h.s of (2.6.21), we write

L(0)
d =

√
gV (φ)

L(2)
d =

√
g

{
−R(d) +

1

2
LIJ(φ)∇µφI∇µφ

J

}
, (2.6.22)
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and so on.

In order to completely identify the equations with different total weight w in

(2.6.18 , 2.6.21), we next assign an additive number called weight to each ingredient

of the action as in a table below, following [51] -

elements and weight

elements weight

gµν(x), φI(X),Γ[g, φ,A] 0

∂µ, A
a
µ(x) 1

R,Rµν , Rµνρσ, ∂
2 2

δ
δAaµ(x) d-1

δ
δgµν(x) ,

δ
δφI(x) d .

We find for weight w = 0, flow equation is given by (first equation of (2.6.21) ).

V (φ) = − 1

4(d− 1)
W 2(φ) +

1

2
LIJ(φ)∂IW (φ)∂JW (φ) . (2.6.23)

Similarly one can write the flow equation for w = 2 and so on. For w = d with

d is the boundary dimension, we obtain the flow equation as

[Ld]d =
2κ2

d+1W (φ)

2(d− 1)

2
√
g
gµν

δΓ

δgµν
−

2κ2
d+1√
g
LIJ(φ)∂IW (φ)

δΓ

δφj

−
2κ2

d+1

gJ(φ)
gµν

δSloc;2−d
δAaµ

δΓ

δAaν
+ [{Sloc, Sloc}]d . (2.6.24)

The above (2.6.24) can be rewritten in the form of Callan Symanzik equation

after some rearrangement

2gµν
δΓ

δgµν
− 2(d− 1)

W
LIJ∂IW

δΓ

δφJ
− 2(d− 1)

W

1

J
gµν

1
√
g

δSloc;2−d
δAaµ

δΓ

δAaν

=
1

2κ2
d+1

2(d− 1)

W

√
g ([Ld]d − [{Sloc, Sloc}]d) . (2.6.25)

To conclude this section we mention that here we have followed Hamilton Jacobi
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formalism to develop RG flow equation in the context of gravity theory. Decompos-

ing the on shell action into a local part and quantum effective action, we developed

the gravitational Callan Symanzik equation. From this one can obtain β-function

which in turn provides the fixed points of the theory that corresponds to the stable

configurations. In chapter 5 we are going to apply the same formalism for our pro-

posed gravity model, develop Callan Symanzik equation, identify the β function and

find the fixed points and consider possible transitions.

2.7 DC Conductivity

So far we have restricted our study of different phases of holographic superconduc-

tors. Another interesting features of the condensed matter systems that we will be

discussing are the transport properties. Conventional Fermi liquid theory describe

systems using weakly interacting “quasi-particles” and turns out to be quite success-

ful for all metals and semiconductors till 80’s. However, afterwards new materials

were discovered whose properties deviate substantially from the prediction of Fermi

liquid theory. Heavy Fermion superconductors, cuprate high Tc superconductors do

not have quasi-particle descriptions and with regards to transport properties cuprate

materials shows linear temperature dependence of resistivity, ρ ∼ T , θH ∼ 1
T 2 ,

which is different from what follows from Fermi liquid theory, ρ ∼ T 2. This re-

mains a challenge to understand such behaviour of strongly coupled regime using

holographic methods.

It has been suggested in [100] that hyperscaling violating geometries may be

the appropriate set up to look for such phenomena. One can further generalize this

to hyperscaling violating Lifshitz geometries. As mentioned earlier, such geome-

tries are characterised by two parameters z and θ, corresponding to Lifshitz scaling

and the hyperscaling violation respectively. The reason for considering asymptot-

ically Lifshitz spacetime is as follows. The canonical holographic techniques are

described for asymptotically Anti de-Sitter spacetime. The symmetries of the Anti
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de-Sitter space implies the theories at the boundary are characterised by relativis-

tic invariance. However, there are condensed matter systems, which instead shows

anisotropic scaling symmetry along spatial and temporal directions and those can-

not be addressed using a gravity theory with asymptotic AdS spacetime. Soon it

was realized that the holographic techniques can be generalised to other asymp-

totic spacetimes as well [78–85]. In particular, for systems with anisotropic scaling,

asymptotically Lifshitz spacetimes turns out to be the pertinent set up on the gravity

side. There was a surge of activities, that asymptotically Lifshitz theories charac-

terised by hyperscaling violation [86–90]. A four dimensional Einstein-Maxwell-

Axion-Dilaton theory with two U(1) gauge fields, usually give rise to solutions with

such features. One gauge field is required to introduce Lifshitz like behaviour, while

the other plays the role of electromagnetic field.

One standard method to study the transport properties is to slightly perturb the

system from equillibrium, like turning on electric field, thermal gradient and evalu-

ate the response of the system like thermal conductivity, electrical conductivity etc.

If we turn on electric field E, thermal gradient ∇T , the electric current J and heat

current Q are given by

Q = K(∇T ) + TαE ,

J = α(∇T ) + σE , (2.7.1)

where T is the temperature, Q is the heat current, K is the thermal conductivity,

α is thermoelectric conductivity. Using holographic techniques one can compute

all these coefficients. The basic principle for such computation is as follows. Let

the boundary action is perturbed by S = So +
∫
ddxJ (x)aOa(x) , where J (x)a is

the source, which is small perturbation here and Oa(x) is the dual operator on the

boundary. Then Kubo’s formula implies

〈Oa(x)〉 =

∫
ddyGRab(x, y)Jb(y) , (2.7.2)
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where

GRab(x, y) = θ(xo − yo)〈[Oa(x), Ob(y)]〉 . (2.7.3)

Fourier transform

GR(k) =

∫
eik(x−y)GRab(x, y) , (2.7.4)

with

GR(k) = lim
r→∞

r2(4−d) Π(r, k)

φsol(r, k)
|φo=0 . (2.7.5)

Then using Kubo formula we obtain the relevant transport coefficients from retarded

Green function. The expression of retarded Greens function can be evaluated by

using the dual gravity model in holographic set up.

In general the gravity dual theories are characterised by translational invariance.

However, in order to study direct conductivity we need to break the translational

invariance, so that momentum conservation is not maintained. In actual condensed

matter systems, in presence of an electric field, electrons undergo scattering with

ionic lattices and thus dissipating the momentum giving rise to constant direct cur-

rent. Therefore, in holographic set up, one needs to incorporate mechanism for such

momentum dissipation. In literature, it may be realised in a varieties of way, such as

choosing periodically varying chemical potential or neutral scalar field etc. One can

also introduce additional neutral scalar, termed as axion and choose it to be to be

linear in space coordinates to realise momentum dissipation [91–93]. In our work

we have used this last mechanism.

Perhaps the simplest technique to evalaute transport coefficients is in terms of

the horizon data. This method was discussed in [94, 114, 115], which makes use of

the fact that certain quantities does not depend on radial coordinate and so they can

be evaluated at horizon as well. The advantage lies in the fact that one need not have

to consider the full solution. Though this is very efficient there are a few shortcom-

ings of this approach. Since it is entirely focused on near horizon analysis it does

not make any contact to the observables in the boundary theory. The other issue

is regarding boundary condition. In general one can impose Dirichlet or Neumann
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boundary conditions or a mixture of them. In that sense there exists a multitude of

boundary condition that may be chosen to compute the transport coefficients. How-

ever, in the near horizon approach one is restricted to a specific boundary condition

(Dirichlet) only.

There is another approach, which is more suitable for identifying the boundary

obserbales and incorporating general boundary conditions. In this approach, one

considers linear fluctuations around the solutions and from their equation of motion

one can obtain the asymptotic behaviour of physical quantites that enable one to

identify the physical observable at the boundary directly. This approach also allows

one to incorporate different boundary conditions. However, the expressions often

diverge at boundary, which calls for introduction of appropriate counterterms. We

have followed the second approach in our work.
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Chapter 3

Phases of holographic helical

superconductor

3.1 Introduction

Superconductors have been realized holographically in numerous models. In par-

ticular, we have already discussed s-wave superconductors, which corresponds to

condensation of scalar operator [11,12]. There are vortex like solutions [13,14] and

anisotropic Abelian model [15]. We have p-wave holographic superconductors with

charged vector fields [16–18] and alternatively charged two-forms [19] and d-wave

holographic superconductors which corresponds to condensation of massive spin-

two fields [20]. More relevant works in these contexts have appeared in [25–34].

In this chapter we will consider a specific gravity model. As we mentioned in

the introduction, we are motivated by transition between metallic phase and a non-

magnetic phase studied in [74]. In view of that we consider a model with gravity

coupled to SU(2)× U(1) gauge theory with the scalar field in the adjoint represen-

tation in the presence of Chern Simons term. As it transpires, this model has a quite

rich and complex phase structure. We will see this model leads to holographic super-

conductor, with spatial modulation. Earlier it has been shown that considering only

vector field in a linearised perturbation [21–26], leads to p-wave superconducting
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phase, with helical symmetry. The Chern Simons term can cause condensation of

SU(2) gauge field yielding inhomogenous superconductor. Since AdS space allows

negative m2 term, it induces instability of RN AdS black hole background towards

condensation of scalar field as well. We will analyse how different superconducting

phases are realised in this model and study their coexistence and competition.

It may be noted that the present model without the matter field can be incorpo-

rated in SU(2) × U(1) gauged supergravity theory. Such supergravity theory may

arise as a consistent Kaluza Klein truncation of Type IIB supergravity on an S5 [37]

. In that case instability gives rise to onset of p-wave superconductor, that preserves

the U(1) symmetry but breaks the SU(2) symmetry, reminiscent of what is seen in

spiral spin density waves. However, it is not clear how to incorporate it in the string

theoretic framework in presence of the matter field.

Here is a brief structure of this chapter. In section 3.1, we have discussed the

model. Here we introduce probe approximation and write down the ansatz. We write

down the equation of motion with the probe-metric. We also write the equations in

near horizon limit and asymptotic limit. In section 3.2 we start numerical analysis.

We redefine the field and write the equations of motion. We also write the expression

of free energy. We obtain the plot for free energy Vs temperature. In section 3.3 we

write the expression for ac conductivity. We obtain the plot for ac conductivity Vs

temperature. Finally we conclude in section 3.4.

3.2 Model

As explained in the introduction, we consider a Yang-Mills gauge theory with gauge

group SU(2)× U(1) coupled with gravity. In addition we also include a scalar field

φ in adjoint of SU(2). The action is represented by

L = (R + 12) ∗ 1− 1

2
G ∧∗ G− 1

2
F a ∧∗ F a +

γ

2
F a ∧ F a ∧B,

Lm = −1

2
[(Dµφ)a†(Dµφ)a +m2(φa†φa)],

(3.2.1)

52



where G = dB, F a = dAa− 1
2ε
abcAb ∧Ac and (Dµφ)a = ∂µφ

a + iBµφ
a− εabcAbµφc.

The scalar field couples to both the Yang-Mills gauge field in adjoint and the Abelian

gauge field. m represents the mass of the scalar field. γ is the strength of Chern-

Simons term consisting Abelian and non-Abelian fields. For certain value of γ the

action can be obtained in string theory model in absence of scalar [37].

One can construct the equations of motion (EOM) from Lagrangian. RN-AdS

black hole is one solution of EOM as given by

ds2 = −g(r)dt2 +
dr2

g(r)
+ r2[(dx1)2 + (dx2)2 + (dx3)2],

g(r) = r2 −
r4
h

r2
+
µ2

3
(
r4
h

r4
−
r2
h

r2
),

Bµdx
µ = a(r)dt, a(r) = µ(1−

r2
h

r2
),

(3.2.2)

where Bµ is U(1) gauge field, the scalar field and SU(2) gauge field are set to zero.

Horizon radius of the black hole and chemical potential are rh and µ respectively.

This black hole solution has a characteristic temperature given by

T =
6r2
h − µ

2

6πrh
. (3.2.3)

In what follows we will study instabilities associated with condensation of the scalar

field and gauge field, in this background.

One can observe that the action (3.2.1) leads to equations of motion, which are

quite complicated to solve. We simplify it using probe approximation [6, 10–12].

By probe approximation we mean, we will consider equations of motion of the

other fields in the metric-background (3.2.2) and ignore the change in the metric. In

this approximation we consider an ansatz, which may lead to a consistent solution

of equations of motion. This ansatz consists of translation invariant Abelian gauge

field and non abelian gauge field with a helical symmetry. A consistent ansätz with
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these conditions is:

A1 = q(r) ω2, A2 = A3 = 0 , φ1 = φ2 = 0, φ3 = φ(r), B = a(r)dt ,

(3.2.4)

where ω1 = cos(kx3)dx1 + sin(kx3)dx2, ω2 = − sin(kx3)dx1 + cos(kx3)dx2, ω3 =

dx3 are one-forms, which we have introduced following [25]. In this ansätz we have

both scalar and non-Abelian fields electrically charged with respect to U(1) gauge

field. We will analyse the equations, with this ansätz in order to find instabilities of

RN-AdS black hole solution in terms of q(r) and φ(r).

A more convenient form of the equations can be obtained by scaling r with

horizon radius. So we write ρ = r
rh

and replace g(r) by g0(ρ) with g(r) = r2
hg0(ρ),

where g0(ρ) is given by

g0(ρ) = ρ2 − 1

ρ2
+ (

µ2

3r2
h

)(
1

ρ4
− 1

ρ2
) (3.2.5)

.

One can write the equations of motion in terms of these new parameters as

1

ρ3
∂ρ(ρ

3g0(ρ)∂ρφ(ρ)) +
1

r2
h

a(ρ)2

g0(ρ)
φ(ρ)− 1

r2
h

q(ρ)2

ρ2
φ(ρ)−m2φ(ρ) = 0,

∂ρ(ρg0(ρ)∂ρq(ρ))−
[
k2

r2
h

1

ρ
− γk∂ρa(ρ) + ρφ(ρ)2

]
q(ρ) = 0,

∂ρ(ρ
3∂ρa(ρ)) +

γk

r2
h

q(ρ)∂ρq(ρ)− ρ3

u0(ρ)
φ(ρ)2a(ρ) = 0.

(3.2.6)

We will now write the above equations of motion in different limits. First we con-

sider near horizon limit which is the limit with ρ→ 1

• Near Horizon limit: In order to have near horizon limit of above equations
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(3.2.6), we introduce ρ ≈ 1 + x and Keep the leading order terms in x. That yields,

4πT

rh
(x2∂2

xφ(x) + x∂xφ(x)) +
1

4πTrh
a(x)2φ(x)−m2xφ(x) = 0,

4πT

rh
(x∂2

xq(x) + x∂xq(x))−
[
k2

r2
h

− γk∂xa(x) + φ(x)2

]
q(x) = 0,

x(∂2
xa(x) + 3∂xa(x)) +

γk

r2
h

xq(x)∂xq(x)− rh
4πT

φ(x)2a(x) = 0.

(3.2.7)

We consider leading order solutions to be φ(x) ∼ xl, q(x) ∼ xm and a(x) ∼ xn.

Substituting in equations of motion we find we need to choose n = 0, 1 in order

to satisfy the equation of a(x) at lowest order. Since at horizon, the Abelian gauge

field B0 should be zero [6, 10–12] we set n = 1. Other equations are satisfied for

l = m = 0 at lowest order. However, this choice admits non-zero values at horizon

for the non-Abelian gauge field, having only spatial component and the scalar.

• Asymptotic limit: For asymptotic limit, rewriting the equations in (3.2.6) in

terms of y = 1/ρ2, we get

4y3∂y[g0(y)∂yφ(y)] +
1

r2
h

a(y)2

g0(y)
φ(y)− 1

g2
0

yq(y)2φ(y)−m2φ(y) = 0,

4y2∂y[yg0(y)∂yq(y)]−
[
k2

r2
h

y + 2γky2∂ya(y) + φ(y)2

]
q(y) = 0,

4y∂2
ya(y)− γk

r2
h

y∂yq(y)2 − 1

y2g0(y)
φ(y)2a(y) = 0,

where g0(y) =
1

y
− y + (µ2/3r2

h)(y2 − y).

(3.2.8)

Asymptotic limit of the above equation can be obtained from leading order terms in

a Taylor expansion around y = 0. Substituting φ(y) ∼ yα, q(y) ∼ yβ and a(y) ∼ yδ

as leading order solution, at lowest order we obtain from φ equation

α = 4± = 1±
√

1 +m2/4. (3.2.9)

In order to find scalar field condensation, we need to choose negative m2 term and

we set m2 = −3 for convenience, which gives an asymptotic solution for φ, φ(y) =

φ0y
1/2 + φ1y

3/2. Both the solutions corresponds to normalisable modes. Following
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standard quantisation we set the boundary condition to be φ0 = 0. Similarly, allowed

values of β are 0 or 1 implying q(y) ∼ q0 + (q1/r
2
h)y. here normalisable mode

corresponds to q0 = 0. a(y) is chosen to be a(y) ∼ (µ− a1y
r2h

). In the next section we

will look for solutions of these equations numerically.

3.3 Numerical Analysis

Since we want to get rid of fractional power of φ we substitute new variable χ(y) =

φ(y)√
y . Withat modification, equations for χ(y), q(y) and a(y) are given by,

4y3g0(y)∂2
yχ(y) + 4y2∂y(yg0(y))∂yχ(y)

+

[
(2y2∂yg0(y)− yg0(y)) +

1

r2
h

a(y)2

g0(y)
− 1

r2
h

yq(y)2 + 3

]
χ(y) = 0,

4y∂2
ya(y)− γk

r2
h

y∂y(q(y)2)− 1

yg0(y)
χ(y)2a(y) = 0,

4y2g0(y)∂2
yq(y) + 4y∂y(yg0(y))∂yq(y)− [

k2

r2
h

+ 2γky∂ya(y) + χ(y)2]q(y) = 0,

(3.3.1)

where g0(y) is given in (3.2.8). The boundary conditions at y = 0 changed to:

χ(y) ≈ χ1

r2
h

y, q(y) ≈ q1

r2
h

y, a(y) ≈ (µ− a1
y

r2
h

). (3.3.2)

However, it should not admit normalisable mode for q at k = 0 for the reason

given below. For k = 0 second equation of (3.2.6) takes the form

q′′ +

(
u′0
u0

+
1

ρ

)
q′ − φ2

u0
q = 0. (3.3.3)

For ρ → 1 we get q′(1) = rh
4πT φ(1)2q(1), and so q and q′ has same sign at horizon.

Then q is positive and increasing (or negative and decreasing) at horizon. A normal-

isable mode implies it vanishes at ρ → ∞ and so there is some intermediate value

ρ = ρt, where q turned around leading to a maximum (or minimum). Then equation
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(3.3.3) is not satisfied at ρ = ρt as there q and q′′ have opposite signs with q′ = 0.

We have used mathematica software to numerically solve these equations (3.3.1),

which are written in probe approximation, with boundary condition (3.3.2). We have

used the following values for the parameters: µ = a1 = 0.1 and γ = 1 and solve for

the values of χ and q for which a(x) vanishes at horizon.

In order to determine thermodynamic stability of various phases and compare

them we have evaluated free energy density. Free energy density is given by Eu-

clidean action on shell. The expression for free energy we obtained to be

F =
TSE
V

= −µa1 −
1

2

∞∫
rh

[−γkqq′a− rφ2a+
r3

u(r)
φ2a2]dr. (3.3.4)

In fig. (3.1) we have plotted free energy of s, p and s + p wave phases against tem-

perature. We have restricted the range near the critical temperature. From the plot

one can see that at a given temperature, s+p-wave has the highest energy, and free

energy of s-wave is the lowest. Free energy of p-wave phase comes in between.

Therefore thermodynamically preferred phase is s-wave always compared to other

phases. One can also observe from the plot that phase transitions are second or-

der. Similarly values of the condensates are plotted vs. temperature near critical

temperature as given in Figure (3.2).

We have also studied the pitch dependence of free energy vs. temperature plot

for p-wave phase in Figure (3.3). The plots are made for three different values of

k. We see for k = 1.5, 3.5 and 5, as given in left subfigure free energy increases

with k, while it decreases for k = 0.05 and 0.1 (middle subfigure). This implies

that free energy will be minimum at a critical value of k near k = 0.1 indicating

thermodynamically preferred phase. Once again we obseerve the phase transitions

are of second order in nature.
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Figure 3.1: Plot of free energy vs temperature for normal, s+p, p and s-wave phases
(from top to bottom along F-axis) on left for k = 1.5

Figure 3.2: Plot of s-wave (left) and p-wave (middle) and s+p-wave (on right) conden-
states vs. temperature

Figure 3.3: Plot of p-wave free Energy (left) and condensate (on right) for k =
1.5, 3.5, 5. Plots from top to bottom correspond to decreasing k on left and increasing
k on right. The middle figure is plot of free energy for k = 0.1 (bottom) and k = 0.05
(top)
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3.4 Conductivity

We discuss the optical conductivity of the system as the function of frequency in

this section. One has to develop some numerical techniques [11, 38, 39] to achieve

the same. Since the Abelian gauge field Bµ couples to a current Jµ, so to study

conductivity we introduce fluctuation of Bµ as a linear perturbation and write the

equations of motion for it. We are working with inhomogeneous background which

carries a background momentum k with background gauge field B(0)
µ which is the

solution of our equations of motion. We consider a small perturbation around this

background as Bµ = B
(0)
µ + bµ. We follow [22] to write

bµdx
µ = bL(t, r)dx3 + bT (t, r)ω2 (3.4.1)

It follows that bL and bT staisfy the following equations

b′′L(r) +

(
g′(r)

g(r)
+

1

r

)
b′L +

(
ω2

g(r)2
− φ(r)2

g(r)

)
bL(r) = 0,

b′′T (r) +

(
g′(r)

g(r)
+

1

r

)
b′T +

(
ω2

g(r)2
− φ(r)2

u(r)
− k2

r2g(r)

)
bT (r) = 0,

(3.4.2)

where we consider the facts that the components of U(1) gauge fields are given by

time dependent function as bL,T (t, r) = bL,T (r)e−iωt. We also impose ingoing wave

boundary condition at the horizon

bL,T (r) ∼ g(r)
−i ω

4r0 , (3.4.3)

to insist the fact that there will be no outgoing radiation at horizon. bL(r) and bT (r)

behave asymptotically as [22, 39]

bL(r) = b
(0)
L +

b
(2)
L

r2
+
b
(0)
L

2
ω2Log(Λr)

r2
+ ...,

bT (r) = b
(0)
T +

b
(2)
T

r2
+
b
(0)
T

2
(ω2 − k2)

Log(Λr)

r2
+ ...,

(3.4.4)
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Figure 3.4: Plot of longitudinal (left) and transverse (right) conductivities vs. frequency

where b(0)
L , b(2)

L , b(0)
T , b(2)

T and Λ are integration constants.

Since unlike the case of [22], bL(r) and bT (r) decouple in our case, we consider

the diagonal components of retarded Green function, which are as follows [39]

GRLL = 2
b
(2)
L

b
(0)
L

+ ω2

(
log(Λr)− 1

2

)
,

GRTT = 2
b
(2)
T

b
(0)
T

+ (ω2 − k2)

(
log(Λr)− 1

2

)
.

(3.4.5)

We remove the logarithmic divergence with boundary counterterm in the action.

After we cancel the logarithmic term, we obtain the expression for the conductivity,

which are given as following [22],

σL(ω) =
2b

(2)
L

iωb
(0)
L

+
iω

2
, σT (ω) =

2b
(2)
T

iωb
(0)
T

+
i

2ω
(ω2 − k2) (3.4.6)

We have computed both the real and imaginary parts of longitudinal and trans-

verse conductivities. We have plotted them against frequency ω̃ = ω/rh in Figure

(3.4) . As ω approaches to zero, the imaginary parts shows a divergence. This sig-

nifies a δ(ω) behaviour for the respective real parts. This behaviour can be observed

in the case of superconductors.
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3.5 Conclusion

We have shown in the probe approximation the model with gravity coupled U(1) and

SU(2) gauge field with scalar field in the adjoint representation, along with a Chern-

Simons term admits s and p wave phases as well as their coexistence. We have

found the expression for thermodynamic free energy and studied the free energy

plot with temperature for different phaes as well as for p-wave phases with different

values of pitch. We find s-wave phase is thermodynamically more stable than p

wave phase which is even more stable than s+p wave phase. So we may conclude

the fact that s wave phase is a consistent ground state which breaks global SU(2)

to U(1). We found therefore, in thermodynamically preferred phase only the scalar

field condenses. For p-wave phases, we consider different values of pitch and we

studied thermodynamic free energy. We found free energy becomes minimum for a

critical value of pitch. From the plots of free energies it is being observed that the

phase transitions are of second order in nature. However, probe approximation fails

whenever the condensates have large values.

This work may be extended in several directions. We have considered only one

chemical potential associated with the U(1) field and for a certain value of CS cou-

pling. A natural generalisation of our work, therefore, would be to turn on electric

field for SU(2) fields. Phase structure of 3 parameter space with two chemical po-

tentials and CS coupling would give a richer phase structure. Secondly, due to com-

plexity of the equations of motion we restricted ourselves to probe approximation.

A complementary study with back reaction of the gravity taken into consideration

will provide a complete picture. One can introduce neutral scalar field and make the

coupling of the interaction dependent on them along the line of [35]. By tuning the

field dependent coupling it may provide dual to the antiferromagnetic phase [36].

Another issue is the instability that we find in this analysis is valid for classical

gravity theory. In general, however, one may consider higher curvature corrections,

inclusion of which may provide information regarding modification of the boundary

theory as we move away from large ‘tHooft limit. One can ask whether the instabil-
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ities found here will survive such corrections. As discussed elsewhere [38] it could

be that higher curvature corrections may remove these instabilities or may further

modify the phase structure. This is the issue that we will discuss in the next chapter.
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Chapter 4

Higher curvature corrections

4.1 Introduction

In the last chapter we have discussed our proposed model i.e gravity coupled to U(1)

and SU(2) gauge field with the scalar field in adjoint. We have analysed its phase

structures and compare their stabilities thermodynamically. However, the analysis

was restricted to classical gravity theory, which corresponds, in gauge/gravity par-

lance, large N and large ‘t Hooft limit. As we have mentioned at the end, it would

be interesting to see how the instability and the phase structure in general gets mod-

ified once we move away from this limit by including higher derivative terms in the

gravity theory.

One reason that why such higher derivative term would lead to a difference is as

follows [38]. Holographic superconductors are associated with spontaneous break-

ing of a U(1) symmetry. Such superconducting phases have been found in the holo-

graphic set up in almost any dimension. However, spontaneous breaking of con-

tinuous symmetry is forbidden in (2 + 1)-dimensions according to Mermin-Wagner

theorem due to large fluctuations in lower dimensions. But (2 + 1)-dimension ad-

mits holographic superconductors, at least within the regime of classical gravity.

It could then well be, that at the large N limit, fluctutations are suppressed in the

case of holographic superconductors. As one deviates from the large N limit by in-
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corporating higher curvature corrections, the fluctuations will be dominant and the

condensation of the field giving rise to superconducting phase will be suppressed.

Ofcourse, in order to check for such a phenomenon one need to consider four

dimensional gravity theory. However, four dimensional gravity theories with higher

derivative, such as Gauss-Bonnet and Lovelock gravity uses specific combinations

of curvature tensor and becomes non-dynamical in four dimensions. Other theories

that uses powers of Ricci scalar leads to identical black hole solutions as in Einstein

case. More general higher derivative gravity theories involve ghost degrees of fre-

dom. nevertheless, one can expect to have similar phenomenon in five dimensions

as well.

In view of that we consider the proposed model along with Gauss-Bonnet terms.

In presence of Gauss-Bonnet term, the gravity theory admits a black hole solution,

known as Gauss-Bonnet black hole. Within a probe approximation we consider the

SU(2)×U(1) gauge theory along with the charged scalar and study the modification

of the behaviour of the condensate and the associated phase structure.

In addition, we will also study a chemical potential driven transition in this the-

ory in presence of an AdS soliton background. Holographic superconductor tran-

sition occurs between two phases as a change of temperature. As shown in [41], a

similar transition occurs at zero temperature due to variation in chemical potential

when the holographic superconductor is placed in an AdS soliton background. By

compactifying one of the space direction of AdS black hole, one can obtain AdS

soliton configuration, which decays into AdS black hole through Hawking-Page

transition at a critical temperature. In the AdS soliton background, the phase where

charged field condenses, termed as AdS soliton superconductor has a much larger

gap and may be considered as an anlogue of an insulator [41]. Since the AdS soliton

is obtained by compactifying one space direction of the asymptotic AdS spacetime,

the dual theory is a Scherk-Schwarz compactification of a four dimensional gauge

theory. This analysis demonstrates the effects of higher curvature in a 2+1 dimen-

sional theory.
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This chapter is organised as follows. In section 4.2 we introduce the model which

is gravity coupled to SU(2) gauge field and U(1) gauge field with scalar field in

adjoint with higher curvature correction. Here we introduce AdS soliton background

and AdS black hole background, write down the analytic expression of free energy

in both the background. We also write down the boundary condition on the field

in both the backgrounds with both the boundaries. In section 4.3 we discuss the

numerical results obtained for normal phase and superconducting phase for both

AdS black hole and AdS soliton. Here we present free energy Vs temperature and

condensate Vs temperature plot. We conclude in section 4.4.

4.2 Model

Let us recall that our model consists of gravity coupled to SU(2)×U(1) Yang Mills

fields with a scalar field in the adjoint representation in the presence of Chern-

Simons coupling between Abelian and non-Abelian fields. It has been explained

in [21] that the Chern-Simons term plays an important role in condensation of the

vector field. To include the higher curvature terms, we consider Einstein-Gauss-

Bonnet action for the gravitational part. The modified Lagrangian takes the follow-

ing form

L = (R + 12) ∗ 1 +
α

2
(RµνρσRµνρσ − 4RµνRµν +R2)− 1

2
G ∧∗ G

− 1

2
F a ∧∗ F a +

γ

2
F a ∧ F a ∧B

Lm = −1

2
[(Dµφ

†)a(Dµφ)a +m2φa†φa], (4.2.1)

where G = dB and F a = dAa− εabcAb∧Ac represents field strength of Abelian and

non-Abelian gauge fields respectively. Covariant derivatives are given by (Dµφ)a =

∂µφ
a + iBµφ

a − εabcAbµφc. Riemann curvature tensor, Ricci tensor and Ricci scalar

are given by Rµνρσ, Rµν and R respectively.

•AdS Black Hole:
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In this case, we will be considering a neutral black hole solution which is the

solution of equations of motion from the action [43, 44] given by,

ds2 = −g(ρ)dt2 +
dρ2

g(ρ)
+ ρ2

[
(dx1)2 + (dx2)2 + (dx3)2)

]
, (4.2.2)

where

g(ρ) =
ρ2

2α

[
1−

√
1− 4α

L2

(
1− ML2

ρ4

)]
. (4.2.3)

M is related to the AdS mass of the black hole and the black hole horizon is ex-

pressed as g(ρ0) = 0 is

ρo = (ML2)1/4. (4.2.4)

Here L represents the radius of the asymptotics AdS space. The strength of the

higher curvature terms is given by the parameter α. For α = 0, g(ρ) becomes ρ2

L2−M
ρ2 .

In order to avoid naked singularity we restrict it to α ≤ 1/4. The temperature of the

black hole is

T =
u′(ρ)

4π
|ρ=ρo =

ρo
πL2

=
(M)

1
4

π(L)
3
2

. (4.2.5)

•AdS Soliton:

We are also going to consider AdS soliton solution. One can obtain AdS soli-

ton [45, 46] solution in two steps. First we make a double wick rotation of the AdS

black hole metric (4.2.2). Then we compactify one of the space direction in a circle,

such that the radius of it shrinks down to zero at some finite value of r. The dual

theory corresponds to a 2 + 1-dimensional theory, which is a Scherk-Schwarz com-

pactification of a four-dimensional comformal gauge theory. In presence of higher

curvature [47] correction, the metric of the AdS soliton becomes

ds2 =

[
dρ2

g(ρ)
+ g(ρ)dχ2 + ρ2(−dt2 + dx2

1 + dx2
2)

]
, (4.2.6)

where the expression of g(ρ) is given in (4.2.3). We have made χ periodic to obtain

a smooth space and the associated temperature can be considered to be zero.
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Here we consider the matter fields of our model in the above AdS black hole and

AdS soliton backgrounds. We consider following ansatz for the gauge and scalar

fields, to simplify the equations of motion. In particular, we choose ansatz for the

Yang-Mills fields to be spatially inhomogeneous depending on pitch k.

A1 = q(ρ)ω2, A2 = A3 = 0 , φ1 = φ2 = 0, φ3 = φ(ρ), B = a(ρ)dt,

(4.2.7)

where, once again, we are using one forms ω1 = cos(kx3)dx1 + sin(kx3)dx2, ω2 =

− sin(kx3)dx1 + cos(kx3)dx2, ω3 = dx3 introduced earlier. We substitute the above

ansatz in the equations of motion for each of the backgrounds.

Here first we consider AdS black hole background.

•AdS Black Hole background:

For AdS black hole substituting black hole metric as given in (4.2.2, 4.2.3), the

ansatz (4.2.7) gives the following equations of motion:

∂ρ(ρ
3g(ρ)∂ρφ(ρ)) +

ρ3a(ρ)2

g(ρ)
φ(ρ)− ρq(ρ)2φ(ρ)−m2ρ3φ(ρ) = 0,

∂ρ(ρg(ρ)∂ρq(ρ))− (
k2

ρ
− γk∂ρa(ρ) + ρφ(ρ)2)q(ρ) = 0,

∂ρ(ρ
3∂ρa(ρ)) + γkq(ρ)∂ρq(ρ)− ρ3

g(ρ)
φ(ρ)2a(ρ) = 0. (4.2.8)

From the Maxwell’s equation we can see that phase of the complex scalar is con-

stant. We set the phase of this complex scalar field to be zero.

Since we aim to solve these equations of motions (4.2.8) we need to choose right

boundary conditions at near horizon and asymptotic infinity. In order to choose near

horizon boundary condition, at near horizon limit we consider the leading behaviour

of the fields, from the equations of motion. Expanding the equations (4.2.8) around

horizon and ensuring that they will not diverge there, we obtain the following con-
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sistency conditions at the near horizon limit:

4ρ∂ρφ(ρ)−
(
q(ρ)2

ρ2
+m2

)
φ(ρ) = 0,

4ρ2q′(ρ)−
(
k2

ρ
− γk(∂ρa(ρ)) + ρφ(ρ)2

)
q(ρ) = 0,

a(ρ) = 0. (4.2.9)

The behaviour of the fields at asymptotic infinity, i.e ρ→∞ given by

a(ρ) = µ− ρ1

ρ2
,

φ(ρ) =
C−
ρλ−

+
C+

ρλ+
,

q(ρ) = q1 −
q2

ρ2
. (4.2.10)

µ and ρ represent chemical potential and charge density respectively of the system.

Charge density will be kept fixed, which provides a scale. The exponents in (4.2.10),

λ± are

λ± = 2±

√
4 +

2m2α

1−
√

1− 4α
, (4.2.11)

where we will choose m2 = −3 for the matter fields. Hence it can be seen from

(4.2.11) both the modes in the scalar fields are normalisable modes. As per standard

quantisation procedure we set C− = 0. We will also set q1 = 0. Then C+ and q2 will

give v.e.v of dual operator or the respective condensates.

For the purpose of thermodynamic analysis we consider free energy associated

with different phases. Free energy density of the system is given by integrating the

Euclidean action on shell. For a general configuration consistent with the ansatz

(4.2.7) expression for free energy comes out to be

F =
TSE
V

= −µρ1 −
1

2

∫ ∞
ρo

dρ

[
−γkq(ρ)(∂ρq(ρ))a(ρ)− ρφ(ρ)2q(ρ)2 +

ρ3

u(ρ)
φ(ρ)2a(ρ)2

]
. (4.2.12)
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•AdS Soliton background:

Here we will study the phases of the system in AdS soliton background (4.2.6).

We consider equations of motion for the matter fields (4.2.13) in this background,

consistent with the ansatz (4.2.7). Equations of motion are as follows

1

ρ3
∂ρ(ρ

3g(ρ)∂ρφ(ρ)) +
a(ρ)2

ρ2
φ(ρ)− q(ρ)2

ρ2
φ(ρ)−m2φ(ρ) = 0,

1

ρ3
∂ρ(ρu(ρ)∂ρq(ρ))− k2

ρ2u(ρ)
q(ρ) + γk∂ρa(ρ)q(ρ)− q(ρ)

φ(ρ)2

ρ2
= 0,

1

ρ3
∂ρ(ρg(ρ)∂ρa(ρ)) + γkq(ρ)∂ρq(ρ)− a(ρ)

ρ2
φ(ρ)2 = 0. (4.2.13)

Here we need to find boundary conditions for the fields, both at the tip of the soliton

and at asymptotic infinitiy. At the tip, ρ = ρ0, the matter fields behave as follows,

φ(ρ) = a1 + b1ln(ρ− ρo) + c1(ρ− ρo),

q(ρ) = a2 + b2ln(ρ− ρo) + c2(ρ− ρo),

a(ρ) = a3 + b3ln(ρ− ρo) + c3(ρ− ρo). (4.2.14)

The logarithmic terms represents divergences of the respective fields at the tip. In

order to avoid the divergence we need to impose consistency condition, that the

coefficients of the logarithmic terms in the expansion of the fields (4.2.14) should

be equal to zero.

At the asymptotic infinity, r → ∞, the behaviour of the fields are quite simi-

lar to that in the case of AdS black hole background (4.2.10) . The leading order
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expressions are given as before

a(ρ) = µ− ρ1

ρ2
,

φ(ρ) =
C−
ρλ−

+
C+

ρλ+
,

q(ρ) = q1 −
q2

ρ2
. (4.2.15)

λ± are given by (4.2.11) and µ and ρ represent the chemical potential and charge

density of the boundary theory. We choose C− = 0. The v.e.v of the dual operator

associated with the scalar field is represented by C+. For vector fields, we set q1 = 0,

then q2 will represent the value of the condensate.

Free energy density associated with this AdS soliton background is obtained

from the Euclidean action on shell and comes out to be

F =
TSE
V

= −µρ1−
1

2

∫ ∞
ρo

dρ
[
−γkq(ρ)(∂ρq(ρ))a(ρ)− ρφ(ρ)2q(ρ)2 + rφ(ρ)2a(ρ)2

]
.

(4.2.16)

In the next section, we will numerically solve the equations (4.2.8) and (4.2.13)

subject to the consistency conditions (4.2.9) and (4.2.14) respectively at horizon

and asymptotic condition given by (4.2.10), (4.2.15). In the case of AdS black hole,

we will use the solutions to study the behaviour of condensates and free energies

with variation of temperature. Similar study will be discussed for AdS soliton back-

ground with variation of chemical potential.

4.3 Numerical Analysis

In this section we discuss the numerical results obtained for free energy and conden-

sate in normal phase and superconducting phase for both AdS black hole and AdS

soliton background. For AdS black hole background we solve the equations (4.2.8)
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with asymptotic boundary conditions as given in the following,

a(ρ) ' µ− ρ1

ρ2
,

φ(ρ) ' C+

ρλ+
,

q(ρ) ' q2

ρ2
. (4.3.1)

In order to ensure that fields do not diverge at horizon, the solutions need to satisfy

the consistency conditions given in (4.2.9) .

We keep the charge density ρ1 fixed and find solutions, which gives rise to non-

zero condensateC+, whileC− = 0 . In order to study the change of scenario with the

variation of the coefficient of Gauss-Bonnet term, α, it has been chosen to be α = 0.1

and α = 0.05. We have given the plot of condensates of scalar field vs. temperature

(i.e C+ vs temperature) in Fig.4.1. As one can observe that the condensation gap

becomes larger as coefficient of Gauss-Bonnet term increases. Since the scalar has

a negative m2 term within BF bound, as well as a potential well that forms near

horizon [38], one can presume that condensation will happen. We observe critical

temperature decreases with increase in α. Such a decrease in transition temperature

with α is also confirmed from the plot of the free energy vs. temperature in Fig.4.2.
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Figure 4.1: Condensate vs. temperature plot for s wave α = 0.1 (left) and α = 0.05
(right)

It also admits p-wave phase where the non abelian gauge field gets v.e.v leading

to symmetry breaking. This will gives rise to a configuration with helical symmetry

due to the choice of our ansatz(4.2.7). One may observe from the plots of condensate
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Figure 4.2: Free Energy vs. temperature plot for s wave superconducting phase(below)
and normal phase(above) for α = 0.1(left) and α = 0.05 (right)

vs. temperature for α = 0.1 and α = 0.05 for p-wave phase, given in Fig.4.3

that the gap increases as the coefficient of the higher curvature term gets larger.

Similarly, from the free energy vs. temperature plot, given in Fig.4.4 we see the

transition temperature decreases with increase of the strength of the higher curvature

correction, as in the s wave case. It is evident from free energy vs. temperature plot

for both cases of s-wave and p-wave that the nature of the phase trasitions are of

second order.
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Figure 4.3: Condensate vs temperature plot for p wave for α = 0.1 (left) and α = 0.05
(right)

Next we make similar study in AdS soliton background. For this background

we will consider the s-wave only. We numerically solve (4.2.13), subject to the

asymptotic boundary condition (4.3.1) and consistency condition (4.2.14) at the tip

so that coefficient of logarithmic term is zero. The plot of condensate of the scalar

field and free energy against chemical potential µ are given in Fig.4.5 and Fig.4.6

for α = 0.05 and α = 0.1. Charge density (ρ) has been plotted vs chemical potential
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Figure 4.4: Free Energy vs temperature plot for p wave superconducting phase(below)
and normal phase(above) α = 0.1(left) and α = 0.05 (right)

in Fig.4.7 for the two values of α. One may note that the critical value of µ at which

the transition takes place, increases with the increase of the strength of the higher

curvature terms. The plot of free energy vs. µ for the two values of α also exhibits

the same as given in Fig.4.6.
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Figure 4.5: condensate vs µ plot for s wave phase for α = 0.1(left) and α = 0.05 (right)
in AdS soliton background

4.4 Conclusion

In this chapter we have studied phases of the model introduced earlier in presence

of higher curvature corrections. It admits a Gauss-Bonnet black hole solution and in

this background we find that below a critical temperature, one gets superconducting

phase. It is now established that the magnitude of decrease in critical temperature is

closely linked with the increase of the strength of the higher curvature term. There-

fore, one can conclude that as the strength of the higher curvature terms increases
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Figure 4.6: Free Energy vs. µ plot for normal phase(above) and s wave superconducting
phase(below) for α = 0.1 (left) and α = 0.05 (right) in AdS soliton background
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Figure 4.7: ρ vs. µ plot for s-wave phase for α = 0.1 (left) and α = 0.05 (right) in AdS
soliton background

the transition gets more and more suppressed and it will be more difficult for the

condensation to take place. This is in agreement with the result obtained in the case

of simple s-wave black hole [38]. It may be interesting to find the value of α for

which condensations cease to occur.

In the next part of the analysis, we considered AdS soliton background, at zero

temperature for which the dual theory is (2+1)-dimensional. As we vary the chem-

ical potential, we find phase transition occurs at some critical value µ = µc. We

study the impact of the higher curvature corrections on this transition and find as we

increase the strength of the higher curvature terms the critical value of the chemi-

cal potential increases. Therefore, with increase of higher curvature corrections, the

AdS soliton phase will persist and one requires higher value of chemical potential in

order to have condensation of the charged fields. In other words, it shows suppres-

sion of condensation due to existence of higher curvature terms in (2+1)-dimension.
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As discussed in the introduction Mermin-Wagner theorem forbids spontaneous

breaking of a continuous symmetry in (2+1)-dimension due to the fact that massless

fluctuations destroy the long range order. Holographic superconductors appear in

(2+1) dimension in classical gravity. Since the latter corresponds to the large N limit

of the field theory, the suppression of massless fluctuations can be attributed to the

large N limit [12,48]. Therefore, as we deviate from the large N limit we should find

that condensation is getting suppressed [38]. As we have seen, with increase of the

strength of higher curvature term, the critical temparature, at which superconducting

transition takes place decreases or critical value of chemical potential increases.

Both the phenomena show suppression of condensation, which is in accordance

with this possibility. For the AdS soliton, the dual theory is (2+1) dimensional. For

the black hole, though the dual theory is (3+1) dimensional one may expect a similar

phenomenon in (2+1) dimension as well.

It will be interesting to find out the behaviour of spatially separated correlators

of the massless fluctuations within an AdS/CFT framework [12]. One can also try

to look for an analogue of Berezinski-Kosterlitz-Thouless transition in this system.

Once again, we have ignored the back reaction on the metric and considering the

back reaction one may obtain a more detailed understanding of the effects due to

the higher derivative corrections. Another set of features to capture the effect of

moving away from large N limit may be transport properties. In particular, one can

study thermoelectric properties of various phases at higher curvature along the line

of [94].
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Chapter 5

Holographic Renormalisation Group

Flow

5.1 Introduction

As we have discussed in the previous chapters that gauge/gravity correspondence

has been applied successfully in the realm of condensed matter physics [4–9] (and

references therein), and especially in the context of holographic superconductors

( [11] - [20] ). High temperature superconductors turns out to have rich phase struc-

tures and it is interesting to understand transitions among the various phases from

a holographic viewpoint. Renormalisation Group (RG) flow has been used in the

study of such transitions which are called quantum phase transition. In particular,

transition between metallic and insulating phase was analysed in [74], where these

two phases were described as fixed points of RG flow. Similar works in the study of

metallic and insulaing fixed point also appeared in [75].

We are interested in studying the phases in the present model using techniques

of holographic RG flow used in [53, 54]. According to holographic duality a stable

phase corresponds to certain stable field configuration and appear as the fixed point

of holographic RG flow. An instability of the phase corresponds to flow between

one fixed point to the other, i.e one geometric configuration and vacuum field con-
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figuration to the other. We have obtained the potential and by minimising it we have

identified the fixed points as metallic and antiferromagnetic phases.

Our work is partially motivated from the fact that there is significant develop-

ment in the study of holographic renormalization group ( [49]- [67]), in recent stud-

ies. In particular, we have used the concept from the work by Verlinde et.al., who

proposed some formalism [53–55,67] which has wide applications in AdS/CFT cor-

respondence. According to it an on shell action can be written as the sum of local

and non local part. Buik equations of motion can be written using Hamilton Jacobi

formalism so that they look formally similar to RG equations. Many other works

also have appeared in this context [65, 66] (and references therein). Subsequently,

studies of RG in the context of dilaton theory appeared in literature [49, 50, 52, 57].

It was developed futher to include the gauge fields in the dilaton theory action [51].

Here is the brief organization of the present chapter. In section 5.2 we introduce

our model, develop the RG formalism and construct Callan Symanzik equation.

Here also we derive the potential equation. In section 5.3 we describe our first fixed

point, which is AdS fixed point. We show that this fixed point is related to metallic

phase. In section 5.4 we describe the nontrivial fixed point and show that this fixed

point is related to antiferromagnetic phase. In section 5.5 we derive certain stability

condition of metallic phase. We conclude in section 5.6. The complete equation

of motions of the field with full back reacted metric is written in Appendix A. In

Appendix A we have also expressed the expression of the fields and some of the

metric components in terms of the potentials as we are going to introduce in the

following sections.

5.2 Derivation of Callan Symmanzic equation

In chapter 2.6 we have demonstrated holographic RG flow for a gravity model,

described in [51]. In this section we are going to apply the techniques of holo-

graphic RG flow to our proposed model [40]. Recall that it is gravity coupled to
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SU(2) × U(1) gauge theory, with the scalar in the adjoint in the presence of Chern

Simons term and for the present purpose we have added Gibbons Hawking term.

The action is given by,

S =

∫
M

dρd4x
√
−g[R− Λ− 1

4
FµνF

µν − 1

4
WµνW

µν − 1

2
(Dµφ

a)†(Dµφ
a)

− m2

2
φa†φa]− κ

2

∫
B ∧ F ∧W +

∫
∂M

√
−γd4x2K , (5.2.1)

where F = dA,W a = dBa − εabcBb ∧Bc and (Dµφ)a = ∂µφ
a + iAµφ

a − εabcBb
µφ

c,

with A and B are U(1) and SU(2) gauge fields respectively, φ is the scalar in SU(2)×

U(1) adjoint representation. Also Λ is cosmological constant and here in the present

case it is given by Λ = −12. Note that the above action (5.2.1) is the same action,

we have introduced in (3.2.1) except we have added the last term, which is Gibbons-

Hawking term where γij is boundary metric. Gibbons Hawking boundary term is

ensuring that this action admits a Hamiltonian description. We choose the metric

ansatz

ds2 = −g(ρ)dt2 +
dρ2

U(ρ)
+ ds2

transverse , (5.2.2)

where

dstransverse2 = e2x1(ρ)ω2
1 + e2x2(ρ)ω2

2 + e2x3(ρ)ω2
3

= e2x1dy2
1 +

(
e2x2Cos2ky1 + e2x3Sin2ky1

)
dy2

2

+
(
e2x3Cos2ky1 + e2x2Sin2ky1

)
dy2

3

+ 2(e2x3 − e2x2)Cos(ky1)Sin(ky1)dy2dy3 , (5.2.3)

where once again we use one forms ω1 = dy1, ω2 = Cos(ky1)dy2 − Sin(ky1)dy3,

ω3 = Sin(ky1)dy2 + Cos(ky1)dy3. Here xi(ρ), U(ρ) are radial functions and k is a

parameter representing the pitch. Asymptotically AdS geometry implies at ρ → ∞

we have xi(ρ) → lnρ and U(ρ) = ρ2. Note that this (5.2.3) is the same as the
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metric ansatz used in [74], except in our case gtt is different from their case. Also

recall that in section 3.2 we have written probe approximation of this metric in

(3.2.2). Here we are considering full backreacted metric. For our purpose we impose

simplifying ansatz for the fields, which is consistent with the equations of motion,

as we considered in (3.2.4 ):

B1 = w(ρ)ω2, B2 = B3 = 0 , φ1 = φ2 = 0, φ3 = φ(ρ), A = a(ρ)dt .

(5.2.4)

We have discussed that in the holographic RG formalism in the dual field theory

which describes the flow of parameters with energy scale, in the bulk theory that

describes the flow of the fields with radial direction ρ. Note that our aim is to

describe the bulk dynamics in a Hamiltonian language where the Hamiltonian is

now the generator of translation in radial direction instead of time direction. So we

start with decomposing bulk variables along and perpendicular to radial direction as

in the standard ADM treatment of gravity. First we start with the bulk metric which

is written with lapse and shift variables in the form [52], [53]

ds2 = (N2 +N iN i)dρ2 + 2N idρdyi + γijdy
idyj , (5.2.5)

while U(1) gauge field is being decomposed as

A(ρ) = adρ+ Aidx
i . (5.2.6)

Clearly we can rewrite the above metric (5.2.3) in the above form (5.2.5) with the

choice of N i = 0. We consider this as our gauge choice. The inverse metric of

(5.2.5) is given by the following expressions

gρρ =
1

N2
; gρi = −N

i

N2
; gij = γij +

N iN j

N2
. (5.2.7)
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The Ricci scalar, on decomposition (5.2.5), is given as follows

R(g) = R(γ) +K2 −KijK
ij +∇µ(−2Knµ + 2nν∇νnµ) , (5.2.8)

where Kij is extrinsic curvature. It is given by the following expression

Kij =
1

2N
(γ̇ij − Γlapse−shift)

Γlapse−shift = DiNj −DjNi , (5.2.9)

and the unit normal vector to the constant ρ hypersurface is given by nµ =
(

1
N ,−

N i

N

)
.

Also here the covariant derivative with respect to the induced metric γij given byDi.

The action from (5.2.1), reduced in radial direction and normal direction, is given

by

S =

∫
d4yN

√
γ[R(γ) +K2 −KijKij −

1

2N2
(Dρφ−N iDiφ)†(Dρφ−N jDjφ)

− m2

2
φ†φ− γij(Diφ)†Djφ

− 1

2

γij

N2

(
Fρi −NkF ki

) (
Fρj −NmFmj

)
− 1

2

γij

N2

(
Wri −NkW k

i

) (
Wrj −NmWm

j

)
− 1

4
FijF

ij − 1

4
WijW

ij ]

− κεrijkm
(
∂ρAi − ∂iAρ −NkF ki

)
WjkBm +

∫
∂M

√
−γd4y2K . (5.2.10)

Note that canonical momenta conjugate to the fields N,N i , and a vanish since the

corresponding radial derivatives do not appear in the above Lagrangian (5.2.10). We

can evaluate the Legendre transform of the Lagrangian to obtain the radial Hamilto-

nian, given by

H =

∫
ddy
(
πij γ̇

ij + πa†φ π
a
φ + πaBḂ

a + πiȦi

)
− L . (5.2.11)
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Here by radial Hamiltonian we mean that canonically conjugate momenta to the

fields are taken as derivative of Lagrangian (5.2.10) w.r.t radial derivative of the

fields, as we did in (2.6.6). One can show that

H =

∫
ddy
(
NH +N iHi + aF

)
, (5.2.12)

where

H = − 1√
−γ

(
γikγjl −

1

d− 1
γijγkl

)
πijπkl − 2π†aφ π

a
φ −

1

2
γijπ

i
Bπ

j
B

− 1

2
γij

(
πiA +

κ

2
ερinkmWnkBm

)(
πjA +

κ

2
ερin

′k′m′Wn′k′Bm′
)

+
√
−γ{γij(Diφ

a)†(Djφ
a) +R + 12

+
1

4
FijF

ij +
1

4
W a
ijW

a ij +
m2

2
φa†φa} , (5.2.13)

Hi = Djπ
ij + (π†φD

iφa + πaφD
iφ†) + F ij(πsA +

κ

2
ερsnkmWnkBm)γsj

+
1

2
W ij,aπaB,mγ

jm , (5.2.14)

where πij correspond to canonically conjugate momentum of the metric γij , πB and

πA correspond to canonical conjugate momentum of SU(2) gauge field B and U(1)

gauge field A and πφ is the conjugate momentum to φ. Also

F = Diπ
i . (5.2.15)

Finally the Hamilton’s equation (from (5.2.12)) of motion imply

H = Hi = F = 0 . (5.2.16)

Following [51], it can be shown that. the momentum constraint Hi = 0 and Gauss’s

law constraint F = 0 represent transverse diffeomorphism invariance and gauge

invariance of the on shell action. We will focus on Hamiltonian constraint, H = 0,
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which implies invariance of on shell action under radial diffeomorphism. Note H

can be written as

H = {S, S} − Ld , (5.2.17)

where Ld is the d dimensional part of the Lagrangian (d corresponds to boundary

dimension) and the bracket expressed as:

{S, S} = − 1√
−γ

[

(
2γikγjl −

1

d− 1
γijγkl

)
πijπkl − 2πaφ†π

a
φ −

1

2
γijπ

i
Bπ

j
B

− 1

2
γij
(
πAi +

κ

2
ερinkmWnkBm

)(
πAj + ερjn

′k′m′Wn′k′Bm′
)

] . (5.2.18)

On substituting H = 0 we obtain the flow equation

{S, S} = Ld . (5.2.19)

We mentioned in section 2.6 in equation (2.6.17) ( as proposed by Verlinde [54]),

the on shell action can be written as a local and non local part,

S = Sloc + Γ , (5.2.20)

where Γ is the quantum effective action. As prescribed before, the on shell action

can have derivative decomposition as follows

Sloc = S
(0)
loc + S

(2)
loc + .............

S
(0)
loc =

∫ √
−γW

(
φ†(ρ)φ(ρ)

)
S

(2)
loc =

∫ √
−γ
{

Φ
(
φ†(ρ)φ(ρ)

)
Rd +M

(
φ†(ρ)φ(ρ)

) (
(Diφ(ρ))†(Diφ(ρ))

)}
, (5.2.21)

where in the above expressions, by the superscripts we mean the number of deriva-

tives/weights and Rd is d dimensional Ricci scalar. We carry out most general ex-

pansion of Sloc which was considered in ( [51], [54]). For d dimensional Lagrangian
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we write

L(0)
d =

{
d(d− 1)− m2

2

(
φ†(ρ)φ(ρ)

)}
L(2)
d =

{
Rd + γij

(
(Diφ(ρ))†(Djφ(ρ))

)}
L(4)
d = −1

4
FijF

ij − 1

4
WijW

ij , (5.2.22)

where the expression Diφ(ρ) is d dimensional covariant derivative of φ. This is

according to our ansatz(5.2.3,5.2.4), given by

(Diφ)a(Diφ)a =

(
w(ρ)2e−2x2(ρ) − a2(ρ)

g(ρ)

)
φ†(ρ)φ(ρ) , (5.2.23)

where a(ρ) is the time component of U(1) gauge field and w(ρ) is the ω2 component

of SU(2) gauge field (5.2.4). Also Γ is the quantum effective action contains higher

derivative and nonlocal terms. So the Hamilton -Jacobi equation actually reduces to

the following equations (5.2.19,5.2.21,5.2.22)

{
S

(0)
loc , S

(0)
loc

}
= L(0)

d (5.2.24)

2
{
S

(0)
loc , S

(2)
loc

}
= L(2)

d (5.2.25){
S

(2)
loc , S

(2)
loc

}
+ 2
{
S

(4)
loc ,Γ

}
= L(4)

d . (5.2.26)

We express the radial derivative of the fields with Hamiltonian equation of motion

dφ

dr
=
∂H

∂πφ
=

∂H

∂( ∂S∂φ† )

where by S we mean the on Shell action. So inserting the expansions(5.2.21) and

using the fact that at on shell, the momenta corresponding to a field can be expressed

as the derivative of the on shell action w.r.t the field (2.6.12), we can write ( [52],
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[51], [53])

dφ

dρ
=

∂W

∂φ

dw(ρ)

dρ
=

∂(M(φ†φ)(Diφ)†(Diφ)

∂w(ρ)
= M(φ†φ)Exp(−2x2(ρ))w(ρ)φ†φ

da(ρ)

dρ
=

∂(M(φ†φ)(Diφ)†(Diφ)

∂a(ρ)
= −M(φ†φ)

1

g(ρ)
a(ρ)φφ , (5.2.27)

and finally we write for the gravity part following [53]

∂gµν
∂ρ

gµν = (−2πµν +
2

d− 1
πλλgµν)gµν

=
2

d− 1
πλλ

= gµν
2

d− 1

∂

∂gµν
{
∫
√
gW (φ)}

⇒
dgµν
dρ

= −W (φφ)

d− 1
gµν + C(ρ) , (5.2.28)

where we introduce the constant C(ρ). Note that C(ρ) is independent of gµν but

it can differ for different component of metric. It is better to say that it actually

gives anisotropy of the metric around the fixed point. Since we want to consider the

simplest solution we will set C = 0 for all metric.

Recall we obtained the field derivatives from the expressions W (φ†φ),M(φ†φ) in

(5.2.27,5.2.28). Hence we will effectively treat the said expressions as potential and

call them by potential in the rest of the chapter. It implies, from (5.2.28)

U ′

U
=
W (φ†φ)

d− 1
; x′i = −W (φ†φ)

2(d− 1)
;
g′

g
= −W (φ†φ)

d− 1
. (5.2.29)

As expressed in (5.2.26), to write generalized expression for these brackets, follow-

ing [51], [52] we will assign weight to all fields, as we did in chapter 2.6. This is as
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following:

γµν , φ,Γ : 0

∂µ, Bµ, Aµ : 1

R,Rµν , Rµνρσ, ∂
2 : 2

∂

∂a(ρ)
,

∂

∂w(ρ)
: d− 1

∂

∂hµν(ρ)
,

∂

∂φ(ρ)
: d (5.2.30)

Sloc;w−d =

∫
ddy
√
−γL(w) . (5.2.31)

Recall in (5.2.26) we wrote the equations upto weight 4. Similarly one can construct

weight d equation, where d is the boundary dimension, as

2 {Sloc,Γ}d = −{Sloc, Sloc}d + L(d)
d , (5.2.32)

where {Sloc,Γ}d and {Sloc, Sloc}d represents weight d term from the bracket. Also

by the term L(d)
d we mean weight d term of Ld. Finally the expression (5.2.32) for

generalized bracket is

W
(
φ†(ρ)φ(ρ)

)
d− 1

γkl
∂Γ

∂γkl
−
∂W

(
φ†(ρ)φ(ρ)

)
∂φ†

∂Γ

∂φ
−
∂W

(
φ†(ρ)φ(ρ)

)
∂φ

∂Γ

∂φ†

− γij
∂Sloc;2−d
∂Bi

∂Γ

∂Bj
− γij

∂Sloc;2−d
∂Ai

∂Γ

∂Aj

=
1

2
(L(d)

d )− 1

2
{S, S}d +

1

2
κερijkmWjkBm

∂Sloc
∂Ai

. (5.2.33)

After some rearrangement of the above equation, we write Callan-Symmanzik equa-

tion as

γkl
∂Γ

∂γkl
− βφ

∂Γ

∂φ
− βφ†

∂Γ

∂φ†
− βB

∂Γ

∂Bj
− βa(ρ)

∂Γ

∂Aj

=
1

2

{
W
(
φ†(ρ)φ(ρ)

)
d− 1

}−1 [
(L(d)

d )− {S, S}d + κερijkmWjkBm
∂Sloc
∂Ai

]
,

(5.2.34)
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with

βφ =

{
W
(
φ†(ρ)φ(ρ)

)
d− 1

}−1
∂W

(
φ†(ρ)φ(ρ)

)
∂φ†

βφ† =

{
W
(
φ†(ρ)φ(ρ)

)
d− 1

}−1
∂W

(
φ†(ρ)φ(ρ)

)
∂φ

βa(r) =

{
W
(
φ†(ρ)φ(ρ)

)
d− 1

}−1

γij
∂Sloc;2−d
∂Ai

βw(r) =

{
W
(
φ†(ρ)φ(ρ)

)
d− 1

}−1

γij
∂Sloc;2−d
∂Bi

. (5.2.35)

We define the β functions as above. The fixed point is given by simultaneous zero

of the β functions. Clearly when we have βφ = βφ† = 0 this implies, the potential

term W
(
φ†(r)φ(r)

)
is at its extrema (5.2.35). In order to understand it for SU(2)

gauge field and vector field, let us recall (5.2.31,5.2.21); the vanishing of βa(r) and

βw(r) needs, for nonzero φ,

M
(
φ†(ρ)φ(ρ)

)
= 0 , (5.2.36)

at fixed point. We will discuss these points further in next sections. So far we have

considered Callan Symanzik equation which is weight d part of H = 0 constraint.

Next we consider weight 0 and weight 2 part of the same constraint. These latter

equations, which are equations forW (φ†φ),M(φ†φ) as introduced in (5.2.27,5.2.28),

are direct consequence of the constraint H = 0. These equations can be obtained

from (5.2.19) where the canonically conjugate momenta is expressed as the deriva-

tive of on shell action as given in (2.6.12) and we have the on shell action, which is

expanded as (5.2.21). We will call them potential equations which are as follows.

The potential equation at zeroeth derivative order is given by

d

4(d− 1)
[W (φ†φ)]2 − ∂W (φ†φ)

∂φ†
∂W (φ†φ)

∂φ
− 1

2
φ†φM(φ†φ)W (φ†φ)

(
e−2x2 − 1

g(ρ)

)
= V (φ†φ) . (5.2.37)
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At two derivative level we have the expression as

−1

2
(Diφ)†(Diφ) +Rd =

d− 2

d− 1

[
Φ(φ)Rd +M(φ†φ)(Diφ)†(Diφ)

]
W (φ†φ)

−
{
∂W (φ†φ)

∂φ†
∂Φ(φ†φ)

∂φ

}
Rd

−
{
∂W (φ†φ)

∂φ†
∂M(φ†φ)

∂φ

}
(Diφ

†)(Diφ)

+ M(φ†φ)
∂W (φ†φ)

∂φa †

{
−a(ρ)

g(ρ)
(Diφ)a + f bca(Diφ)bBc(r)

}
− W (φ†φ)M(φ†φ)

{
−a(ρ)2

g(ρ)
+ e−2x2(ρ)w(ρ)2

}
− 1

2
M(φ†φ)e−4x2(ρ)[φ†φ]

4
]

− 1

2
{
(
− 1

g(ρ)
(φ†φ)

2
M(φ†φ) +

κ

2
ερinkm(Wnkbm)

)
×

(− 1

g(ρ)
(φ†φ)

2
M(φ†φ))

+
κ

2
ερin

′k′m′(Wn′k′bm′))} . (5.2.38)

5.3 Critical Points : AdS fixed point

In previous section we have described the critical points which are given by simul-

taneous zero of β functions. From (5.2.35), we note that the first condition for zero

of the β function is, the extrema of W (φ†φ) has to vanish. To find the critical points,

we have to solve the potential equation (5.2.37) order by order. We expand W (φ†φ)

perturbatively as

W (φ†φ) = Wo +W1(φ†φ) +W2(φ†φ)2 + ..... , (5.3.1)

where Wo,W1,W2 are constant coefficient terms. Clearly when we extremize the

above (5.3.1), w.r.t. φ, one trivial fixed point we find which is at φ = 0. Combining,(5.2.21),

(5.2.23), (5.2.31), (5.2.35), (5.3.1), one can found that φ = 0 is also the zero of the β

function which is associated with SU(2) gauge field and U(1) gauge field. Moreover

one can also choose, at this fixed point SU(2) gauge field w(ρ) = 0. Then from
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the action (5.2.1) it is clear that remaining action describes gravity coupled to U(1)

gauge field. In [74] it was shown that such action has RN AdS black hole solu-

tion. According to [74], AdS RN black hole has a near horizon geometry given by

AdS2 × R3 which along with some deformation, is dual to the metallic phase. So it

is suggestive that our first fixed point does have correspondence to metallic phase.

Substituting (5.3.1), we solve the potential equation (5.2.37) order by order. It ap-

pears that first order term is

Wo = 2(d− 1) . (5.3.2)

Before considering the next order term, we consider the term

1
2φ
†φM(φ†φ)W (φ†φ)

(
e−2x2(ρ) − 1

g(ρ)

)
from (5.2.37). Near AdS background e−2x2(ρ) =

1
g(ρ) = 1

ρ2 (We consider AdS radius L = 1). So exactly near AdS fixed point the con-

tribution of this term term will be zero. The coefficient equation in first order of φ†φ

is given by
d

4(d− 1)
(2WoW1)− 2W 2

1 = −1

2
m2 . (5.3.3)

So we write

W1 =
1

2
4± . (5.3.4)

Substituting (5.3.4) in (5.3.3) gives

d

2
4± −

1

2
42
± = −1

2
m2 . (5.3.5)

Near AdS fixed point, since φ = 0, the quadratic and higher order terms in φ can be

ignored. Therefore upto quadratic expression the potential W (φ†φ) can be written

as

W (φ†φ) = 2(d− 1) +
1

2
4±φ†φ , (5.3.6)

where 4± is the dimension of dual operator. Near AdS fixed point the expression

of the scalar field can be obtained by integrating φ derivative part of (5.2.27)

φ(ρ) = A1ρ
4+ + A2ρ

4− ;4± =
d±
√
d2 + 4m2

2
. (5.3.7)
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In order to find an approximate expression of w(ρ), a(ρ) near fixed point, we recall

the equation (5.2.27),

dw(ρ)

dρ
= M(φ†φ)Exp(−2x2(ρ))w(ρ)φ†φ =

c1
ρ2

(φ†φ− α)(φ†φ)w(ρ)

da(ρ)

dρ
= −M(φ†φ)

1

f(ρ)
a(ρ)φ†φ =

c1
ρ2

(φ†φ− α)(φ†φ)a(ρ) . (5.3.8)

In the above we have substituted the expression of Ads background metric

Exp(−2x2(ρ)) =
1

g(ρ)
=

1

ρ2

Also we use the expression M(φ†φ) = φ†φ− α, which actually we have established

in the next section (5.4.3). Integrating (5.3.8) one can obtain the series expression

ln[w(ρ)] = −ln[a(ρ)] =
c1
ρ
{α(A1 + A2)2 − (A1 + A2)4}

+ c1lnρ{−2α(A1 + A2)(A1
4+

2

+ A2
4−
2

) + 3(A1 + A2)3(A1
4+

2
+ A2

4−
2

)}

+ ....... , (5.3.9)

where A1, A2 are integration constant. One can derive similar expression for a(ρ).

5.4 Nontrivial fixed point

We have mentioned in the earlier section that nontrivial fixed point appears with

two conditions; extrema of W (φ†φ) is zero and M(φ†φ) is zero. In order to study

the theory explicitly, we recall the perturbative expansion of W (φ†φ) which we keep

upto quadratic term in φ†φ

W (φ†φ) = Wo +
1

2
4±φ†φ+ c1(φ†φ)2 + ...

Extremizing W (φ†φ), we find, one extrema lies at φ† = 0 (which corresponds to
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AdS fixed point) and the other one corresponds to

1

2
4± + 2c1φ

†φ = 0 . (5.4.1)

From the above we find that nontrivial fixed point lies on a circle φ†φ = α with

α = −4±
4c1

. (5.4.2)

First we note that at nontrivial fixed point, the vacuum lies on a circle φ†φ = α,

which implies φ = eiχ(x), φ† = e−iχ(x), where χ is any function of space-time vari-

able x and α is given by (5.4.2). Clearly, since the solution has U(1) symmetry, this

spontaneously breaks SU(2) × U(1) symmetry of the theory to U(1) × U(1). Fol-

lowing [36] this breakdown of symmetry SU(2)→ U(1) with nontrivial v.e.v of the

scalar, in a model of gravity coupled to SU(2) and U(1) gauge field, gives rise to an-

tiferromagnetism. Since, we have shown that our model is showing a similar feature

so it is suggestive that this nontrivial fixed point corresponds to antiferromagnetic

phase in the dual theory.

We mentioned earlier (5.2.36), that when the scalar field φ takes a nontrivial

v.e.v, the zero of the β function implies the condition, potential at two derivative

orderM(φ†φ) = 0. This requiresM(φ†φ), to have a series form around the nontrivial

fixed point

M(φ†φ) = (φ†φ− α) +O((φ†φ− α)2) + ... , (5.4.3)

where α is the value of v.e.v of 〈φ†φ〉 at the nontrivial fixed point (5.4.2). Next

we consider the potential equation at zeroeth order (5.2.37), In that equation, we

consider the fact e−2x2(ρ) 6= 1
g(ρ) 6=

1
ρ2 . We denote at the nontrivial fixed point

e−2x2(ρ) − 1

g(ρ)
= c+O(φ†φ) + .... , (5.4.4)

where c is the zeroeth order term of the above expansion. Substituting this (5.4.4)

in (5.2.37) and also using (5.4.3) we obtain the zeroeth term of W (φ†φ) which is
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Wo = 2(d− 1) and the term of the order φ†φ is given by

d4± −42
± = −m2 − 2cα(d− 1) . (5.4.5)

We see in the above expression that once we set c = 0, we get back the AdS RN

expression (5.3.5) which also gives AdS RN geometry near critical point. So we

have the equation for4± is

42
± +

[
c

2c1
(d− 1)− d

]
4± −m2 = 0 . (5.4.6)

4± = − b
2
± 1

2

√
b2 + 4m2

b =

[
c

2c1
(d− 1)− d

]
. (5.4.7)

Finally we want to comment that since the nontrivial fixed point breaks SU(2) ×

U(1) → U(1) × U(1), from [36], it is suggestive that the respective fixed point

describes an antiferromagnetic phase in the dual theory.

5.5 Instability of metallic phase

In holographic duality, the IR limit of a theory is described by the near horizon limit.

In this section we consider a solution with AdS2 × R3 as the near horizon limit. In

addition, we have added deformations following [74] to it given by:

U = 12ρ2(1 + u0ρ
δ) ; xi = vo(1 + xi1ρ

δ) ; a = 2
√

6ρ(1 + a0ρ
δ)

w = woρ
δ ; φ = φoρ

δ ; g = 12ρ2(1 + g0ρ
δ) . (5.5.1)

In [74] a similar configuration along with deformation is considered, which repre-

sents metallic state at zero temperature [116].

We determine the exponents in (5.5.1) using equations of motion. They come
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in pairs corresponding to the power of two roots of the equations. We find two

marginal operator with δ± = 0 which corresponds to rescaling of x1, x2, x3. The

four remaining operator are given by positive weight

δ+ = 1 ; −1

2
+

√
1

4
+

1

12
p2e−2x0 − κ√

6
pe−2x0 ;

−1

2
+

√
1

12
(1 +m2) ;

1

2
+

√
1

4
+

1

3
p2e−2x0 , (5.5.2)

if

2
√

6κ < pe−x0 ; m2 > 2. (5.5.3)

One may observe that all four modes are irrelevant with δ+ > 0. We see that when

both the inequalities in (5.5.3) are satisfied, the solution is stable and following [74]

we identify this with metallic state. When the second inequality is violated the

respective deformation mode becomes relevant. However in this case the translation

symmetry remain conserved since we have w → 0 as r → 0 and the respective

deformation which causes the helical structure to arise, is being turned off. When

the first inequality becomes violated in (5.5.3), it will cause δw < 0 about IR fixed

point, make the dual operator relevant. When the deformation associated with w(r)

turns out to be relevant, w will take nonzero value at horizon. Consequently the

translational symmmetry will break and the respective instability mode will turn on

the helical geumetry. In addition, it is also expected that φwill also be turned on. We

expect, then such relevant modes will drive the IR geometry from AdS2 ×R3 along

with some deformation, to the one with helical symmetry and non-zero φ. Hence

once this condition is violated, following [74], we understand that system will flow

away from metallic phase to another fixed point phase breaking SU(2) → U(1)

which we have seen, suggestive to be antiferromagnetic phase.
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5.6 Conclusion

Here we have developed RG formalism for our proposed model, which is SU(2)×

U(1) gauge theory coupled to scalar in adjoint representation in the presence of

Chern Simons and Gibbons Hawking term. We derived the Callan Symanzik equa-

tion, β functions in this model. We found that the critical points, which is obtained

by setting all the β functions simultaneously to zero, corresponds to the extrema

of the potential W (φ†φ). We observed the trivial fixed point corresponds to an ac-

tion which has AdS RN black hole solution, Here the near horizon geometry along

with some deformation corresponds to metallic phase. We also noted the fact that

our model has a nontrivial fixed point where SU(2)× U(1) gauge symmetry breaks

down to U(1)× U(1) symmetry and resembles antiferromagnetism. We have also

checked the fact that the metallic phase develops instability for certain parametric

condition, flows towards another phase which is suggestive to be antiferromagnetic.
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Chapter 6

Hyperscaling violating geometry and

thermoelectric properties

6.1 Introduction

So far we have restricted our study of different phases of holographic superconduc-

tors. In this chapter we would like to deviate a little bit and like to study transport

properties. As we mentioned earlier, there are materials discovered, which show

anomalous transport behaviours. In particular, there is strange metal phase which

shows linear temperature dependence of resistivity. These behaviours are substan-

tially different from the Fermi liquid and understanding such deviations is the one of

the motivations for studying this. Since it has been suggested in [100] that hyperscal-

ing violating geometries may be the appropriate set up to look for such phenomena,

we consider a different gravity model in this chapter.

We consider hyperscaling violating Lifshitz geometries for this purpose. Such

geometries are characterised by two parameters v and ξ, corresponding to Lifshitz

scaling and the hyperscaling violation respectively. As mentioned earlier, trans-

port properties for such theories have been discussed in [86–90]. To obtain such

geometry one may consider four dimensional Einstein-Maxwell-Axion-Dilaton the-

ory with two U(1) gauge fields. One gauge field is required to introduce Lifshitz
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like behaviour, while the other plays the role of electromagnetic field. In the present

chapter we will be considering transport properties that ensued from this solution

and look for scaling behaviour of various transport coefficients.

Our approach will be considering linearised fluctuations around black hole so-

lution. Solving equations of the fluctuations we obtain the transport coefficints. As

we explained in chapter 2 this appraoch is amenable for incorporation of different

boundary conditions as well as identification of the boundary observables. It has

been discussed for electrically charged black hole [88] with hyperscaling violating

Lifshitz geometry. In our work, we introduce a magnetic field and obtain a dyonic

black hole solution. With this dyonic black hole as the background we study the lin-

ear fluctuations. Considering expansion of these fluctuations in orders of frequency,

we obtain the solutions for lower orders. The magnetic field enable us to study the

magnetic proerties as well, such as Hall angles. We will obtain and discuss the result

for thermoelectric coefficients for Dirichlet boundary condition but we can incorpo-

rate other boundary conditions as well, as mentioned above in a straightforward

manner. The case of electrical black hole may be obtained at the limit of vanish-

ing magnetic field. The expressions are quite invovled and we have taken limits of

parameters to discuss scaling properties of the coefficients.

This chapter is structured as follows. In the next section we introduce the asymp-

totically Lifshitz hyperscaling violating solution. In the next section we introduce

the fluctuations in metric and gauge fields, consider their linearised equations of

motion and obtain solution in low frequency limit. In section 6.4 we compute the

thermoelectric coefficients and discuss their temperature dependence. We conclude

in section 6.5. Some of the materials related to the necessary canonical transforma-

tion of the fields has been discussed in the appendix B.
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6.2 Hyperscaling violating Lifshitz Black Hole

In the present section we derive asymptotically Lifshitz hyperscaling violating so-

lution of the equations of motion from our considered model, in the presence of

background magnetic field. We will use this solution as the background. The elec-

trically charged solution and the dyonically charged solution have been described

in [86, 88] and [87, 89] respectively, as classical solutions of an Einstein-Maxwell-

dilaton-axion system. As mentioned above, it requires 2 gauge fields to obtain the

geometry. Here we have coupled them through a symmetric invertible matrix ΣIJ ,

I, J = 1, 2 with positive eigenvalues, where Σ depends on the dilaton field φ. In or-

der to violate the momentum conservation, which is required for direct conductivity

we include two axion fields, χa, where a = 1, 2. We include a dilaton dependent

prefactor Z(φ) for the Axion term in the action (6.2.1).

We consider the four dimensional action

S = Sgrav + Sscalar + Saxion + SU(1) + SGibbons−Hawkings (6.2.1)

where

Sgrav =

∫
d4x
√
−gR ,

Sscalar = −
∫
d4x
√
−g[α(∂φ)2 + V (φ)] ,

Saxion = −
∫
d4x
√
−g[Z(φ)(∂χa)2] ,

SU(1) = −
∫
d4x
√
−g[ΣIJF

I
µνF

Jµν ] ,

(6.2.2)

and three dimensional boundary action is given by

SGibbons−Hawkings =
1

2κ2

∫
∂M

d3x
√
−γ2K , (6.2.3)

.
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where κ2 = 8πG and the SGibbons−Hawkings is Gibbons-Hawking boundary term.

V (φ) is the potential for dilaton fields. We have derived the equations of motion

obtained from (6.2.1) given by

Rµν = α∂µφ∂νφ+
1

2
V (φ)gµν + Z(φ)∂µχ

a∂νχ
a + 2ΣIJ(φ)(F IµλF

Jλ
ν −

1

4
gµνF

I
ρσF

Jρσ),

∇µ(ΣIJ(φ)F Jµν) = 0,

∇µ(Z(φ)∂µχ
a) = 0 and 2α�φ− V ′(φ) = Σ′IJ(φ)F IρσF

Jρσ,

(6.2.4)

which represnts Einstein, Maxwell, axion and dilaton equations.

We have chosen the following ansätz for the metric, axion and the gauge fields

ds2
B = γµνdx

µdxν = dr2 + e2H(−g(r)dt2 + dx2 + dy2) ,

χ1
B = kx, χ2

B = ky, φB = φB(r), AI = aI = aIt (r)dt+
BI

4
εabx

adxb

(6.2.5)

to obtain asymptotically Lifshitz hyperscaling violating black hole solution. Here

we denote the background metric tensor by γab . Note that since we have chosen

linear axion in the background, it is breaking the translation invariance. Thus by

our choice of background we are incorporating a mechanism to break momentum

conservation to obtain DC conductivity. One gauge field gives rise to Lifshitz like

behaviour of the metric. The solution has electric and magnetic charge with respect

to the second gauge field, though we have kept the constant magnetic field F Iab =

1
2B

Iεab associated with both the gauge fields.

We substitute the ansatz (6.2.5) in the second equation of (6.2.4). We found that

the elctric charges qI = −g−1/2eHΣIJ∂ra
J
t is constant. On substitution of the ansatz
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(6.2.5), the first and the last equation (6.2.4), give rise the following equations:

g′′

2g
+ 3H ′

g′

2g
− g′2

4g2
= k2Z(φ)e−2H + 2e−4HQ,

H ′′ +H ′(3H ′ +
g′

2g
) + k2Z(φ)e−2H =

1

2
V + e−4HQ,

(6H ′2 + 4H ′
g′

2g
) = α(∂rφ)2 − 2p2Z(φ)e−2H − V − 2e−4HQ,

2α[∂2
rφ+ (3H ′ +

g′

2g
)∂rφ]− V ′(φ) = 2e−4HQ′ ,

(6.2.6)

where Q = (ΣIJ(φ)qIqJ + 1
4ΣIJ(φ)BIBJ)

Provided we have the expression of Z(φ) and ΣIJ(φ), we can obtain these equa-

tions to find out the metric, the dilaton, the Maxwell field and the potential.

Very similarly like the electrically charged black hole, these equations gives an

exact dyonic black hole solution [87, 89], which depend on two parameters v and

ξ. It is more convenient to choose another radial coordinate z to get appropriate

asymptotic behavior and the dyonic solution in terms of v is as follows. The metric

is

ds2 = z−ξ[−z2vF (z)dt2 +
dz2

z2F (z)2
+ z2(dx2 + dy2)], (6.2.7)

where we set e2H = z2−ξ in (6.2.5). The blackening factor F (z) is given by

F (z) = 1 +
k2

(2− ξ)(v − 2)z2v−ξ −
m

z2+v−ξ +
8q2

2

(2− ξ)(v − ξ)z2(v+1−ξ)

+
B2z2v−6

16(4 + ξ − 3v)(2− v)
. (6.2.8)

This z coordinate is given in terms of r by the relation

dr = −sgn(ξ)z−ξ/2F−1/2(z)
dz

z
. (6.2.9)

Other fields and functions are given following manner: The prefactors, ΣIJ(φ)

98



and Z(φ) are

Σ11(φ) =
1

4
e[(ξ−4)/µ]φ, Σ22(φ) =

1

4
e[(2v−2−ξ)/µ]φ, Σ12 = 0, Z(φ) =

1

2
e[µ/(ξ−2)]φ,

(6.2.10)

where α = 1/2 and µ is given by 2µ2α = (2− ξ)(2v− 2− ξ). In terms of new radial

coordinate z, the dilaton, the axion and the gauge fields are

φ = µ log z,

χ1 = kx,

χ2 = ky,

a1
t =

4sgn(ξ)q1

2 + v − ξ
(z2+v−ξ − z2+v−ξ

h ),

a2
t =

4sgn(ξ)q2

ξ − v
(zξ−v − zξ−vh ), (6.2.11)

where the charge q1 is given by

q2
1 = (2 + v − ξ)(v − 1)/8, (6.2.12)

and V (φ)

V (φ) = −(2 + v − ξ)(1 + v − ξ)eξφ/µ − 2v − 2− ξ
4(v − 2)

B2e(ξ+2v−6)(φ/µ). (6.2.13)

represents the potential.

6.3 Fluctuation

Thermoelectric coefficients are expressed in terms of correlation function of opera-

tors which are dual to linear fluctuation. Therefore, for computation of the former

we need to consider linear fluctuations in the metric and the gauge fields around the
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background solution. The fluctuation in the metric is given by

γij = γBij + σij , (6.3.1)

whereas fluctuation in the fields are given by

AIi = AIBi + αIi , φ = φB + ϕ, χa = χaB + βa, (6.3.2)

where i, j takes values on t, x and y. We define W j
i = γjkσik. To simplify the

analysis, we set W t
t = W x

x = W y
y = W y

x = 0 and ϕ = αIt = 0 consistently. That

leaves nonzero fluctuations to be W a
t , W t

a, αIa and βa. Note that W t
a is related to W a

t

and so W t
a will not be considered separately. Assuming these fields depend only on

t and r, the linearised equations for these fluctuations for the background given in

the ansatz (6.2.5) are as follows:

[∂2
r + (3∂rH −

∂rg

2g
)∂r − e−2H(2k2Z + e−2HΣIJB

IBJ)]W a
t

= −2e−2H [kZ(∂tβ
a) + 2ΣIJ(∂rα

I
t )(∂rα

J
a ) + e−2HΣIJ(∂tα

I
b)εabB

J ],

∂r∂tW
a
t + 2e−2HΣIJ(∂rα

I
t )B

JεabW
b
t

= −2kgZ∂rβ
a − 4e−2HΣIJ∂rα

I
t ∂tα

J
a − 2ge−2HΣIJB

Jεab∂rα
I
b ,

∂r{ΣIJe
Hg−1/2[(∂rα

J
t )W a

t + g∂rα
J
a ]} = g−1/2e−HΣIJ(∂2

t α
J
a +

1

2
εab∂tW

b
t B

J ,

∂2
rβ

a + (3∂rH +
∂rg

2g
+
∂rZ

Z
)∂rβ

a − e−2H

g
∂2
rβ

a = −g−1e−2Hk∂tW
a
t . (6.3.3)

As mentioned above, equations for W t
a follows from the above set of equations. We

further assume the time dependence of the various functions are eiωt. This reduces
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above set of equations to the following

[∂2
r + (3∂rH −

∂rg

2g
)∂r − e−2H(2k2Z + e−2HΣIJB

IBJ)]W a
t

= −2e−2H [−iωkZβa + 2ΣIJ(∂rα
I
t )(∂rα

J
a ) + iωe−2HΣIJα

I
bεabB

J ],

iω∂rW
a
t + 2e−2HΣIJ(∂rα

I
t )B

JεabW
b
t

= −2kgZ∂rβ
a − 4iωe−2HΣIJ∂rα

I
tα

J
a − 2ge−2HΣIJB

Jεab∂rα
I
b ,

∂r{ΣIJe
Hg−1/2[(∂rα

J
t )W a

t + g∂rα
J
a ]} = g−1/2e−HΣIJ(−ω2αJa +

iω

2
εabW

b
t B

J),

∂r[e
3Hg1/2Z∂rβ

a] = −iωkZeHg−1/2(W a
t −

iω

k
βa). (6.3.4)

we follow [88], to introduce new field

Θa = W a
t −

iω

k
βa. (6.3.5)

The fluctuation Θa is dual to the energy operator in the boundary theory. We intro-

duce new function Ω = ω2−2k2gZ in order to express the equations in terms of this

field Θa. Some of the terms, however, we have expressed in terms of W a
t , which can

be written in terms of Θa and βa.

∂r[2k
2gZΩ−1(−g−1/2e3H∂rΘ

a + 4qIα
I
a)− 2iωΩ−1BIεab(qIW

b
t

− g1/2eHΣIJ∂rα
J
b )]− eHg−1/2(2k2Z + e−2HΣIJB

IBJ)Θa

=
iω

k
e−Hg−1/2ΣIJB

IBJβa − 2iωe−Hg−1/2εabΣIJB
JαIb ,

− g−1/2eH∂r(g
1/2eHΣIJ∂rα

J
a − 2k2gZΩ−1qIΘ

a)− 2k2ω2

Ω2
g−1/2eH∂r(gZ)qIΘ

a

+ ω2g−1(ΣIJ − 4Ω−1e−2HgqIqJ)αJa

+ 2iωΩ−1e−2HεabqIB
J(qJW

b
t − eHg1/2ΣJK∂rα

K
b )− iω

2
g−1ΣIJεabW

b
t B

J = 0,

∂rW
a
t + 4e−2HΣIJ(∂rα

I
t )α

J
a =

2i

ω
e−2HΣIJB

Jεab(∂rα
J
tW

b
t + g∂rα

J
b ) +

2ikgZ

ω
∂rβ

a,

∂r[e
3Hg1/2Z∂rβ

a] = −iωkZeHg−1/2Θa. (6.3.6)

To analyse the theory at near horizon limit, we introduce another radial coordi-
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nate u, convenient for this purpose. it is related to r through du = −g(r)1/2e−H(r)dr.

In terms of u the metric turns out to be

ds2 = e2H(u)(−g(u)dt2 +
du2

g(u)
+ dxdx+ dydy). (6.3.7)

The derivatives with respect to u and r are through

∂r = −√ge−H∂u, ∂u = −g−1/2eH∂r (6.3.8)

The differential of u is expressed in terms of that of z through the relation du =

sgn(ξ)zv−3dz where v and ξ are parameters determining behavior of the metric.

The horizon of the black hole is located at u = uh, so that the blackening factor in

terms of u at that point vanishes, g(uh) = 0 and at near horizon g(r) ≡ 4πTρ +

O(ρ2), where ρ = uh − u. At the near horizon limit, other quantities, A, Z and ΣIJ

approaches constant values.

The near horizon limit of the four equations are as follows:.

2k2Z

ω2
[g∂u(g∂u(e2HΘa))] + 2k2Ze2HΘa − 2i

ω
εabΣIJB

I [g∂u(g∂uα
J
b ) + ω2αJb ]

+
8k2Z

ω2
qIg∂u(gαIa)−

2i

ω
qIB

Iεab∂uW
b
t + ΣIJB

IBJW a
t = 0,

ΣIJ [g∂u(g∂uα
J
a ) + ω2αJa ]− 2k2ZqI

ω2
g2∂uΘa − 4e−2HqIqJgα

J
a

+
2i

ω
e−2HqIB

JεabΣJKg
2∂uα

K
b +

2i

ω
e−2HεabqIqJB

JgW b
t −

iω

2
ΣIJεabW

b
t B

J = 0,

∂uW
a
t −

2i

ω
e−2HεabqIB

IW b
t + 4e−2HqIα

I
a −

2i

ω
e−2HεabΣIJB

Jg∂uα
J
b

− 2ik

ω
g∂uβ

a = 0,

g∂u(gZ∂ue
2Hβa) = −iωkZe2HΘa. (6.3.9)
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Considering the terms contributing in leading order of ρ we obtain

2k2Z

ω2
[g∂u(g∂u(e2HΘa))] + 2k2Ze2HΘa − 2i

ω
εabΣIJB

I [g∂u(g∂uα
J
b ) + ω2αJb ]

+ ΣIJB
IBJW a

t = 0,

ΣIJ [g∂u(g∂uα
J
a ) + ω2αJa ]− iω

2
ΣIJεabW

b
t B

J = 0. (6.3.10)

Choosing the in-falling behaviour of the fields at horizon, we obtain the following

near horizon behaviour

e2HΘa ∼ ρ
−iω
4πT , ηIa ∼ ρ

−iω
4πT . (6.3.11)

where we have introduced the combination

ηIa = αIa +
1

2k
e2HBIεabβ

b. (6.3.12)

As we will see the above near horizon behaviour determines the relations among

the integration constants appearing in the solutions of the different fields.

In order to study direct conductivity, we need to have solution of the fields Θa,

αIa and βa. The differential equations are quite complicated to solve but we do not

require the full solution. Since direct conductivity depends on the behaviour of the

fields at low frequency limit only, it is sufficient for our purpose to expand the fields

in powers of frequency and determine the low frequency behaviour of the fields. In

other words, we consider the following power series expansion

Θa = Θa(0) + ωΘa(1) + ω2Θa(2) + ...,

αIa = α
I(0)
a + ωα

I(1)
a + ω2α

(2)
a + ...,

βa = βa(0) + ωβa(1) + ω2βa(2) + .... (6.3.13)

These expansions will enable us to determine the fields at different orders of fre-

quency from the equations in an iterative manner .
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We can separate out the equations to every order in frequency where first we

consider the equation with the terms at the order of zero frequency. On substitution

of the expansions of (6.3.13) in (6.3.6) yields from the second equation in (6.3.6)

∂r(g
1/2eHΣIJ∂rα

J(0)
a − qIΘa(0)) = 0. (6.3.14)

This suggests we can introduce a new function

CaI = g1/2eHΣIJ∂rα
J
a − qIΘa. (6.3.15)

Then from (6.3.14) we understand that Ca(0)
I is a constant. From the first equation

in (6.3.6) we obtain

∂r[e
3Hg3/2∂r(g

−1Θa(0)) + 4αItC
a(0)
I ] = 0, (6.3.16)

where we have used (6.2.6). For fluctuation of axion field we get from the third

equation of (6.3.6)

∂uβ
a(0) = εab

C
b(0)
I BI

e2HZ
g−1. (6.3.17)

From (6.3.14) and (6.3.16) we write the solutions in terms of the following inte-

grals

Θa(0) = gΘa
1 + gΘa

2

∫
du

e2Hg2
− 4gC

a(0)
I

∫
αIt du

e2Hg2
,

α
I(0)
a = α

I(0)
a0 − C

a(0)
I

∫
ΣIJ

g
du− qJΘa

1

∫
ΣIJdu− qJΘa

2

∫
ΣIJ

∫
du

e2Hg2

− 4qJC
a(0)
K

∫
duΣIJ

∫
αKt du

e2Hg2
,

βa(0) = β
a(0)
0 + εabC

b(0)
I BI

∫
du

e2HgZ
,

(6.3.18)

where we have used integration constants, Θa
1, Θa

2, αI(0)
a0 and βa(0)

0 .

At the near horizon limit, H, Z and ΣIJ are taking constant value given byH(h),
104



Z(h) and ΣIJ(h). Behaviour of g(u) near u → uh is g ∼ 4πTρ and αIt ∼ O(ρ),

which gives the expression

Θa(0) = (4πTρ)Θ1 +
Θa

2

4πTe2H(h)
−

4C
a(0)
I ∂uα

I
t

4πTe2H(h)
ρ log ρ,

α
I(0)
a = α

I(0)
a0 + (

qJΘa
2

4πTe2H(h)
+ C

a(0)
J )

ΣIJ(h)

4πT
log ρ+ qJΘa

1ΣIJ(h)ρ,

βa(0) = β
a(0)
0 − εab

C
b(0)
I BI

4πTe2H(h)Z(h)
log ρ.

(6.3.19)

Since BI enters the equations at the first order of ω, The equations are very much

similar to the one obtained in absence of magnetic field [88] at the zeroeth order of

frequency.

Next we will consider the equations with the terms at first order of frequency.

Here we will adopt a recursive procedure to determine the solutions at different

orders of ω, by using solutions obtained in the lower orders. On substitution of

(6.3.13) in the second equation in (6.3.6) we get

g−1/2eH∂r(g
1/2eHΣIJ∂rα

J(1)
a − qIΘa(1))

− 2i

2k2gZ
e−2HεabqIB

J(qJΘb(0) − eHg1/2ΣJK∂rα
K(0)
b )

− i

2
g−1ΣIJεabΘ

b(0)BJ = 0, (6.3.20)

which leads to

∂uC
a(1)
I = −ig−1εabB

J(−
qIC

b(0)
J

p2Ze2H
+ ΣIJ

Θb(0)

2
). (6.3.21)

By integrating (6.3.21) we can write Ca(1)
I in terms of the zeroeth order terms. Sim-

ilarly, Θa(1) and βa(1) satisfy the relation

∂u[e2Hg2∂u(g−1Θa(1))]− 4C
a(1)
I ∂uα

I
t + 2iεabΣIJB

Jα
I(0)
b

+
i

k2
εabB

IgC
a(0)
I ∂u(

1

gZ
)− i

k
ΣIJB

IBJβa(0) = 0,

∂u[e2HHZ∂uβ
a(1)] = ikZe2Hg−1Θa(0),

(6.3.22)
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while we can get αI(1)
a from

∂uα
I(1)
a = −g−1ΣIJC

a(1)
J − qIg−1Θa(1). (6.3.23)

Like Ca(1)
I , we can integrate all these equations to obtain expressions at first order

in terms of the zeroeth order fields.

Using the recursive procedure as we mentioned, we substitute the near horizon

behaviour of g, H, Z and Σ obtained for the zeroeth order and integrate the above

equations to get the near horizon behaviour of the fields at first order. The expression

for Ca(1)
I is

C
a(1)
I =C

a(1)
I0 +

iεabB
J

e2H(h)4πT
[

(
−
qIC

b(0)
J

k2Z(h)
+

Θb
2ΣIJ(h)

8πT

)
log ρ+

1

2
Θa

1ΣIJ(h)e2H(h)4πTρ

+
2ΣIJC

a(0)
K ∂uα

K
t

4πT
(ρ log ρ− ρ)] + ...,

(6.3.24)

where Ca(1)
I0 is the constant of integration.

From this expressions, we can obtain a similar near horizon expression for Θa(1)

from (6.3.22) as follows

Θa(1) =
Θa

3

e2H(h)4πT
+

i

k2

εabB
IC

a(0)
I

Z(h)
log ρ+ Θa

44πTρ+ ..., (6.3.25)

where Θa
3 and Θa

4 are constants of integration. The fluctuation in gauge field at first

order, αI(1)
a at the near horizon limit can be obtained from (6.3.23) and is given by

α
I(1)
a = α

I(1)
a0 +

ΣIJ(h)

4πT

[
qJΘa

3

e2H(h)4πT
+ C

a(1)
J0

]
log ρ+ ...., (6.3.26)

where we have introduced the integration constant as αI(1)
a0 . Finally the βa at first
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order appeared to be

βa(1) = β
a(1)
0

− e−2H(h)

4πTkZ(h)
[εabB

KC
b(1)
K0 −

i

2
(e2H4πTΘa

1 + 4qiα
I(0)
a0 )

+
i

k
qIB

Iεabβ
b(0)
0 ] log ρ+ ....,

(6.3.27)

We can obtain the integration constants, which we introduced at different orders

in the following manner. We compare the expressions near the horizon behaviour

with the near horizon behaviour of the various fluctuations, as given in (6.3.11).

That requires consideration of the equations upto second order in frequency.

From the second order of ω equation we obtain the expression for Ca(2)
I as

∂uC
a(2)
I =

qIe
−2H

2k2gZ
[(e2H∂uΘa(0) + 4qJα

J(0)
a ) + 2iεab(C

b(1)
J − i

k
qJβ

b(0))BJ ]

− ΣIJ

g
[α
J(0)
a − i

2
(Θb(1) +

i

k
βb(0))BJ ]

(6.3.28)

On the other hand for Θa(2) we get

∂u[e2Hg2∂u(g−1Θa(2))] =4C
a(2)
I ∂uα

I
t − g∂u[

1

2k2gZ
[(e2H∂uΘa(0) + 4qJα

J(0)
a )

+2iεab(C
b(1)
J − i

k
qJβ

b(0))BJ ] +
i

k
ΣIJB

IBJβa(1) − 2iεabα
I(1)
b .

(6.3.29)

C
a(2)
I = g1/2eHΣIJ∂rα

J(2)
a − qIΘa(2). (6.3.30)

To compare to the boundary condition at horizon we need to obtain the leading

order behaviour of the fields near the horizon. We substitute the zeroeth order and

first order expressions of the fields on right hand side of (6.3.28) and observe that at

the near horizon limit, the leading order expressions of Ca(2)
I terms of the order of

log ρ and (log ρ)2. In particular, there is no 1/ρ term in its near horizon leading order
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expression. From equation for Θa(2), we obtain the leading order behaviour of Θa(2)

as

g−1Θa(2) = Θ6 + Θ5

∫
du

e2Hg2
+ S log ρ+ .... (6.3.31)

We have introduced two constants of integration, Θa
5 and Θa

6. The coefficient of log ρ

written as S is

S =
1

2k2Z(h)
[(−4πTe2HΘa

1 + 4qIα
I
a0) + 2iεab(C

b(1)
I0 −

i

k
qIβ

b(0)
0 )BI ] +

Θa
2

(4πT )2
.

(6.3.32)

We collect the expressions of Θa at different orders of frequency together to

write the near horizon expression of Θa upto O(ω2) order as

Θa =
Θa

2

e2H(h)4πT
+ 4πTΘa

1ρ+ (
1

4πTe2H(h)
[
iωεabC

b
I0

k2Z(h)
+

2(−πTe2H(h)Θa
1 + qIα

I0
a0)

k2Z(h)
ω2

+
ω2

k3Z(h)
εabβ

b(0)
0 qIB

I ] + ω2 Θa
2

(4πT )2
) log ρ+ ...

(6.3.33)

Following [88] we redefine Θa
2, Θa

1 and CaI0 so as to absorbed all the constants of

integration in them . Similarly the fluctuation of gauge field at near horizon limit is

given by

αIa = αIa0 +
ΣIJ(h)

4πT
(CaJ0 +

qJΘa
2

e2H(h)4πT
) log ρ+ ... (6.3.34)

where, once again, αIa0 absorbs all the constants of integration. Fluctuation of the

axion field βa at near horizon limit given by

βa

k
=

βa0
k

+
1

4πTe2H(h)k2Z(h)
[−εabBICbI0 + 2iω(−πTe2H(h)Θa

1 + qIα
I
0a)

+ iω(qIB
I)εab

β
b(0)
0

k
] log ρ+ ... (6.3.35)

where the constants of integrations are absorbed in βa0 .

Comparison with the near horizon behaviours of Θa and ηIa = αIa + 1
2B

Iεab
βb

k as
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given in (6.3.11), leads to

(ΣIJ(h) +
BIBJ

2k2Ze2H(h)
)CaJ0 +

ΣIJ(h)qJ

e2H(h)4πT
Θa

2 = iω{(αIa0 +
1

2
BIεab

βb0
k

)− BI

e2H(h)k2Z
[εab

(−πTe2H(h)Θb
1 + qIα

I
0b) +

1

2
(qJB

J)
βa0
k
},

Θa
2 = − 4πT

k2Z(h)
[εabB

ICbI0 − 2iω(−πTe2H(h)Θa
1 + qIα

I
a0)− iω(qJB

J)εab
βb0
k

].

(6.3.36)

From the above two equations (6.3.36), CaI0 and Θa
2 can be expressed in terms of

other constants αIa0, Θa
1 and βa0 in the following way,

CaI0 = iω(M J
I )ab{−[(ΣJK(h) +

2qJqK

k2Z(h)e2H(h)
)δbc +

ΣJN (h)BNqK

k2Z(h)e2H(h)
εbc]α

k
c0

+
2πT

k2Z(h)
[qJδab +

1

2
ΣJN (h)BN εbc]Θ

c
1 −

1

2
[(ΣJK(h)

+
4qJqK

k2Z(h)e2H(h)
)BKεbc − (qMB

M )
ΣJK(h)BK

k2Z(h)e2H(h)
δbc]

βc0
k
},

Θa
2 = − 4πT

k2Z(h)
εabB

ICbI0 + iω
4πT

k2Z(h)
[2(−πTe2H(h)Θa

1 + qIα
I
0a) + (qIB

I)εab
βb0
k

],

(6.3.37)

upto leading order in ω. In the above equation we have introduced the matrix (MJ
I )ab

given by the relation

[(δJI +
ΣIN (h)BNBJ

2k2Z(h)e2H(h)
)δab −

qIB
J

k2Z(h)e2H(h)
εab](M

K
J )bc = δKI δac. (6.3.38)

It reduces to δJI δab in the absence of magnetic field.

To identify the right operators in the boundary theory, we need the asymptotic

solution of Θa, αIa and βa and the asymptotic solution of the fields upto the lowest

order in frequency will be sufficient for this purpose. The magnetic field contributes

at a higher order in frequency, as evident from the linearised equations of motion of

the fluctutations. Therefore, upto the lowest order of frequency, the expressions is
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same as those obtained in [88] for zero magnetic field . Hence we introduce

Ψ(z) = sgn(θ)

∫
zξ−3v−1dz

F (z)2
,

Y 1(z) =
4sgn(ξ)q1

2 + v − ξ
(−z2+v−ξ

h Ψ(z) + sgn(ξ)

∫
dzz−2v+1F−2),

Y 2(z) =
4sgn(ξ)q2

ξ − z
(−zξ−vh Ψ(z) + sgn(ξ)

∫
dzz2ξ−4v−1F−2).

(6.3.39)

In terms of the functions defined above we can write down the asymptotic expan-

sions of the solutions of the fields at small frequency

Θa(0) = z2(v−1)F (z)(Θa
1 + Θa

2Ψ(z) + 4CaI Y
I(z)),

αIa = αIa0 −Θa
1α

I
t − sgn(ξ)Θ2qJ

∫
dzΣIJzv−3Ψ(z)

− sgn(ξ)

∫
dzΣIJz−v−1(F−1δJK + 4qJz

2(v−1)Y K(z))CaK .

(6.3.40)

From (6.3.40) we can establish a relation between the parameters describing

the asymptotic behaviour of the solutions and operators in the boundary theory. A

discussion of this relation is given in [88], which we have included in the Appendix

B. As explained in [88], one can identify the basis of symplectic variables which

parametrizes the asymptotic solutions from asymptotic behaviour of the generalised

coordinates and momenta. For that one expresses asymptotic solutions of the linear

fluctuations of the fields Θa(0), αI(0)
a and βa(0) and their conjugate momenta in terms

of the modes Θa
1, Θa

2, αIa0, CaI and βa0 in the radial Hamiltonian formalism. Next

one makes a suitable canonical transformation, which can be realised by adding

appropriate counterterms, leads to holographic renormalisation of the action. As

we see that from the asymptotic behaviour of these transformed canonical variables,

we can identify the operators in terms of the modes parametrizing the asymptotic

solution.

The choice of the boundary condition appears to play an important role in this

identification. As explained in [88], the Dirichlet boundary condition can be im-

posed on the gauge field through addition of a finite term in the renormalised on-
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shell action. We see that with the electrically charged black hole as the background,

the expressions of the conductivities obtained using the near horizon method agrees

with the Dirichlet boundary condition. Therefore, in order to compare the results

already obtained using near horizon method, we will consider the Dirichlet bound-

ary condition in the present case, where we have magenteic field in the background.

Generalisation of these to other boundary conditions like Neumann or mixed bound-

ary condition is quite straightforward.

In the case of the Dirichlet boundary condition, one is interested in energy opera-

tor Ea and current operator J aI as shown in [88]. The expressions of these operators

in terms of different modes are given by (B.0.10) and (B.0.11)

Ea = − 1

2κ2
(Θa

2 + 4µICaI0), J aI = − 2

κ2
(CaI0 −

iωqI
p
βa0 ), Xa = −2iω

pκ2
qIα

I
a.

(6.3.41)

where αIa is obtained from the asymptotic behaviour for the renormalised variables

as given in (B.0.12). Various correlation functions can be obtained from the ex-

pressions of operators,which has been used for computation of the coefficients of

thermoelectric conductivity.

6.4 Thermoelectric DC conductivities

In this section we discuss thermoelectric conductivities for the model which we are

considering. We have determined Θa
2 and CaI0 in terms of other constants (6.3.36)

in the last section. Substituting these expressions in the energy operator Ea given in
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(6.3.41), we obtain

Ea = − iω

2κ2
[{8πT

k2Z
qKδad − (−4πT

k2Z
εabB

I + 4µIδab)(M
J
I )bc[(ΣJK +

4qJqK
k2Ze2A

)δcd

+
ΣJMB

Mqk
k2Ze2A

εcd}αKd0 + (
8πT

k2Z
(qKµ

K − πTe2H)δad

+ (−4πT

k2Z
εabB

I + 4µIδab)(M
J
I )bc{

2πT

2k2Z
(qJδcd +

1

2
ΣJMB

M εcd)

− [(ΣJK +
2qJqK
k2Ze2A

)µKδcd +
ΣJMB

MqKµ
K

k2Ze2A
εcd]})Θd

1

+ {−1

2
(−4πT

k2Z
εabB

I + 4µIδab)(M
J
I )bc[(ΣJK +

4qJqK
k2Ze2A

)BKεcd

− (qKB
K)ΣJMB

M

k2Ze2A
δcd] +

4πT

k2Z
(qKB

K)εad}
τd0
k
. (6.4.1)

In the above equations, we have used the asymptotic value of fluctuation in gauge

field, αIa as given in (B.0.12). In this section, to simplify the notation, we follow the

convention that, unless otherwise mentioned, A, ΣIJ and Z represents their respec-

tive values at the near horizon limit.

The current operator J aI is given by

JaI =
2iω

κ2
[(M J

I )ab[(ΣJK +
2qJqK
k2Ze2A

)δbc +
ΣJMB

MqK
k2Ze2A

εbc]α
K
c0

− (M J
I )ab{

2πT

2k2Z
(qJδbc +

1

2
ΣJMB

M εbc)

− [(ΣJK +
2qJqK
k2Ze2H

)µKδbc +
ΣJMB

MqKµ
K

k2Ze2H
εbc]}Θc

1

+ {1

2
(M J

I )ab[(ΣJK +
2qJqK
k2Ze2A

)BKεbc − (qNB
N )

ΣJKB
K

k2Ze2A
δbc] + qIδac}

τ c0
k
,

Xa = −2iω

kκ2
qIα

I
a,

(6.4.2)

where we have taken the expression of matrix (MJ
I )ab from (6.3.38).
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The above equations lead to the expressions of two-point functions as follows

〈J aI (−ω)J bJ (ω)〉 =
2iω

κ2
(M K

J )bc[(ΣKI +
2qKqI
k2Ze2A

)δca +
ΣKMB

MqI
kZe2H

εca],

〈Ea(−ω)J bI (ω)〉 = −2iω

κ2
(MJ

I )bc{
2πT

k2Z
(qJδca +

1

2
ΣJKB

Kεca)

− [(ΣJK +
2qJqK
k2Ze2A

)δbc +
ΣJMB

MqK
k2Ze2A

εbc]µ
K

}, 〈J aI (−ω)Eb(ω)〉 =
2iω

κ2
[(−2πT

k2Z
qIδba − (− πT

k2Z
BJεbc + µJδbc)(M

K
J )cd

[(ΣKI +
2qKqI
k2Ze2H

)δda +
ΣKMB

MqI
k2Ze2H

εda]},

〈Ea(−ω)Eb(ω)〉 =
2iω

κ2
[
2πT

k2Z
(qKµ

K − πTe2H)δba + (− πT

k2Ze2H
εbcBI + 4µIδbc)

(MJ
I )cd[(

2πT

k2Z
qJ − (ΣJK +

2qJqK
k2Ze2H

)µK ]δda

+ ΣJMB
M (

πT

k2Z
− qKµ

K

k2Ze2H
)εda],

〈X a(−ω)J bI (ω)〉 =
2iω

κ2
[
1

2
(MJ

I )bc[(ΣJK +
4qJqK
k2Ze2H

)BKεca

− (qJB
J)

ΣJKB
K

k2Ze2H
δca] + qIδba,

〈J aI (−ω)X b(ω)〉 = −2iω

kκ2
qIδ

ab,

(6.4.3)

where all the other two point functions vanishes. We introduce the heat current

following [88]

QaD = Ea − µIJ aI . (6.4.4)

We obtain the expression for two point function for heat current and electric currents
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as follows

〈QaD(−ω)QbD(ω)〉 =
2iω

κ2
2(
πT

k2Z
)2{k2Ze2Hδab

+ BM εac(M
J
M )cd[qJδda +

1

2
ΣJNB

N εda]},

〈QaD(−ω)J bI (ω)〉 = −2iω

κ2

2πT

k2Z
[(M J

I )bc[qJδca +
1

2
ΣJKB

Kεca],

〈J aI (−ω)QbD(ω)〉 = −2iω

κ2
{2πT

k2Z
qIδba +

πT

k2Z
εbcB

J(M K
J )cd[(ΣKI +

2qKqI
k2Ze2H

)δda

+
ΣKMB

MqJ
k2ZE2A

εda]},

〈J aI (−ω)J bJ (ω)〉 =
2iω

κ2
(M K

J )bc[(ΣKI +
2qKqI
k2Ze2H

)δca +
ΣKMB

MqI
k2Ze2H

εca] . (6.4.5)

From the expression of above two point functions, we compute the thermoelec-

tric conductivities as follows.

σDCD =

 T K̄ab T āabI

TaabI νabIJ

 =

 〈QaD(−ω)QbD(ω)〉 〈QaD(−ω)J bI (ω)〉

〈J aI (−ω)QbD(ω)〉 〈J aI (−ω)J bJ (ω)〉

 . (6.4.6)

We introduce the following parameters in order to express the components of con-

ductivity matrix in a compact form

nI =
1

2
ΣIJB

J , bI =
BI

k2Ze2H
. (6.4.7)

The matrix (M J
I )ab can be written from (6.3.38) using these parameters,

(M J
I )ab = δJI δab −

[(1 + n.b)nI + (q.b)qI ]δab − [(1 + n.b)qI − (q.b)nI ]εab
(1 + n.b)2 + (q.b)2

bJ .

(6.4.8)

where we have defined (n.b) = nIb
I , (q.b) = qIb

I and4 = (1 +n.b)2 + (q.b)2. With

these expressions, one can write the components of conductivity matrix as

K̄ab =
πsT

κ2k2Z

[(1 + n.b)δba + (q.b)εba]

4
,

āabI = aabI = − 4

sT
K̄bc(qIδca + nIεca)],

νabIJ =
2

κ2
ΣJIδ

ba +
16

s2T
K̄bc(qJδcd + nJεcd)(qIδda + nIεda),

(6.4.9)
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where the entropy s is given by s = 4πe2H . All the components of the conduc-

tivity matrix reduce to the expressions of the same given in [88] when we set the

background magnetic field equal to zero. It may be noted that both the U(1) gauge

fields are on the same footing. We have obtained āabI = aabI implying time reversal

symmetry.

The above equations summarise the expressions of coefficints of the thermoelec-

tric conductivities for general case. One can observe that and these expressions are

symmetric between and electric and magnetic fields. Next we consider dyonic black

hole discussed in section 2 and apply this general result to that case. We substitute

the values of the various quantities for dyonic black hole in the above expressions

and obtain the following.

For the solution we obtain4 = (k2 + B2

4 z
4v−6−ξ)2 +(2q2Bz

2v−4)2 and using the

relation we get,

K̄mn =
8π2T

κ2k2
z

2(v−ξ)
h

(k2 + B2

4 z
4v−6−ξ
h )δmn + 2q2Bz

2v−4
h εmn

4
,

amn1 = −8π

κ2
z2v−ξ−2
h

(k2 + B2

4 z
4v−6−ξ
h )q1δmn + 2q1q2Bz

2v−4
h εmn

4
,

amn2 = −8π

κ2
z2v−ξ−2
h

k2q2δmn + [(k2 + B2

4 v
4z−6−θ
h )B8 z

2v−2−ξ
h + 2q2

2Bz
2v−4
h ]εmn

4
,

νmn11 =
1

2κ2
zξ−4
h δmn +

8

κ2
q2

1z
2v−4
h

(k2 + B2

4 z
4v−6−ξ
h )δmn + 2q2Bz

2v−4
h εmn

4
,

νmn12 =
8

κ2
q1
q2k

2δmn + [2q2
2Bz

2v−4
h + B

8 z
2v−2−ξ
h (k2 + B2

4 z
4v−6−ξ
h )]εmn

4
, (6.4.10)

νmn22 =
k2

2κ2
z6v−8−2ξ
h

B2

4 + z6−4v+ξ
h (k2 + 16q2

2z
ξ−2
h )

4
δmn

+
q2B

κ2
z8v−12−2ξ
h

B2

4 + (2k2 + 16q2
2z
ξ−2
h )z−4v+6+ξ

h

4
εmn . (6.4.11)

Also one can obtain the expression of Hall angle from the above conductivities

by taking the ratio of coefficients of εab and δab in the expression of σ. We obtain

ΘH =
2q2B

k2
z2v−4
h [

B2

4 + z−4v+6+ξ
h (2k2 + 16q2

2z
ξ−2
h )

B2

4 + z−4v+6+ξ
h (k2 + 16q2

2z
ξ−2
h )

]. (6.4.12)
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One observes that the factor in the square bracket lies between 1 and 2 and therefore,

Hall coefiicient can be approximated as [95]

ΘH =
2q2B

k2
v2z−4
h k2. (6.4.13)

The special case of the above expressions for θ = 1 − z, is in agreement with the

results given in [87], which they obtained the near horizon method, as expected.

Once we obtain the various components of thermoelectric matrix, we can study

their temperature dependence. The temperature for the analytic black hole solu-

tion is given by T = −sgn(θ)
4π vz+1

h F ′(vh). In the present case of dyonic solution it

becomes

T = −sgn(ξ)

4π
[(v+2−ξ)zvh−

8q2
2

2− ξ
z2ξ−v−2
h − k2

2− ξ
zξ−zh − B2

4(2− v)
z3v−6
h . (6.4.14)

This expression of temperature makes it difficult to obtain an analytic expression

of the conductivities as the series expansion in temperature. Nevertheless, while

we choose the appropriate limits of the quantities we can identify different regimes,

where one can discuss scaling behaviour of the coefficients with the temperature.

To begin with, we consider θ < 0. For that condition the first term in the expres-

sion of temperature is positive while rest of the terms are negative . Then follow-

ing [88] we consider the region of parameter space q2
2z

2ξ−v−2
h << zvh, k2zξ−vh << zvh

and B2z
3(v−2)
h << zvh to identify a regime of large temperature. In this region one

can approximate the temperature by the expression as T ≡ 8q21
4π(z−1)v

z
h. In general

the relative strengths of the different terms in the expression of temperature de-

termine the behaviour of thermoelectric conductivity matrix with the temperature.

Therefore, we consider the following three regimes of parameters. There are other

possibilities, where two terms are comparable, but there it is difficult to obtain a

scaling behaviour of the conductivities.

The first regime that we consider has strong momentum dissipaion compared to

charge and magnetic field, which is given by, B2z
3(v−2)
h , q2

2z
2ξ−v−2
h << k2zξ−vh <<
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zvh. In this limit we obtain

Kmn ∼ 8π2T

κ2k4
[T

2(v−ξ)
v δmn + 2q2BT

4v−2ξ−4
v εmn],

νmn11 ∼
8q2

1

κ2k2
[T

2v−4
v δmn +

2q2B

k2
T

4v−8
v εmn],

νmn12 ∼
q1

κ2k2
[8q2δmn +BT

4v−6−ξ
v εmn]

νmn22 ∼
1

2κ2
[T

2v−2−ξ
v δmn +

4q2B

k2
T

4v−6−ξ
z εmn],

amn1 ∼ −8πq1

κ2k2
[T

2v−ξ−2
v δmn +

2q2B

k2
T

2v−4
v εmn],

amn2 ∼ − 8π

κ2k2
[q2T

2v−ξ−2
v δmn +

B

8
T

4v−2ξ−4
v εmn].

(6.4.15)

The Hall angle is given approximately by θH ∼ T
2v−4
v . Since ξ < 0 it is not feasible

to obtain linear resistivity for νxx22 in this regime. Choosing v = 1 we get θH ∼ 1/T 2

and νxx22 ∼ T−ξ shows a positive power of T for conductivity. Instead if we choose

the relation, B2z
3(v−2)
h << k2zξ−vh << q2

2z
2ξ−v−2
h << zvh, k

2 >> 2q2Bz
2v−4
h , then

except ν22, all the coefficients will remain the same. It becomes

νmn22 =
8q2

2

κ2k2
[T

2v−4
v δmn +

2q2B

k2
T

4v−8
v εmn]. (6.4.16)

We note that in this regime, νxx22 and Hall angle have the similar temperature depen-

dence. So for z = 1 both the expressions scale as ∼ T−2. If we choose v = 4/3

we get νxx22 ∼ T−1 implying linear resistivity. However, in this case Hall angle also

becomes θH ∼ T−1.

The next regime is characterised by dominance of charge over momentum dis-

sipation and magnetic field. So the respective regime is expressed by the relation
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B2z
3(v−2)
h , k2zξ−vh << q2

2z
2ξ−v−2
h << zzh. The expressions of the conductivities are:

Kmn ∼ 8π2T

κ2(2q2B)
[

1

2q2B
T

2(4−ξ−v)
v δmn +

1

p2
T

2(2−ξ)
v εmn], forB2z

3(v−2)
h << p2zξ−vh ,

amn1 ∼ −8πq1

κ2
[
k2

4q2
2B

2
T

6−2v−ξ
v δmn +

1

2q2B
T

2−ξ
v εmn] for B2z

3(z−2)
h << p2zξ−vh ,

amn1 ∼ −8πq1

κ2
[

4

B2
T

2(v−ξ)
v δmn +

1

2q2B
T

2−ξ
v εmn] for k2zξ−vh << B2z

3(v−2)
h ,

amn2 ∼ −8π

κ2
[
k2

4q2B2
T

6−2v−ξ
v δmn +

1

2B
T

2−ξ
v εmn],

νmn11 ∼
q2

1

2κ2
[

4k2

q2
2B

2
T

4−2v
v δmn +

16

2q2B
εmn], for k2zξh >> (q2Bz

v+ξ−4
h )2,

∼ q2
1

2κ2
[T

ξ−4
v δmn +

16

2q2B
εba], for k2zξh << (q2Bz

v+ξ−4
h )2,

νmn12 ∼
8q1q2

κ2
[
k2

4q2
2B

2
T

8−4v
v δmn +

1

2q2B
T

4−2v
v εmn],

νmn22 ∼
1

2κ2
[
4k2

B2
T

(4−2v)
v δmn +

8q2

B
εmn].

(6.4.17)

We note that in this regime, νxx22 and Hall angle have opposite temperature depen-

dence. For z = 1 they scale as T 2 and T−2 respectively with the temperature, while

for z = 2, both will be temperature independent. The third regime is dominated by

the background magnetic field over the momentum dissipation and charge. In that

regime, the approximate temperature dependence are νxx22 ∼ T
(4−2v)
v with Hall angle

having opposite temperature dependence.

For small temperature, we can identify the following regime of parameters.

B2z
3(v−2)
h , q2

2z
2ξ−v−2
h << k2zξ−vh . zvh, B2z

3(v−2)
h , k2zξ−vh << q2

2z
2ξ−v−2
h . zvh and

k2zξ−vh , q2
2z

2ξ−v−2
h << B2z

3(v−2)
h . zvh . However, to obtain an analytical expression

for temperature for this regime is quite difficult. One can obtain the dependence on

zh from above by replacing T by zvh in (6.4.15) and (6.4.19) respectively in the three

regimes.

For ξ > 0 first term is negative and so large temperature may corresponds to the

region depending on whether k2zξ−vh , q2
2z

2ξ−v−2
h or B2z

3(v−2)
h dominates. In these

regimes, the expression of temperature can be approximated by T ≡ k2

4π(2−ξ)z
ξ−v
h ,
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T ≡ 8q22
4π(2−ξ)z

2ξ−v−2
h or T ≡ B2

2

16π(2−v)v
3v−6
h , respectively. The scalings of the con-

ductivity matrix for various regimes will be as follows:

If we consider the parameter region corresponding to strong momentum dissipa-

tion, B2z
3(v−2)
h , q2

2z
2ξ−v−2
h << k2zξ−vh we get

Kmn ∼ 8π2T

κ2k4
[

(
T

k2

) 2(v−ξ)
ξ−v

δmn + 2
q2B

k2

(
T

k2

) 4v−2ξ−4
ξ−v

εmn],

amn1 ∼ −8πq1

κ2k2
[

(
T

k2

) 2v−ξ−2
ξ−v

δmn +
2q2B

k2

(
T

k2

) 2v−4
ξ−v

εmn],

amn2 ∼ − 8π

κ2k2
[q2

(
T

k2

) 2v−ξ−2
ξ−v

δmn +
B

8

(
T

k2

) 4v−2ξ−4
ξ−v

εmn],

νmn11 ∼
8q2

1

κ2k2
[

(
T

k2

) 2v−4
ξ−v

δmn +
2q2B

k2

(
T

k2

) 4v−8
ξ−v

εmn],

νmn12 ∼
q1

κ2k2
[8q2δmn +B

(
T

k2

) 2v−2−ξ
ξ−v

εmn],

νmn22 ∼
1

2κ2
[

(
T

k2

) 2v−2−ξ
ξ−v

δmn +
4q2B

k2

(
T

k2

) 4v−6−ξ
ξ−v

εmn.

(6.4.18)

For v → 2, νxx22 ∼ T−1, however the Hall angle becomes independent of temperature.

If we consider the regime, where charge is strong compared to other two factors,
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given by B2z
3(v−2)
h , k2zξ−vh << q2

2z
2ξ−v−2
h , conductivities coming as

Kmn ∼ 8π2T

κ2k2
[
k2

4q2
2B

2

(
T

q2
2

) 8−2v−2ξ
2ξ−v−2

δmn +
1

2q2B

(
T

q2
2

) 2(2−ξ)
2ξ−v−2

εmn],

forB2v
3(v−2)
h << p2zξ−vh ,

∼ 8π2T

κ2k2
[

1

16q2
2

(
T

q2
2

) 2v+2−3ξ
2ξ−v−2

δmn +
1

2q2B

(
T

q2
2

) 2(2−ξ)
2ξ−v−2

εmn],

for k2zξ−vh << B2z
3(v−2)
h ,

amn1 ∼ −8πq1

κ2
[
k2

4q2
2B

2

(
T

q2
2

) 6−2v−ξ
2ξ−v−2

δmn +
1

2q2B

(
T

q2
2

) 2−ξ
2ξ−v−2

εmn]

forB2z
3(v−2)
h << k2zξ−vh ,

amn1 ∼ −8πq1

κ2
[

1

16q2
2

(
T

q2
2

) 2(v−ξ)
2ξ−v−2

δmn +
1

2q2B

(
T

q2
2

) 2−ξ
2ξ−v−2

εmn]

for k2zξ−vh << B2z
3(v−2)
h ,

amn2 ∼ −8π

κ2
[
p2

4q2B2

(
T

q2
2

) 6−2v−ξ
2ξ−v−2

δmn +
1

2B

(
T

q2
2

) 2−ξ
2ξ−v−2

εmn].

νmn11 ∼
8q2

1

κ2
[
k2

4q2
2B

2

(
T

q2
2

) 4−2v
2ξ−v−2

δmn +
1

2q2B
εmn],

for k2zξh >> (2q2Bz
v+ξ−4
h )2,

∼ 1

2κ2
[

(
T

q2
2

) ξ−4
2ξ−v−2

δmn +
1

2q2B
εmn],

for k2zξh << (2q2Bz
v+ξ−4
h )2,

∼ 8q2
1

κ2
[

1

16q2
2

(
T

q2
2

) 2v−2−ξ
2ξ−v−2

δmn +
1

2q2B
εmn],

for k2zξ−vh << B2z
3(v−2)
h ,

νmn12 ∼
8q1

κ2
[
k2

4q2B2

(
T

q2
2

) 8−4v
2ξ−v−2

δmn +
1

2B

(
T

q2
2

) 4−2v
2ξ−v−2

εmn],

νmn22 ∼
1

2κ2
[
4k2

B2

(
T

q2
2

) 4−2v
2ξ−v−2

δmn +
8q2

B
εba].

(6.4.19)

We observed from above, νxx22 and Hall angle behave with temperature in opposite

manner. Though for z = 1 one obtains νxx22 ∼ T−1, but the Hall angle does not
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depend on temperature. One can choose the small temperature limit in a similar

way as in the case of ξ < 0. The behaviour will be same to those obtained in the

case of ξ < 0.

We have seen contributions of different terms in the expression of temperature

determines the behaviour of the thermoelectric coefficients. For high temperature

limits there are several regions in the parameter space leading to scaling with tem-

perature, while for small temperature, it is almost impossible to identify the be-

haviour with specific powers of temperature. A numerical procedure may provide

more precise temperature dependence.

6.5 Conclusion

To summarise, in this chapter we have analyzed thermoelectric properties of the

boundary systems dual to hyperscaling violating Lifshitz geometry. In order to in-

clude the effects of magnetic fields we consider the dyonically charged black hole as

the background. We have used the method given in [88]. This involves obtaining so-

lutions of necessary fluctuations in metrics and gauge fields around the background

from its linearised equation. Then thermoelectric coefficients can be obtained from

the asymptotic behaviour of fluctuations in low frequency limit. This method [88]

though more invovled, has the advantage that the boundary operators can be identi-

fied explicitly and different boundary conditions can be incorporated.

Here we have obtained analytic expression of various thermoelectric coefficients

in terms of temperature in different limit. However, we can analytically discuss

only a few specific regimes because the expression of temperature in general is too

complicated,. In one of such regimes, we obtain linear temperature dependence of

resistivity for z = 4/3, though Hall angle scales inversely with temperatrure. For z =

1 we find 1/T 2 behaviour. The above result obtained for dyonic background may

follow [88] from electrically charged background using mixed boundary condition

on the gauge field. Further extension of this work is to study behaviour of AC
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conductivity with variation of temperature for intermediate frequencies, which may

require a numerical procedure. As suggested in [96], additional exponents may be

obtained by turning on mass for the bulk gauge field. This method can be used to

analyse other models towards obtaining agreement with experimental observations.
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Chapter 7

Discussion

High temperature superconductors and their close cousins remain exciting and chal-

lenging arena as the dynamics are determined by strongly correlated systems. Gauge/gravity

duality is a powerful machinery that can translate the dynamics of strongly coupled

field theory into weakly coupled gravity theory and in this thesis we have explored

some of the aspects of the superconducting and other phases using this duality. We

have adopted a bottom up approach where one constructs the gravity theory by in-

corporating appropriate fields and the symmetries expected in the dual field theory

model. This approach is quite flexible and one can construct a tailor made gravity

action in accordance with the requirement.

We begin our discussion with a gravity model, where we considered along with

Einstein gravity, SU(2)×U(1) gauge theory with scalar in adjoint of the SU(2). The

different fields condense giving rise to different superconducting phases of the dual

theory. A Chern-Simons term also has been incorporated to obtain spatial modula-

tion for constant electric field.

Since the equations of motion are quite involved we have taken recourse to nu-

merical computation. We have also restricted our analysis to the probe approxima-

tion, that is we have ignored the back reaction on the geometry. We find that below

some critical temperature, RN AdS black hole develops instability leading to con-

densation of scalar and vector fields. For this model we find s-wave and p-wave
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phases as well as coexistence of them. Since near horizon geometry of RN AdS

black hole along with some deformation corresponds to metallic phase [74], this

can be interpreted as instability of the same. We have studied the free energy of the

different phases as a function of temperature. We find the s-wave phase is always

thermodynamically favoured below critical temperature. For a model without the

scalar field and with a vector field it will be p-wave phase. From the study of the

free energy we find all the phase transitions are of second order, which is consistent

with the earlier results [6, 11, 39]. Due to presence of Chern-Simons term, we find

helical solutions with pitch k. For the p-wave phase, we have studied thermody-

namic free energy for various values of pitch (k) and find there is a critical value of

pitch for which free energy becomes minimum. From the plots of free energies it

turns out the phase transitions are of second order in nature.

We further extend our study to explore the change of the scenario with addition

of higher derivative correction to the gravity model. We added neutral Gauss Bonnet

term, as it provides black hole solution. We find higher derivative corrections tend

to suppress the phase transitions. In particular, for both s wave and p wave phase the

critical temperature decreases with the increase of the strength of higher derivative

correction. Similar result was obtained for other models [38] . In principle, it could

be that for sufficiently large coefficient of higher derivative term, critical temmper-

ature will come down to zero. However, in our numerical method, it is difficult to

study the system near zero temperature. It has been found that RN AdS black hole

is also unstable to decay into AdS soliton solution [41]. Such transition occurs at

zero temperature with variation of chemical potential. We have studied the effect of

higher curvature on such transition and find the critical value of chemical potential

increases as the coefficient of higher curvature term becomes stronger.

From the experimental study of phase structure of high temperature supercon-

ductors and related material as given in Figure.(1.1) it has been found that it ad-

mits transition between metallic and an insulating antiferromagnetic phase. This

appears on variation of doping of the material. Since in the present model, RN-AdS
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black hole, whose near horizon along with some deformation, can be identified with

metallic phase, develops instability towards a helical black hole with SU(2) spon-

taneously broken through condensation it suggests it could have a similar phase

transition. In order to explore such a phase transition in the present model we have

used the techniques of holographic renormalisation group flow. In this holographic

RG flow, we expect the phase to appear as fixed points of the theory, i.e. simal-

taneous zeroes of the β functions. Following Hamilton Jacobi formalism we have

constructed the potential equations and find the gravitational Callan Symanzik equa-

tion along with the β functions. We found that simultaneous zeros of β functions

gives two fixed points. First is AdS RN black hole where the near horizon geometry

along with some deformation, gives metallic nonmagnetic phase, as we mentioned.

Second fixed point spontaneously breaks SU(2)→ U(1) symmetry, and it may cor-

responds to antiferromagnetic phase [36] . To examine the insulating nature and

other aspects of this phase requires further study.

Next we extend our analysis to explore anomalous transport properties in strange

metal phase. New materials were discovered such as heavy fermion superconduc-

tors, cuprate high Tc superconductors which are characterised by behaviour of the

transport phenomena different from that predicted by Fermi liquid theory. As sug-

gested in [100], such a phase can be holographically obtained by considering hyper-

scaling violating geometry. To understand this strange metallic phase we have con-

sidered an Einstein-Maxwell-Axion-Dilaton system with U(1) × U(1) gauge fields

in four dimensions. The coupling of gauge fields depend on dilaton and this system

admits asymptotically Lifshitz hyperscaling violating black hole solution [88]. A

background magnetic field is turned on that enables us to study magnetic properties

of the boundary system as well. Instead of using near horizon analysis [87] we con-

sidered the equations of linearised fluctuations around the black hole solution [88].

Using Kubo formula, we obtain thermoelectric DC conductivity of boundary theory

and Hall angles. As it has been pointed out in [88] different boundary conditions

may lead to different behaviour and our method is amenable to incorporate Dirich-
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let, Neumann and other mixed boundary conditions. From our result, we identified

several scaling regimes of transport coefficients. For different choices of parame-

ters the behaviour varies and in particular, we find linear temperature dependence of

resistivity, though hall angle turns out to be T−2.

Though the study of the model with SU(2)×U(1) gauge fields provides us a fair

idea of the phase structure there are a few limitations. Because of the fact that the

equations involved are quite complicated we have restricted ourselves to the probe

approximation and ignored back reaction of the matter on gravity as a first order

approximation. Indeed, this may not be a poor approximation, in the sense that in

the limit of large charge it may be a valid approximation. It is important and infor-

mative to obtain a full-fledged solution of the gravity theory coupled with matter.

In fact for some simplet set-up such a back reacted black hole solutions have been

obtained [25, 26, 76]. Studying the differnt phases for such a solution will give a

more complete understanding. In the case of higher derivative correction for con-

densation of matter fields, we could not study the behaviour near zero temperature.

It may be informative to obtain a full picture of the dependence on the coefficient

of higher derivative term down to T = 0 as that will clarify whether stronger higher

derivative term may lead to absence of phase transition.

In the case of renormalised group approach a more detailed study of the fixed

points from thermodynamical point of view would provide a more detailed picture.

In general, the actions get renormalised at the boundary, which requires introduc-

tion of necessary counterterms. A full fledged holographically renormalised action,

along with the counterterms will enable us to compute two point functions at the IR

and UV limit. Such an action using Kubo formula, will tell us about the behaviours

of the transport coefficients as well. We have analysed transport properties for hy-

perscaling violating geometry but this model could not reproduce all the features

of strange metallic phase. An extension of this study could be to identify appropri-

ate gravity models which may reproduce the experimental features. It may also be

interesting to explore possibility of reaching other phases using RG approach and
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studying transport properties of them, in particular those of antiferromagnetic phase.

Since these studies are aimed at undersatnding features of condensed matter sys-

tems, it will be more realistic to consider lattice at the boundary. There are sev-

eral mechanisms to incorporate the effects of underlying lattice, which may involve

choosing chemical potential or axion to be periodic. As a continuation of these

studies one may consider how presence of underlying lattices may modify different

aspects of the systems. To summarise the phases of superconductors and related

materials provide an exciting and wide arena for studying strongly coupled systems.

Methods of gauge/gravity duality are quite successful but there remains various as-

pects to explore.
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Appendix A

Equations of motion and solution of

the fields

A.1 Equations of motion

Here we partially solve the equations of motion from section 5 to write down some

of the geometric parameters in terms of potentials. First we write down the equations
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of motion.

0 = a′′(r) +

{
x′1 + x′2 + x′3 +

1

2

(
U ′

U
− g′

g

)}
a′(r)

+ e−x1(r)−x2(r)−x3(r)

√
g

U
w(r)w′(r)−

{
φ†(r)φ(r)

U(r)

}
a(r),

0 = w′′(r) +

{
x′1 + x′2 − x′3 +

1

2

(
U ′

U
+
g′

g

)}
w′(r)− k2e2(x2−x1−x3)w(r)

U(r)

+kκa′(r)
w(r)

U(r)
e−(x1−x2−x3) − φ†φw(r)

U(r)
,

0 = φ′′(r) +

{
x′1 + x′2 + x′3 +

1

2

(
U ′

U
+
g′

g

)}
φ′(r) +

a(r)2

U(r)2
φ(r)

− m2φ(r)− w(r)2

U(r)
e−2x3(r)φ(r),

0 = x′′1 + x′′2 + x′21 + x′22 + x′1x
′
2 +

(
1

2

U ′

U
+

1

2

g′

g

)
(x′1 + x′2)

− k2

2U
e−2x1 − k2

4U
e2(x2−x1−x3) +

3k2

4U
e2(x2−x1−x3)

+
1

2

(
g′′(r)

g(r)
+

1

2

[
U ′(r)g′(r)

U(r)g(r)
− (g′(r))2

(g(r))2

])
+

6

U
+

3

8U
k2e−2x1 [w1(r)]2e−2x3 − 1

8
e−2x2 [∂rw1(r)]2

− 1

4U
w1(r)φ†φe−2x2 − 1

4U
∂rφ
†∂rφ

+
[a(r)]2

4U(r)g(r)
φ†φ+

1

8
a′(r)2 1

g(r)
+

1

2U(r)
m2φ†φ,

0 = x′′1 + x′′3 + x′21 + x′23 + x′1x
′
3 +

(
1

2
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U
+

1

2

g′

g

)
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+

1
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+
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+
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(A.1.1)
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0 =
g′
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′
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′
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8
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g(r)
,
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[
x′′1 + x′′2 + x′′3 + x′

2

1 + x′
2

2 + x′
2

3

]
+
U ′

2U
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+ x′1x

′
2 + x′2x

′
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′
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1

2U
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k2

2U
e2(x2−x3−x1) +

k2
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e2(x3−x2−x1) − 1

8
e−2x2(∂rw(r))2

− k2

8U
e−2(x1+x3)w2 − 1

4gU
a2φ†φ− 1

4
∂rφ
†∂rφ
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4U
e−2x2w2φ†φ− 1

4U
m2φ†φ

3

8

a′2

g
. (A.1.2)

A.2 U(1) gauge field solution

In this section we will consider the equation of U(1) gauge field, in order to find a

solution of the field in terms of the potentials, as we described. Since we obtain the

expression of the potential perturbatively, so this process actually makes it feasible

to obtain the expression of U(1) gauge field, near critical point. The equation of

U(1) gauge field a(r) is

a′′(r) +

{
x′1 + x′2 + x′3 +

1

2

(
U ′

U
− g′

g

)}
a′(r)

− e−x1(r)−x2(r)−x3(r)

√
g

U
w(r)w′(r)−

{
φ†(r)φ(r)

U(r)

}
a(r) = 0. (A.2.1)

In our ansatz of the fixed point, we choose, around the fixed point the SU(2) gauge

field w(r) = 0. In the next section, we are going to establish the fact that that near

critical point w(r)2 term can also be ignored. So expressing the metric-derivatives

in terms of the potentials, following (5.2.27) and (5.2.28), we can express (A.2.1) as
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d

dr

{
−2a(r)φ†(r)φ(r)

g(r)
M
(
φ†(r)φ(r)

)}
+

W
(
φ†(r)φ(r)

)
2(d− 1)

{
−2a(r)φ†(r)φ(r)M

(
φ†(r)φ(r)

)
g(r)

}

−
{
φ†(r)φ(r)

U(r)

}
a(r) = 0. (A.2.2)

To solve the above equation let us substitute

−2a(r)φ†(r)φ(r)

g(r)
M
(
φ†(r)φ(r)

)
= X. (A.2.3)

Since exactly at the nontrivial fixed point M
(
φ†(r)φ(r)

)
vanishes so we can write

near the fixed point

M
(
φ†(r)φ(r)

)
= (φ†φ− α) +O

(
(φ†φ− α)2

)
as we discussed in section 5.4 in the equation (5.4.3) Let us consider a solution

U(r) = g(r). We can solve the above equation(A.2.2) near nontrivial fixed point, by

integrating the equation with the above prescribed value of M(5.4.3), as follows

dX

dr
+

W
(
φ†(r)φ(r)

)
2(d− 1)

X − X

2M
(
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g(r)
M
(
φ†(r)φ(r)

)]−1

.Exp

[∫
dr′
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W
(
φ†(r′)φ(r′)

)
2(d− 1)

− . 1

2M
(
φ†(r′)φ(r′)

)}] . (A.2.4)

In the above equation (A.2.4) we have chosen U(r) = g(r), as given in (5.2.3)

Near nontrivial fixed point we can substitute the expression of φ(r),M
(
φ†(r)φ(r)

)
,

W
(
φ†(r)φ(r)

)
to obtain the expression of U(1) gauge field a(r).
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A.3 Gravity equations

Here we express the gravity equations in terms of the potentials. In order to do so we

use (5.2.27,5.2.28,5.2.29) to express the equations in the new form. Also in order to

these equations we replace

[
dw
(
φ†(r)φ(r)

)
dr

]2

=

[
d

dφ†(r)

{
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dr
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=
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φ†(r)φ(r)M

(
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. (A.3.1)

Following (5.2.3), we write the equation of g22 + g33 + g23/Sin[px1]Cos[px1]
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= 0. (A.3.2)

Following (5.2.3), we write the equation of g22 + g33 − g23/Sin[px1]Cos[px1]
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The equation of motion of g11 component of metric is
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In order to find an expression of gtt = −g(r) at critical point with g(r) = U(r),
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we consider the equation of motion of gtt component, written in terms of the poten-

tials, with w(r) square terms are being ignored,

−
{

3

d− 1

d

dr

[
W
(
φ†(r)φ(r)

)]
+

3

4(d− 1)2

[
W
(
φ†(r)φ(r)

)]2}− 6

− 1

4

∂W
(
φ†(r)φ(r)

)
∂φ†(r)

∂W
(
φ†(r)φ(r)

)
∂φ(r)

− a(r)2

4g2(r)

(
φ†(r)φ(r)

)
=

3

8g(r)

{
2a(r)

g(r)
φ†(r)φ(r)M

(
φ†(r)φ(r)

)}2

+
1

4g(r)
m2φ†(r)φ(r). (A.3.5)

Subtracting (A.3.3) from (A.3.2) gives

2k2
[
e2(x2−x1−x3) − e2(x3−x1−x2)

]
+ U(r)

{
2e−2x2(r)φ†(r)φ(r)w(r)M

(
φ†(r)φ(r)

)}2
]

− k2e−2x1(r)−2x3(r)w(r)2

+
1

2
φ†(r)φ(r)e−2x2(r)w(r)2

= 0. (A.3.6)

To understand the above relation (A.3.6), first we expand w(r) around its fixed point

value w(φ∗).

For any r, we can can express

w(r) = w(φ∗) + {∂w(r)

∂φ(r)

∂φ(r)

∂r
|φ(r)=φ∗(φ(r)− φ∗)

+
∂w(r)

∂φ†(r)

∂φ†(r)

∂r
|φ(r)=φ∗(φ

†(r)− φ∗∗)}

+ ....... (A.3.7)

We choose at the fixed point

w(φ∗) = 0 (A.3.8)
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Then it is understood from (5.2.27) that also the first derivative of w(r) vanishes at

the critical point. So we note that w(r)2 terms are of the order [
(
φ(r)†φ(r)− α

)4
]

Since we are making the study of the fixed point with potential terms at quadratic

order, so we can ignore the w(r)2 term in (A.3.6) and write the equation as

k2
[
e2(x2−x1−x3) − e2(x3−x1−x2)

]
= 0. (A.3.9)

Finally from (A.3.9) we find near fixed point

x2(r) = x3(r). (A.3.10)

We substract (A.3.4) from (A.3.3) to obtain

− U(r)

2

∂W
(
φ†(r)φ(r)

)
∂φ†(r)

∂W
(
φ†(r)φ(r)

)
∂φ(r)

+
a(r)2

2g(r)

(
φ†(r)φ(r)

)
= 0[

a(r)

g(r)

]2

=
1(

φ†(r)φ(r)
) ∂W (

φ†(r)φ(r)
)

∂φ†(r)

∂W
(
φ†(r)φ(r)

)
∂φ(r)

. (A.3.11)

in the above we use U(r) = g(r) to obtain a(r)
g(r) in terms of W (φ†φ). Finally we

obtain the expression for g(r) as

1

g(r)
=

[
3

8

{
2a(r)

g(r)
φ†(r)φ(r)M

(
φ†(r)φ(r)

)]2

+
1

4
m2φ†(r)φ(r)

]−1

[−
{

3

d− 1

d

dr

[
W
(
φ†(r)φ(r)

)]
+

3

4(d− 1)2

[
W
(
φ†(r)φ(r)

)]2}− 6

− 1

4

∂W
(
φ†(r)φ(r)

)
∂φ†(r)

∂W
(
φ†(r)φ(r)

)
∂φ(r)

− a(r)2

4g2(r)

(
φ†(r)φ(r)

)
]−1 (A.3.12)

Here once again we ignore the quartic part of w(r) which add higher order cor-

rection.

135



Appendix B

Identification of dual operators in

hyperscaling violating geometry

To determine the thermoelectric DC conductivities in the method presented here in

section 6 we have to identify the operators in the boundary theory with the param-

eters describing the asymptotic behaviour of the fluctuation of the fields which are

solutions of the equation of motion. These has been discussed in details in [88] and

in this appendix we include a brief review of their method. In order to describe their

method, first we consider a new set of coordinates which parameterize the “dual

frame”, where radial coordinate is denoted by r̄, which is related to the Einstein

frame radial coordinate r with the relation given by dr̄ = −sgn(ξ)e
ξ
2µ
φdr. The rea-

son for taking this dual coordinate is that it allows both positive and negative values

of ξ and our UV boundary with this coordinate lies at r̄ →∞.

In order to identify the dual operators in the boundary theory corresponding to

the fields in the bulk theory we consider [85, 88] the symplectic set of variables

which consists of generalised coordinates and its canonically conjugate momenta,

defined in the bulk Hamiltonian radial formalism. This enables one to find the most

natural basis of symplectic variables which parametrize the space of the asymptotic

solutions.

The metric in the Einstein or the dual frame can be decomposed as follows.
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ds2 = dr2 + γijdx
idxj , where xi = t, xa. In the radial Hamiltonian formalism the

metric and the gauge field are being decomposed as

ds2 = (N2 +NiN
i)dr2 +2Nidrdx

i+γijdx
idxj , AIµdx

µ = AIrdr+AIi dx
i, (B.0.1)

where N and Ni are the lapse and shift function respectively. Also γij is the induced

metric on constant r hypersurface. Similarly Ar and Ai are transverse and longitu-

dinal components of the gauge fields to the constant r hypersurface. We also write

the expression of extrinsic curvature, which is given by

Kij =
1

2N
(∂rγij −DiNj −DjNi), (B.0.2)

where Di is the covariant derivative expressed in terms of the metric γij . Here

according to our notation barred quantities will be used for dual frame and unbarred

one for Einstein frame.

One can reduce the Lagrangian in the dual frame according to metric reduction

(B.0.1), as obtained in [88] and the reduced lagrangian is given by

Lξ =
1

2κ2

∫
d3x
√
−γ̄N̄ [(1 +

4ξ2

αξ
)K̄2 − K̄ijK̄ij −

αξ

N̄2
(∂rφ− N̄ i∂iφ−

2ξ

αξ
N̄K̄)2

− 2

N̄2
Σξ
IJ(φ)(F Iri − N̄kF Iki)(F

Ji
r − N̄ lF Jil )− 1

N̄2
Zξ(φ)(∂rχ

a − N̄ i∂iχ
a)2

+R[γ̄]− αξ∂iφ∂̄iφ− Σξ
IJF

I
ijF

Jij − Zξ∂iχa∂̄iχa − Vξ − 2�γ̄ ]e2ξφ,

(B.0.3)

One can obtain the canonical momenta in the dual frame from the above la-

grangian as

π̄ij =
δL

δ̇̄γij
, π̄iI =

δL

δȦIi
, π̄φ =

δL

δφ̇
, π̄χa =

δL

δχ̇a
, (B.0.4)

with conjugate momenta of the non-dynamical fields, N̄ , N̄i and Ar vanishing.

Expressing the canonically conjugate momenta in terms of quantities in the Ein-
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stein frame one gets

π̄ij =
1

2κ2

√
−γe2ξφ(Kγij −Kij), π̄iI = − 2

κ2

√
−γΣIJγ

ijF Irj ,

π̄φ =
1

κ2

√
−γ(2ξK − α∂rφ), π̄χa = − 1

κ2

√
−γZ∂rχa.

(B.0.5)

The expressions of canonically conjugate momenta evaluated around the back-

ground in linearised order of perturbations in metric and other fields, gives the fol-

lowing expressions.

πta =
1

4κ2
e2ξφBe−3Hg−1/2∂r(e

4HW a
t ),

πaI = − 2

κ2
eHg1/2ΣIJ(∂rα

J
a + g−1(∂rα

J
t )W a

t ),

πβa = − 1

κ2
e3Hg1/2Z∂rβ

a.

(B.0.6)

To make connection with the asymptotic expressions we will express the above

equations in terms of Θa, αIa and βa. We will consider only the terms in zeroeth

order of ω. Furthermore, we will use the radial coordinate z instead of usual co-

ordinate r. Here we substitute the background values of the fields and use dr =

−sgn(ξ)z−ξ/2F−1/2(z)dzz and consequently we obtain,

πta = −sgn(ξ)

4κ2
zξ−v−1∂z(z

4−2ξ(Θa(0) +
iω

k
βa(0))),

πa1 =
sgn(ξ)

2κ2
[zv+ξ−3F (z)∂zα

1(0)
a + 4sgn(ξ)q1(Θa(0) +

iω

k
βa(0))],

πa2 =
sgn(ξ)

2κ2
[z3v+ξ−1F (z)∂zα

2(0)
a + 4sgn(ξ)q2(Θa(0) +

iω

k
βa(0))],

πβa =
iω

2kκ2
[−sgn(ξ)z5−v−ξ∂zΘ

a(0) − 4qIα
I(0)
a ].

(B.0.7)

We substitute the expressions for the fields in small frequency limit to obtain the

expressions of the canonical momenta. It has been explained in [88] the asymptotic

expressions provide a map between the two sets. Here one set is given by the fluc-

tuations, Θa(0), αI(0)
a , βa(0) along with their canonically conjugate momenta and the

other set consists of the modes Θa
1, Θa

2, αaa0, CaI and βa.

The set of fluctuations we have defined in section 6 should be identified with the
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local sources in the boundary theory but with these expressions they will become de-

pendent of radial coordinate z. To properly identify the local sources and their dual

operators one needs to consider holographic renormalisation of the action. Since the

analysis we make here is very similar to [88] we refer their analysis for details. This

identification involves the canonical transformation among the fluctuation modes

and their canonically conjugate momenta, which can be realised by adding proper

counterterms in the regularised action. This canonical transformation, in absence of

the magnetic field has been described in details In [88]. They have considered the

regularised on shell action for the model with the black hole solution we described

here as the background. By means of addition of counterterms at the boundary the

variables πta, Aa1 and πβ
a

undergo the canonical transformations, while keeping Aa2

and its canonical conjugate momentum fixed.

As has been discussed earlier, since the effect of magnetic field appears at the lin-

ear order in frequency or higher but not in zeroeth order term, so the small frequency

expansion of the fluctuations Θa(0), αI(0)
a , βa(0) remain the same as in the case of the

absence of the magnetic field. However, there are differences in the expression of

our blackening factor F(v) and so the counterterms will be changed in this case.

In the case when the magnetic field is present we are assuming that we can make a

similar canonical transformation by including the counterterms and obtain the trans-

formed variables which are appropriate to make identification of the local sources

and the dual operators on the boundary. A similar addition of the counterterms will

give the following asymptotic expression of our transformed variables,

Πta = − 1

4κ2
z−2v(Θa

2 + 4µICaI ) + ..., a1
a = α1

a0 − µ1Θ1 + ...,

Πβa =
−2iω

kκ2
qIa

I
a + ..., a2

a = α2
a0 − µ2Θ1 + ...,

(B.0.8)

where the chemical potentials are given by

µ1 = −
4sgn(ξ)q1z

2+v−ξ
h

2 + v − ξ
, µ2 = −

4sgn(ξ)q2z
ξ−v
h

ξ − v
. (B.0.9)
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The transformed variables as we obtained above are related to our original symplec-

tic variables through a canonical transformation. Following [88] here we identify

the asymptotic expressions of these transformed variables as obtained above with the

observables in the dual field theory as follows. By imposing different boundary con-

dition one can achieve different holographically dual theory. For Dirichlet boundary

condition on the field Aa1, which requires addition of an additional boundary term to

the on shell action along with the respective counterterms [88], the observables and

the respective sources for energy flux are given by

Ea = 2 lim
r̄→∞

e2vr̄Πta = − 1

2κ2
(Θa

2 + 4µICaI0), Θa
1 = lim

r̄→∞
e−2vr̄na, (B.0.10)

respectively where r̄ is related to r through the relation r ∼ 2
|ξ|e
− ξr̄

2 and na is the

shift function in the decomposition of metric γ̄ij as γ̄ijdxidxj = −(n2 − nana)dt2 +

2nadtdx
a + σabdx

adxb, a, b = 1, 2. Similarly the observable for U(1) currents and

pseudoscalars are expressed as follows

J aI = lim
r̄→∞

Πa
I = − 2

κ2
(CaI0 −

iωqI
k

βa0 ), Xa = lim
r̄→∞

Πβa = −2iω

kκ2
qIa

I
a,

(B.0.11)

respectively and aIa is given by

aIa = αI0 − µIΘa
1. (B.0.12)
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