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The Higher Himalayan Crystalline Complex (HHGC) in Sikkim,
India, consists of pelitic migmatites interlayered with calc-silicate
rocks and minor metabasites. Mucrostructural relationships between
the mineral phases and deformational fabric elements and zoning
characteristics of garnet indicate a prolonged and complex poly-
metamorphic hustory for the HHC. The pelitic rocks in the upper
part of the HHC contain the assemblage plagioclase + quartz +
garnel + R-feldspar + biotite + sillimanite and are devoid of
muscovite. Most of the mineral phases grew syn- to post-tectonically.
Mineral growth coincided with development of a pervasive fabric
(Sy) during prograde metamorphism (M), in the early stages of
the collisional event. Some garnet grains display texturally distinct
cores and rims, which are separated by calcic plagioclase. This
lexture suggests an earlier metamorphic episode (M;). M; may
represent pre-Himalayan metamorphism and decompression of the
HHC. Later, the collisional event led to renewed burial of the
HHC and M, reactions. M, s reflected by dehydration melting of
muscovile and biotite lo_form granitic melts, which either crystallized
n situ fo_form leucosomes, or migrated from their source regions
to form larger gramitic bodies. Geothermobarometric estimates for
peak M, conditions indicate P = 1012 kbar, T = 800-850°C.
A subsequent metamorphic event (M) occurred because of ~5 kbar
of decompression. M is recorded by the breakdown of porphyroblastic
garnet i all HHC' lithologies. Higher temperature and pressure
estimates come from progressively higher structural levels of the
complex. The thermal gradient of 5-5°C/km s anomalous, and
may be a consequence of thermal buffering during melting. However,
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the pressure gradient of 0-25 kbar/km resembles a normal lithostatic
gradient, which suggests that the HHC wn Sitkkim represents an
wverted Barrovian sequence. This tnverted zonation of the HHC
s probably the result of large-scale structural inversion and/or
lectonic juxtaposition because of ductile shearing.

KEY WORDS: dehydration melting; high-grade polymetamorphism; inverted
metamorphism; Sikkim Himalayas

INTRODUCTION

The tectonothermal evolution of the Himalayas reflects
events that accompanied collision of the Indian and
Eurasian plates during the Eocene (~50 Ma). This con-
tinent collision resulted from the closure of the Neo-
Tethys and the subduction of the Indian plate below
Tibet. The >2500 km of post-Eocene shortening has
been mainly accommodated through crustal stacking,
along a system of intracontinental thrusts and internal
deformation of the Indian plate (Patriat & Achache,
1984; Molnar, 1986).

The major controversies concerning the P-7 evolution
of the Himalayas revolve around (1) heat source of
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metamorphism, (2) the nature and origin of inverted
metamorphism, (3) the ages of metamorphic and de-
formational events, and (4) the relationships among meta-
morphism, deformation, and magmatism (see for review,
Barnicoat & Treloar, 1989; Swapp & Hollister, 1991;
Hodges et al., 1994; Grujik et al., 1996; Parrish & Hodges,
1996). Very different P-7 paths are reported from various
parts of the Himalayas. One reason for this variation
may be that thermal regimes may differ along the vast
length of the orogenic belt, but a major factor appears
to be different interpretations of the deformational and
metamorphic histories. For example, although a Hi-
malayan age for the main penetrative fabric is suggested
on the basis of mineral ages (Brunel & Kienast, 1986;
Hodges & Silverberg, 1988; Hodges et al., 1988; Pecher,
1989; Wheeler et al, 1995), a pre-collisional age has
also been proposed (Reddy et al., 1993). Barrovian style
mverted metamorphism has been reported throughout
the Himalayas (Oldham, 1883; Ray, 1947; Gansser,
1964, 1983; Le Fort, 1975; Honegger ¢t al., 1982; Banerjee
et al., 1983; Brunel & Kienast, 1986; Hodges ¢t al., 1988;
Hubbard, 1989; Pecher, 1989; Searle & Rex, 1989;
Staubli, 1989; Treloar et al., 1989, among others). A
sequence of progressively higher-grade rocks occurs at
higher structural levels in the Lesser Himalayas and the
Main Central Thrust (MCT) zone (references as above).
The picture in the Higher Himalayas is rather confusing,
because both increasing (e.g. Metcalf, 1993) and de-
creasing (Thakur, 1986; Lombardo e al., 1993) grades
towards higher structural levels have been described.
Numerous models have been proposed to account for
the observed inverse metamorphic zonation in the Hi-
malayas. These include (1) thrusting of a hot slab over a
cold one [the ‘hot-iron’ model of Le Fort (1975)], (2)
shear heating along thrusts (England & Molnar, 1993),
(3) post-metamorphic imbricate thrusting (Treloar e al.,
1989), (4) post-metamorphic folding of the isograds (Searle
& Rex, 1989), (5) tectonic juxtaposition of high- and low-
grade rocks (Swapp & Hollister, 1991; Jain & Manic-
kavasagam, 1993) and (6) syn-metamorphic ductile shear-
ing (Grujik et al., 1996; Jamieson et al., 1996; Davidson
et al., 1997). A prominent role is assigned to the MCT
i most of these models. It is generally regarded as a
major intracrustal ductile thrust zone, a few kilometres
wide (Grujik et al., 1996). In some parts of the orogen,
the upper bounding fault of the MC'T zone marks a
metamorphic discontinuity (Hodges & Silverberg, 1988;
Metcalf, 1993), whereas in other parts no such break is
recognized (e.g. Hubbard, 1989).

In this paper, we describe the petrology of the Higher
Himalayan Crystalline Complex in Sikkim, eastern Hi-
malaya. The present study focuses on the upper part of
the Higher Himalayan slab, beginning at structural levels
from which primary muscovite has been eliminated from
the assemblages of pelitic rocks up to its northern contact
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with the Tethyan sedimentary sequence. We use the
mineral assemblages, reaction and geo-
thermobarometric estimates to demonstrate a complex
polymetamorphic history for these rocks.

textures

REGIONAL GEOLOGIC SETTING

Since the work of Gansser (1964) in Darjeeling—Sikkim,
most workers have divided the Himalayas into a series
of longitudinal tectonostratigraphic domains: (1) Sub
Himalayas, (2) Lesser Himalayas, (3) Higher Himalayas,
and (4) Tethys Himalayas (Fig. la), separated by major
dislocation zones.

In the Sikkim region, units are disposed in an arcuate
regional fold pattern (Fig. 1b). The ‘core’ of the region is
occupied by the Lesser Himalayan low-grade metapelites
(Daling Group, Proterozoic to Mesozoic) and the distal
parts by medium- to high-grade crystalline rocks of the
Higher Himalayan Belt (Higher Himalayan Crystalline
Complex, HHC, Proterozoic?). A prominent ductile shear
zone (the MCT) separates the two belts. In this region,
the MC'T 1s the southernmost of a number of northward-
dipping ductile shear zones within the Higher Himalayan
Crystalline  Complex. Gondwana (Carboniferous—
Permian) and molasse-type Siwalik (Miocene—Pliocene)
sedimentary rocks of the Sub-Himalayan Zone occur in
the southern part of the region. In the far north, a thick
pile of Cambrian to Eocene fossiliferous sediments of the
Tethyan Zone (Tethyan Sedimentary sequence, Fig. 1b)
overlie the HHC on the hanging wall side of a series
of north-dipping normal faults constituting the South
Tibetan Detachment System (STDS; Burchfiel et al.,
1992).

The HHC consists predominantly of high-grade pelitic
migmatites with subordinate calc-silicate rocks, meta-
basites and granites. The pelitic migmatites are stromatic,
with layer-parallel granitic leucosomes and biotite-rich
melanosomes (Fig. 2). Patchy leucosomes and discordant
veins are also present (Fig. 3). Banded, finely foliated,
and augen gneisses show transitions from stretched
leucosomes to composite crystal augens with por-
phyroblasts of K-feldspar. The augen gneisses display
pervasive mylonitic microfabrics, suggesting that augen
development may reflect strain heterogeneities. These
rocks all contain the same AFM phases and are inferred
to have been derived from pelitic precursors. Numerous
layers of calc-silicate rocks and minor quartzite occur
throughout the HHC. Small bodies of metabasic rocks
are generally conformable to the gneissic and migmatitic
layering. Intrusive bodies of biotite and tourmaline
leucogranites, rarely exceeding a few tens of metres,
occur in great profusion in the upper parts of the HHC.
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Structural studies of the Himalayas have reported a
number of deformational events and related fabric ele-
ments (e.g. SinhaRoy, 1976; Brunel, 1986). The dominant
structural element in the pelitic rocks is a penetrative
foliation, designated here as Sy, because an earlier de-
formation is sporadically represented by an early fabric
(5)) that defines microfolds within the §)-related layering
or is seen as internal trails within syn-S, garnet por-
phyroblasts. S, is related to a set of locally preserved,
rootless, isoclinal folds (F,) seen in quartzofeldspathic
layers. I, formed during the D, (Fig. 4). S, is commonly
seen as a gneissic layering that is defined by the alignment
of biotite and sillimanite grains. These mafic layers al-
ternate with felsic ones that contain eclongated and
flattened grains of feldspar and quartz. The pelitic units
also show a mylonitic microfabric ($,,) characterized by
thin layers of fine-grained recrystallized quartz—feldspar
aggregates which anastomose around or cut across por-
phyroclasts of feldspar and quartz. The S, fabric in-
tersects the S, fabric at low angles, which suggests that
shearing may have been initiated early in the D, period
and continued into the post-D, time. The most common
folds (F5) in the Higher Himalayan pelites, however, are
those that involve S, folia. A weakly developed cren-
ulation cleavage (§3) is locally seen parallel to the axial
planes of meso- and macro-scale F; folds and is marked
by incipient growth of biotite and chlorite.

A number of discrete linear zones of ductile de-
formation (DDZ) are seen in many localities. The DDZ
cut across lithological boundaries and the planar fabric
S,. These zones are narrow, characterized by intense

mylonitization, formed late in the deformation history
(post-D,), and are associated with mineral lineations and
stretching lineations. The stretching lineations generally
plunge to the north. Shear sense indicators consistently
indicate a top-to-the-south sense of movement. S-C
fabrics associated with the north-to-south transport are
found within the gneisses in these zones (Fig. 5).

PETROGRAPHY

Pelitic rocks

The pelitic migmatites are essentially composite in char-
acter, composed of quartzofeldspathic leucocratic regions
with biotite-rich selvedges, which alternate with grey
gneiss. Some patchy leucosomes and discordant veins
(Fig. 3) contain cordierite. Locally, relicts of earlier gen-

eration of leucocratic regions occur as rootless isoclinal
F, folds (Fig. 6).

Leucocratic regions

The leucocratic regions are granitic in composition and
much coarser grained than the host gneiss. They contain
varying proportions of quartz, K-feldspar and plagioclase,
with minor sillimanite, muscovite, biotite and garnet.
The leucocratic regions display simple hypidiomorphic
textures. Aspect ratios of quartz and plagioclase are low
(~2:1). Quartz occurs mostly as xenomorphic interstitial
grains between coarser feldspar, or as drop-like inclusions
within plagioclase. Plagioclase is coarse (~0-2-1-5 mm),
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Fig. 1. (a) Generalized geological map of the Himalayas, showing the different geotectonic domains and lithounits [modified after Honegger et
al. (1982)]. Inset shows the location of the Sikkim Himalayas. MBT, Main Boundary Thrust; NP, Nanga Parbat; ND, Nanda Devi. (b) Schematic
geological map of the Sikkim Himalayas, showing the location of the samples.
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Fig. 2. Stromatic pelitic migmatite with discrete layer-parallel quartzofeldspathic leucocratic regions bordered by biotite-rich selvedge (melanosome)

and a gneissic part.

Fig. 3. Discordant leucocratic veins cutting across the pervasive S, fabric and the layer-parellel leucocratic regions in pelitic migmatite.

subhedral, locally weakly deformed and ranges from
albite to oligoclase in composition. Plagioclase is typically
zoned, and the zone boundaries are distinctly idio-
morphic. K-feldspar is present in variable amounts (up
to 35 modal %) as xenoblastic grains, generally micro-
perthitic. Biotite (greenish brown) may be present locally
as randomly oriented flakes, with chloritic rims. Sil-
limanite needles are seen as isolated grains or as clusters
within plagioclase grains. Garnet appears in significant

proportions in some leucocratic regions at higher struc-
tural levels. Xenoblastic cordierite grains from thin leuco-
some veins contain inclusions of biotite grains. Zircon
and apatite are minor accessory minerals.

Host gneiss

The host gneiss consists of biotite + quartz +
plagioclase + K-feldspar + sillimanite + cordierite +
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Fig. 4. Early rootless F, folds defined by quartzofeldspathic layers in pelitic migmatite. The S, fabric is axial planar to these folds.

ilmenite + garnet + spinel + magnetite + graphite
=+ apatite.

Biotite is generally mahogany-red in colour and occurs
as fine flakes that define the §, foliation (along with
sillimanite), or as poikiloblasts that have overgrown this
fabric. The oriented flakes are likely to have grown
syntectonically with §,, but the poikiloblastic grains
clearly indicate that biotite growth outlasted S,. Quartz—
biotite intergrowths (Fig. 7), and patchy secondary biotite
+ sillimanite, replace some garnet grains (Fig. 8). Sil-
limanite occurs as: (1) fibrous aggregates concentrated
along the .S, folia with biotite, (2) plicated masses forming
intrafolial pods, or (3) coarse prisms derived from the
coarsening of fibrolite needles.

Garnet found in pelitic rocks is commonly por-
phyroblastic, generally irregular shaped, locally displays
rims, and varies in size from 0-4 mm to ~10 mm. These
garnet grains generally lack any internal fabric; instead,
they contain numerous inclusions in cores, and display
inclusion-free rims. Typically, a break between cores and
rims is defined by a ring of inclusions or a thin coating
of plagioclase. Such garnets evidently grew in two stages,
pre- to syntectonically and post-tectonically with the S,-
forming deformational event. Discrete post-S, garnet
grains occur as highly sieved skeletal grains that have
overgrown the matrix fabric (Fig. 9). Garnet coronas
between sillimanite and plagioclase occur adjacent to
leucocratic veins (Fig. 10).

Porphyroblastic K-feldspar is fairly abundant. Grains
are typically perthitic, but some occur as intergrowths
with quartz or as smaller interstitial grains along with
plagioclase. Plagioclase grains are deformed, xenoblastic,

generally untwinned, and locally myrmekitic. Cordierite
occurs between garnet and biotite or sillimanite (Fig. 11).
Spinel-quartz symplectites that rim sillimanite or garnet
occur in the highest structural levels of the Higher Hi-
malayan Crystalline Zone (Fig. 12a and b). Quartz is
highly deformed. Locally, it forms ribbon-like grains with
aspect ratios >10. Ilmenite is the most common opaque
mineral in these rocks. It occurs as irregularly shaped
grains or needles associated with the breakdown of biotite.
Graphite grains are less commonly observed.

Calc-silicate rocks

The calc-silicate rocks can be grouped into two as-
sociations:

Type I. calcite + clinopyroxene, =+ scapolite +
plagioclase + quartz + garnet + sphene + clino-
pyroxene, + plagioclase, + epidote + wollastonite ( +
zoisite + hornblende + tremolite) (the subscript 2 for
clinopyroxene and plagioclase refers to symplectitic vari-
eties described below);

Type 1II: epidote + quartz + clinopyroxene +
garnet + plagioclase + sphene + calcite ( +
hornblende + chlorite).

Type I is the dominant association. It is characterized
by higher modal abundance of calcite relative to Type
IT and presence of scapolite. The granoblastic polygonal
texture of these calc-silicate rocks is made up of a coarse
mosaic of calcite, clinopyroxene,; and plagioclase,;. Clino-
pyroxene is xenoblastic, and contains inclusions of pla-
gioclase, sphene and calcite. Some clinopyroxene grains
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Fig. 5. S—C band structure developed in pelitic migmatite in ductile shear zones.

display amphibole rims. Matrix plagioclase, is xenoblastic
and twinned. Garnet is porphyroblastic. It contains
inclusions of quartz, plagioclase and, rarely, calcite. Some
grains are rimmed by symplectites of clinopyroxene,
and plagioclase, (Fig. 13). Scapolite occurs as partial
pseudomorphs of plagioclase;. Zoisite occurs as rims on
clinopyroxene and scapolite or as partial replacements
of plagioclase grains. Wollastonite has been detected in
only one sample, where it occurs as xenoblastic grains.

Association Type II contains abundant epidote, but
little calcite. Garnet occurs locally as lobate worm-like
grains that contains inclusions of epidote.

Metabasic rocks

Both foliated and massive metabasic rocks occur in
the HHC. Foliated metabasites are conformable with
surrounding pelites. The foliation in the metabasites is
defined by hornblende and ribbon-like aggregates of
quartz and plagioclase. The metabasic rocks contain

hornblende + plagioclase, + quartz + orthopyroxene
+ plagioclase, + clinopyroxene + garnet + opaques.
Plagioclase, is the symplectitic variety, described below.

Amphibole is the dominant mafic phase in the meta-
basites. It occurs as prismatic grains of hornblende that
are aligned with the foliation or anthophyllite re-
placement of orthopyroxene orthopyroxene—
plagioclase,  symplectites around garnet grains.
Plagioclase, occurs as interstitial grains in the matrix.
Garnet is commonly xenoblastic and highly embayed.
Garnet grains are rimmed by plagioclase, (Fig. 14). Some
garnet porphyroblasts are surrounded by orthopyroxene—
plagioclase, symplectites (Fig. 15), or by plagioclase,—
amphibole—quartz intergrowths. Composite garnet grains
with texturally distinct ‘cores’ and ‘rims’ occur in the
lower part of the crystalline complex in the study area
(Fig. 16a and b). The core and rim sections are separated
by plagioclase, and differ in their inclusion characteristics
and zoning patterns, which are discussed in a later section.
Both features indicate garnet growth during two distinct
episodes. Cores of such grains contain randomly oriented

n
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Fig. 6. Early generation leucosomes defining a set of appressed isoclinal (¥5) folds occurring between thick leucocratic regions parallel to the S,

fabric.

inclusions. Rims show well-developed crystal faces and
contain oriented inclusions that define a fabric aligned
with the S, matrix fabric. The latter feature indicates
post-S, growth (Fig. 16a). Clinopyroxene is preserved only
locally in the higher structural levels, as porphyroblasts or
as worm-like grains in contact with hornblende. Por-
phyroblastic clinopyroxene shows extensive retrogressive
breakdown to actinolite. Ilmenite is the dominant opaque
mineral in the metabasites, and occurs intergrown with

amphibole. Hornblende shows retrogressive breakdown
to actinolite.

MINERAL CHEMISTRY

Minerals were analysed with a JEOL JCXA-733 electron
microprobe analyser at Kyushu University, Japan, using
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R

Fig. 8. Garnet (G) resorbed against an intergrowth of biotite (B), sillimanite (A), plagioclase (P) and quartz (Q) in pelitic migmatite. EPMA

back-scatter image. Scale bar represents 250 um.

an accelerating voltage of 15 kV and a beam current of
1 x 10® A. Natural mineral standards were used. A
beam diameter of ~1 um was used for most of the phases
except scapolite, feldspars and calcite, where a broad
beam (~10 um) was used. JEOL ZAF software was
used to correct the raw microprobe data. Representative
mineral chemical data for the pelites, calc-silicate rocks,

and metabasites are given in Tables 1, 2 and 3, re-
spectively.

Pelitic rocks

In pelitic rocks, prograde and retrograde biotite can be
distinguished by their TiO, contents. Retrograde biotite
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Fig. 9. Post-tectonic (S5) skeletal garnet (G) overgrowing coarse matrix grains [plagioclase (P) and quartz] in pelitic migmatite. EPMA back-

scatter image. Scale bar represents 250 pm.

Fig. 10. Coronal garnet (G) rimming sillimanite (A) against plagioclase (P), bordering a leucosome vein in pelitic migmatite. Kf, K-feldspar.

EPMA back-scatter image. Scale bar represents 250 pm.

grains show low TiO, (~0:4-0-6 wt %) compared with
prograde ones (~2-4 wt %). Biotite compositions display
very little variation within a given specimen. The max-
imum variation in Xy, from core to rim in contact with
garnet is ~0-05 (Analyses 29 and 28 in Table 1). Biotite
grains in contact with garnet have Xy, ~0-5 and TiO,

0-6 wt %, whereas those in the matrix have Xy, 0-19-0-45
and TiO, 2-4 wt %. The higher Xy, in the former grains
may reflect diffusive re-equilibration during cooling.
Locally, matrix biotite shows high Fe/Mg, a feature that
may also have resulted from retrogression.

Garnet from pelitic rocks is Almgy 6Py 505p1 3Gr7 90
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Fig. 11. Cordierite (Crd) rim on garnet (G) in pelitic rock. EPMA back-scatter image. Scale bar represents 250 pm.

(Table 1). Most garnet grains decrease in Xp, and increase
in X, from core to rim. Rimward depletion in Xp, and
increase in X, is observed in garnet grains adjacent to
matrix biotite (Analyses 3 and 4, Table 1). These trends
probably reflect post-peak garnet resorption and
re-equilibration during cooling. X, shows a sharp de-
crease near the rim in contact with plagioclase (Analyses
16 and 17, Table 1). Post-D, skeletal garnet is generally
lower in X, (0-13) compared with adjacent cores (X,
0-2) (Analysis 15, Table 1). Garnet coronas between
aluminosilicate minerals and plagioclase grains contain
up to 9 mol % higher pyrope and lower almandine than
the rims of other garnet grains in the same thin section
(Analysis 5, Table 1). The low X, of garnet rims and in
texturally post-tectonic garnets suggests decompression.

Plagioclase in the pelitic rocks falls within the range
Ang;s 3;Abgs 45 (Table 1) and contains maximum Or of
~4 mol %. Slightly larger plagioclase grains are unzoned
except at their contacts with garnet. Such plagioclase
rims display higher X,, (0-57) in comparison with the
cores (0-49). Smaller plagioclase grains in contact with
garnet are uniformly more calcic (X4, ~0:55) (Analysis
49, Table 1) than coarser grains. The small grains may
have crystallized during the post-S, phase. Plagioclase
inclusions within garnet always display higher anorthite
contents than the matrix grains.

Spinel belongs to the FeAl,O,—~MgAl,O,~ZnAl,O, solid
solution series with ~66 mol % hercynite and 10 mol
% gahnite components. Spinel shows low Al < Fe’*
substitution and contains low Ti. Cordierite is magnesian
(X1 ~0-6) with negligible zoning.

Calc-silicate rocks

Porphyroblastic garnet from calc-silicate rocks contains
51-63 mol % grossular, with low andradite (~6—7 mol
%) and pyrope (~2—4 mol %), and moderate almandine
(29-34 mol %) (Table 2) contents. Grains lack significant
zoning, except for minor rimward depletion of andradite
near rims adjacent to clinopyroxene,—plagioclase, sym-
plectites. Hydrogrossular (Gr;yAnd,;Pyg) and wollastonite
have been found in calc-silicate rocks next to a leuco-
granite body (sample Zemu, Analysis 67, Table 2).

Plagioclase compositions range between Ansg and Any;
(Table 2). More calcic compositions (X, 0-93) replace
scapolite (EqAn 68) or occur with garnet. Some plagio-
clase grains are weakly zoned and display higher X, at
contacts with other Ca-bearing phases. Plagioclase, that
occurs in symplectites with clinopyroxene, is highly calcic
(XA, 0-95).

Clinopyroxene,; occurs as a matrix mineral. It is di-
opside-hedenbergite,, with Xy, = Mg/(Mg + Fe’*) =
0-47-0-96 (Table 2) and contains little Al (Al,O; 0-17—
0-35 wt %) in garnet-bearing samples. In garnet-free
rocks, clinopyroxene may contain up to 3-17 wt %
Al,Oj; (Table 2). Clinopyroxene has low Fe’* contents,
calculated on the basis of charge balance criteria, and
contains up to 13 mol % of CaTs. Clinopyroxene, occurs
as symplectitic intergrowths with highly calcic plagioclase,
(Angg). It has higher Al;O; contents (2:6-3-5 wt %) and
lower Xy, (~0-4) than the clinopyroxene; matrix grains,
and also shows significantly higher Ca'Ts (16-17 mol %)
and FeTs (8-10 mol %). Scapolite with EqAn ranging
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Fig. 12. (a) Spinel (Sp)-quartz (Q)) intergrowth rimming sillimanite (S) in pelitic migmatite. Scale bar represents 50 pm. (b) Spinel (Sp)-quartz
(Q) symplectite replacing garnet (G) in pelitic migmatite. Scale bar represents 125 pm.

from 65 to 70 (Table 2), contains negligible SO; and CL
Pistacite contents of epidote vary from 0-17 to 0-25.

Metabasic rocks

Amphiboles span the compositional range of magnesio-
hornblende to tschermakitic hornblende, based on the
13 ex CNK scheme (Robinson et al., 1982). They display
low to moderate Ti (up to 1-45 wt % TiO,, Table 3)
contents. Ti correlates with the bulk Xy, of the rock.
Fe’* (calculated from stoichiometry) ranges from 049 to
0-79. Secondary amphiboles that replace orthopyroxene

are magnesiocummingtonite or anthophyllite with up to
38 mol % Fe.

Garnets in metabasic rocks display 50-65% almandine,
10-30% pyrope, 2-13% spessartine and relatively high
proportion of grossular (16-25%) (Table 3). Grains are
zoned and generally show trends of increasing Xp, and
decreasing X, from core to rim. Resorbed garnet grains
surrounded by plagioclase (X,, ~0-85)-orthopyroxene
symplectites display rimward decreases of X, and Xp,,
and an increase in Xg,. Composite garnet grains exhibit
complex zoning characteristics (Fig. 17a and b). The
‘core’ shows a slight rimward decrease in X, and Xy,
whereas the outer rim displays increasing Xp, and
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1 Bl

Fig. 13. Porphyroblastic garnet (G) rimmed by a symplectite of clinopyroxene (Cpx,) and plagioclase (P,) against calcite (Cc) in calc-silicate

rock. EPMA back-scatter image. Scale bar represents 100 pm.

.ﬂ."-_ :

L.

Fig. 14. Garnet (G) surrounded by a moat of plagioclase (P). Amp, amphibole. EPMA back-scatter image. Scale bar represents 250 pm.

decreasing X, at almost constant X¢,. The thin mantle
of plagioclase that separates the two parts of composite
garnet grains is highly calcic (X,, ~0-95) (Table 3). A
zoning profile for composite grains in which the pla-
gioclase mantle is incompletely developed or missing is
shown in Fig. 17b.

Matrix plagioclase typically displays An,, compositions
with low Or contents (Table 3). In contrast, plagioclase
inclusions in garnet are anorthite rich. The increase in
An content of plagioclase rims in contact with garnet
grains appears to be related to the depletion of X, in
the rims of garnet. Clinopyroxene has Xy, ~0-65-0-70.
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Fig. 15. Garnet (G) breaking down to a symplectite of orthopyroxene (O) and plagioclase (P). Orthopyroxene has subsequently broken down
to amphibole (A). EPMA back-scatter image. Scale bar represents 250 um.

Orthopyroxene has low X, (0-008) and X, ~0-52
(Table 3). Ilmenite contains up to 2:65 wt % Fe,O, and
displays low Mn (2 mol %) and low Mg (<1 mol %)
contents.

MINERAL REACTIONS AND
EVOLUTION OF THE ASSEMBLAGES

Textures provide strong indications of the poly-
metamorphic history of these rocks. The cores of com-
posite garnets showing two stages of growth are inferred
to have grown before the D, deformation during an
M, phase. This was followed by a dominant prograde
metamorphic event (M,,) during D,, and lasted into the
post-D, static period (Ms,). The most important prograde
mineralogical change of the M,, phase in the pelites is
the elimination of primary muscovite, common in lower-
grade rocks of Sikkim (Banerjee et al., 1983; Mohan et
al., 1989). The elimination of muscovite in pelitic rocks
can be attributed to either dehydration or melting re-
actions. Metamorphic pressures in the muscovite-bearing
metapelites in the Sikkim region exceeded 4 kbar (see
Mohan et al, 1989), and it has been experimentally
shown (e.g. Le Breton & Thompson, 1988; Vielzeuf &
Holloway, 1988) that at pressures higher than 4 kbar
melting is favoured over dehydration. We, therefore,
argue that the elimination of muscovite during the M,,
event took place because of the incongruent melting
reaction

muscovite + plagioclase + quartz = biotite +

sillimanite + K-feldspar + L. 1)

Melts generated by reaction (1) will be peraluminous,
nearly water saturated and very small in amount (~1-4
%), largely proportional to the amount of muscovite
available (Vielzeuf & Holloway, 1988). The small amount
of melt will be unable to migrate from the site of gen-
eration (Vielzeuf & Holloway, 1988). We interpret the
granitic leucosomes parallel to the S, fabric in the studied
rocks to represent the  siu segregation of the melt
produced through reaction (1).

Melting during metamorphism can occur either in
fluid-present or in fluid-absent conditions (see Le Breton
& Thompson, 1988; Vielzeuf & Holloway, 1988). Several
lines of evidence suggest that melting of the Higher
Himalayan Crystalline pile occurred under fluid-absent
conditions. First, melting was mostly confined to ‘fertile’
lithologies, in contrast to more widespread melting that
would be expected under fluid-present conditions (Cle-
mens & Vielzeuf, 1987). Added to this are the constraints
of limited porosity of rocks at mid- to lower-crustal
levels, and the tendency of the fluids to be channelized.
Furthermore, fluids would be immediately partitioned
into melts. Trace element studies also argue against the
presence of a pervasive fluid during metamorphism in
the region (Harris et al., 1993).

The bulk of mineral growth took place during the M,
event, which coarsened matrix grains and produced post-
tectonic grains as well as rims of garnet. Textural features,

74



NEOGI et al. HIGH P-T POLYMETAMORPHISM IN HIGHER HIMALAYAN CRYSTALLINES

Cti (L =l S
P .'Tr'.; e s 'F#

Fig. 16. (a) Composite garnet (G) grain with texturally distinct central part containing fine oriented inclusions of plagioclase and quartz and an outer
part showing idiomorphic grain boundary and an internal fabric continuing into the external fabric at the bottom of the picture. A partly developed
plagioclase (P) mantle separates the two parts. EPMA back-scatter image. Scale bar represents 250 pm. (b) Composite garnet (G) grain with a more
completely developed plagioclase (P) mantle around the central part. EPMA back-scatter image. Scale bar represents 250 pm.

such as garnet separating sillimanite and plagioclase biotite + sillimanite + plagioclase + quartz =
grains, the presence of garnet-bearing leucosomes, and garnet + (K-feldspar) + L, 2)
the occurrence of veins and patchy leucosomes discordant

to the metamorphic layering point to a second melting (Le Breton & Thompson, 1988; Vielzeuf & Holloway,
event involving the reaction 1988).
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Fig. 17. Zoning profiles for composite garnet grains in metabasic rock. (a) Pattern where plagioclase mantle in the central part is well developed.

(b) Pattern where the mantle is poorly developed or absent.

The contrasting relationship of the leucosomes with
the S, fabric supports at least two discrete melting events,
with biotite melting after the S,-forming deformational
event, ecither during M, or during the later
decompression event (Ms). The thin cordierite-bearing
veins resulted from the reaction

cordierite +
(3)

probably during the M; decompression. Textural evi-
dence for this reaction consists of ragged biotite inclusions
within cordierite grains. Experimental studies show that
the biotite dehydration-melting is expected to occur at
temperatures >800°C and at pressures >7-8 kbar (Cle-
mens & Vielzeuf, 1987; Le Breton & Thompson, 1988;
Vielzeuf & Holloway, 1988; Carrington & Harley, 1995).
We will demonstrate below that the P-7 conditions of
metamorphism in the studied area were conducive for
dehydration-melting of biotite-bearing protoliths.

The amount of melt produced by dehydration-melting
of biotite depends on (1) the amount of biotite in the
protolith, (2) the temperature range over which melting
occurs, (3) bulk rock Xy, (4) the solubility of water in
the melt, which itself is a function of pressure, and (5)

biotite 4+ aluminosilicate + quartz
(K-feldspar) + L

the diffusivity of Al (Clemens & Vielzeuf, 1987; Le Breton
& Thompson, 1988; Vielzeuf & Holloway, 1988; Patino
Douce & Johnston, 1991; Carrington & Harley, 1995).
Therefore, melting of biotite-bearing protoliths is ex-
pected to occur over a range of temperature (Carrington
& Harley, 1995). Under favourable conditions, biotite
melting can produce up to 45% of melt at 850-860°C
(references as above). We, therefore, argue that a sub-
stantial amount of melt was probably produced through
biotite melting during the A, phase or during M; de-
compression at a nearly constant temperature. Because
the thermal stability of biotite is expanded as a result of
incorporation of Ti and F (Vielzeuf & Holloway, 1988),
biotite was not completely consumed in the studied rocks.
Melt fractions, exceeding the theoretical critical melt
fraction (Arzi, 1978; Van der Molen & Patterson, 1979;
Wickham, 1987), migrated from the site of melting to
produce the discordant granitic leucosomes, veins and
patches. It is likely that the melts formed during M, and
M ; may have accumulated in sufficient volumes at deeper
levels to form pools, and were later emplaced as bodies
ofleucogranites. Leucogranite formation through vapour-
absent melting of kyanite-grade metasedimentary proto-
liths at the base of the HHC have been suggested earlier
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by some workers (c.g. Harris & Massey, 1994). Inger &
Harris (1993), on the basis of geochemical constraints,
considered the tourmaline leucogranites to represent low
fraction (~12%) minimum melts generated through fluid-
absent melting of micas, effectively removed from their
source regions through deformation-enhanced processes.
Scaillet et al. (1990) have experimentally shown that
crystallization of tourmaline is favoured by low initial
X0 (<0-7), whereas at higher Xy, biotite is the liquidus
phase and tourmaline dissolves incongruently. Convective
homogenization of higher melt fractions (>40%), with
variable water activities, could produce the biotite leuco-
granites.

In the upper part of the HHC sequence, spinel +
quartz appears in assemblages in localized patches during
the M; phase. Textural features such as spinel-quartz
mtergrowths that rim sillimanite and garnet suggest the
reaction

garnet + sillimanite (4)
Locally, these spinel-quartz symplectites are overgrown
by plagioclase. Both this texture and lobate contacts
between hercynite and quartz suggest later retrograde
reactions (see Waters, 1991). Another expression of de-
compression in the pelitic rocks during M is the for-

mation of cordierite rims on garnet by the reaction

spinel + quartz.

garnet + sillimanite + quartz = cordierite.

(%)

Evidence for the late stage () resorption of garnet
through textural features such as embayed garnet margins
against biotite and sillimanite is probably related to the
net-transfer reaction

garnet + K-feldspar + H,O = biotite + sillimanite
+ quartz. (6)

The presence of intergrowths of biotite-quartz and bio-
tite—sillimanite against garnet suggests the melt—solid
interaction

garnet + (K-feldspar) + melt = biotite + sillimanite
+ quartz. (7)

Calc-silicate rocks

There are no textural clues to the formation of clino-
pyroxene, but its appearance may be linked with the
elimination of tremolite from the assemblages at an early
stage of M,, through the dehydration-decarbonation
reaction

calcite + tremolite + quartz

H,0 + CO.,.

clinopyroxene +

8)
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Textural features suggest the formation of scapolite
through the AM,, prograde reaction

calcite + plagioclase

= scapolite.

©)

Development of porphyroblastic garnet also took place
in the prograde path at the expense of calcite, anorthite
(in plagioclase) and quartz via the model reaction

anorthite + calcite + quartz = garnet + CO,. (10)

This is supported by the presence of plagioclase, calcite
and quartz inclusions in garnet. Breakdown of por-
phyroblastic garnet in the calc-silicate rocks is associated
with M3 decompression through the reaction

garnet + calcite + quartz = clinopyroxene +

plagioclase + CO, (11)

which is inferred from clinopyroxene,—plagioclase, sym-
plectites around garnet grains. The significant increase in
CaTs and FeT's components in clinopyroxene, compared
with matrix grains, and the depletion of andradite com-
ponent in rims of porphyroblastic garnet grains suggest
involvement of grossular and andradite components in
reaction (11).

These rocks also show evidence of M,-stage hydration,
which led to the formation of phlogopite grains and
amphibole rims on clinopyroxene.

Metabasites

The metabasic rocks rarely preserve evidence of their
prograde history. Their textural and compositional char-
acteristics suggest that the peak metamorphic assemblage
consisted of hornblende + plagioclase + clinopyroxene
+ garnet. The presence of garnet was apparently con-
trolled by lower Xy, in the bulk composition.

The M; decompression history of these rocks can be
deciphered from reaction textures and mineral com-
position. Garnet broke down to orthopyroxene—
plagioclase intergrowths through the reaction

garnet + quartz = orthopyroxene + plagioclase. (12)

The progress of this reaction should deplete X, in
orthopyroxene, X, in garnet rims, features that are
observed in the metabasites. Another retrogression fea-
ture is the partial conversion of orthopyroxene to antho-
phyllite.

GEOTHERMOBAROMETRY

Temperature was estimated using Fe-Mg partitioning
between coexisting garnet and biotite in pelitic rocks.
Several models for this thermometer are available

90



NEOGI et al.

(Thompson, 1976; Goldman & Albee, 1977; Ferry &
Spear, 1978; Hodges & Spear, 1982; Perchuk & La-
vrenteva, 1983; Ganguly & Saxena, 1984; Indares &
Martignole, 1985; Dasgupta et al., 1991). Like all other
Fe-Mg exchange thermometers, the garnet-biotite ther-
mometer is likely to be reset during cooling (see Spear,
1991, 1992), and, therefore, may give temperatures lower
than the peak values. The experimentally calibrated
model of Ferry & Spear (1978) does not take into con-
sideration the presence of AI'' and Ti in natural biotite.
The formulation of Dasgupta e al. (1991) takes into
account the non-ideality in quaternary Fe-Mg-Mn—Ca
garnet solid solution associated with mixing of Al and T1
in octahedral sites in biotite and was found to give
consistent results for both amphibolite and granulite
facies rocks. Considering that AlY'and Ti are present in
HHC biotites (Table 1), we have used this model to
compute temperature. For comparison, we have also
used the model of Ferry & Spear (1978). Applegate &
Hodges (1994) showed that the most consistent tem-
peratures are obtained when a combination of the qua-
ternary garnet solid solution model of Berman (1990)
and the biotite mixing parameters of Patino Douce et al.
(1993) are used. Ganguly et al. (1996) have recently
determined the activity—composition relationships in qua-
ternary garnet solid solutions based on well-reversed
experiments. We have, additionally, computed tem-
peratures with a version of garnet-biotite thermometer
(J. Ganguly, personal communication, 1997) that uses
the experimentally derived garnet solution model of
Ganguly ¢t al. (1996) and the biotite solution model of
Patino Douce et al. (1993). The results of the calculation
are given in Table 4. We have arranged the samples
according to their increasing distance from the MCT,
and hence from the lowest to the highest structural levels.

Maximum temperatures were obtained using garnet
core and matrix biotite compositions in all the models.
However, the absolute values varied in the range
727-945°C (Ferry & Spear, 1978), 697-820°C (Dasgupta
et al., 1991) and 720-970°C (J. Ganguly, personal com-
munication, 1997) from the lowest to the highest struc-
tural levels. Although it is not clear with which biotite
composition garnet cores equilibrated, it is believed that
a garnet core-matrix biotite combination is most likely
to preserve temperatures close to the metamorphic peak
(see Indares & Martignole, 1985). The Dasgupta et al.
(1991) model consistently gave lower values than the
other two. Both the Dasgupta ¢t al. (1991) and J. Ganguly
(personal communication, 1997) models gave results
showing minimum scatter (4 25°C for closely associated
samples at a particular structural level). However, the
maximum temperature estimated by the Dasgupta et al.
model (~820°C) from samples at the highest structural
level is more consistent with the phase assemblages in
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metapelites (biotite—spinel-quartz—cordierite) and calc-
silicate rocks (scapolite—calcite—plagioclase) at this level.
We have, therefore, adopted the temperature estimates
from the Dasgupta et al. (1991) model in this work.

Temperatures calculated for garnet rims against biotite
are generally ~100°C lower than the garnet core—matrix
biotite temperatures. The former represents cooling of
the rocks. Using the experimental calibration of the
equilibrium hercynite + quartz = garnet + sillimanite
of Bohlen et al. (1986), with the activity models of Berman
(1990) and Ganguly et al. (1996) for garnet, and that of
Waters (1991) for hercynite, and assuming pressures of
5-6 kbar, we estimate temperatures around 820-850°C
from the rim composition of garnet for the decompressive
event.

Thermometers based on Fe-Mg partitioning between
garnet-hornblende (Graham & Powell, 1984) and garnet—
orthopyroxene (Harley, 1984; Lee & Ganguly, 1988;
Bhattacharya et al., 1991) were applied to the associated
metabasic rocks. Temperatures calculated from the me-
tabasic rocks (Table 5) show a fair agreement with those
from the pelitic rocks at corresponding structural levels.
Temperatures from garnet (core) and hornblende pairs
range from 607 to 738°C. As orthopyroxene occurs as
a late breakdown product of garnet, we used garnet rim
compositions with orthopyroxene. However, we obtained
higher temperatures, varying between 698 and 780°C
(Harley, 1984), 865 and 926°C (Lee & Ganguly, 1988),
and 735 and 787°C (Bhattacharya et al., 1991). Tem-
peratures given by the Harley (1984) model closely cor-
respond to those obtained from metapelites at the same
structural level.

A further temperature estimate can be obtained from
the calc-silicate rocks utilizing the vapour-absent reaction
anorthite + calcite meionite, which is nearly in-
dependent of pressure. Using the formulation of Baker
& Newton (1995) and the compositional characteristics
of scapolite and plagioclase in the calc-silicate rocks, we
obtain temperatures varying from 820 to 870°C. This
estimate is consistent with those obtained from garnet
core—matrix biotite temperatures in the pelitic rocks
(Table 4).

Determination of pressure estimates for the pelitic
rocks 1s complicated by the lack of pressure-sensitive
assemblages in the Higher Himalayan Zone and is based
mainly on the GASP barometer, which has been refined
by Koziol & Newton (1988). In our calculations, we have
used the Berman (1990) activity model for, garnet, and
the Elkins & Grove (1990) model for plagioclase, as a
combination of these two models has been shown to
yield pressure estimates consistent with the stabilities of
the ALSiO; polymorphs (see Applegate & Hodges, 1994).
Using the Ganguly et al. (1996) model for garnet, we
obtained nearly identical results. The calculated pressures
are given in Table 4. Some degree of uncertainty in
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Table 4: Result of geothermobarometry in metapelites
Sample Structural Cores Rims

distance from T (°C) P (kbar) T(°C) P (kbar)

MCT (km) GARB GASP GRAIL GARB GC GASP G

FS D G KN G GS  Fs D G B KN G

9/89 9:6 727 697 720 7-4 81 — 609 632 610 — 4.3 4.5
9/89 9:6 812 697 740 6-0 8.0 — 672 577 600 — 4.1 4.2
9/89 9:6 843 702 728 — — — — — — — — —
699/87 12.8 * * * 77 82 — 677 630 645 — 6-6 6-8
699/87 12.8 * * * 8.0 8.5 — * * * — 5.7 5.4
108/88 128 912 743 820 8.4 75 — 580 551 573 —_ 5.8 6-2
2/89 14.7 838 701 856 9.9 89 — 602 580 625 — — —
2/89 14.7 854 740 860 97 9:1 — — 588 646 — 3-8 4.2
2/89 14.7 860 743 830 — — — 626 561 624 — 4.6 5.0
2/89 14.7 860 744 830 10-2 10-4 — 814 679 740 — 6-1 5.8
113/88 14.7 * 784 815 9.7 10-0 — 811 690 705 690 5.9 6-1
726/87 16 868 726s 910 75 72 6-4 806 687 790 — 6-8 6-1
726/87 16 — — — 88 89 — 709 607 653 — 3-8 4.2
726/87 16 — — — 11.0 116 — — — — — 4.06 39
115/88 16 945 757 880 9:3 8.7 — 802 634 765 — 4.2 5.1
115/88 16 * 794 * — — — — — — — — —
115/88 16 925 712 890 9-0 9-8 — 674 521 647 —_ 3.0 *
20/89B 27-6 816 768 822 118 101 — 810 717 705 — 4.7 4.5
20/89A 27-6 836 793 834 121 1.3 — 781 697 685 — — —
20/89A 27-6 889 770 844 — — — 798 695 700 — 5.8 6-3
20/89A 27-6 920 814 870 10-05 111 — — — — — 5.5 5.9
64/86 32 901 806 970 10-8 11-8 — — — — — 4.4 5.8
64/86 32 — — — 14.3 13.6 — 854 737 907 — 8.2 7-6
64/86 32 913 820 933 17 121 — 855 747 862 — 7-1 84

*Abnormal temperature estimate (see text).

—, not calculated. FS, Ferry & Spear (1978); D, Dasgupta et al. (1991);-.B, Bhattacharya et al. (1988); KN, Koziol & Newton
(1988); G, after Ganguly et al. (1996), Elkins & Grove (1990) and Patino Douce et al. (1993), see text for discussion. GS,
Ganguly & Saxena (1984). s, small grain; GARB, garnet-biotite; GC, garnet-cordierite; GASP, garnet-
aluminosilicate-plagioclase-quartz; GRAIL, garnet-rutile-aluminosilicate-ilmenite—quartz.

pressure determination arises from difficulties in re- to the metabasites. The results are given in Table 5. We

trieving mineral compositions that represent the meta- derive pressures varying from 56 to 8:5 kbar in the

morphic peak. Pressures obtained using garnet cores and  different formulations.

matrix plagioclase range from 8-8 to 11-8 kbar. Garnet

rim compositions and adjacent plagioclase grains yield a

drop in pressure of about 4-6 kbar, indicating de-

compression during retrograde metamorphism. CONDITIONS OF METAMORPHISM
The garnet-hornblende—plagioclase—quartz (Kohn &  Spear (1991, 1992) and Spear & Florence (1992) high-

Spear, 1990), garnet-rutile-ilmenite—plagioclase—quartz  lighted the problems of interpreting metamorphic tem-

(GRIPS, Bohlen & Liotta, 1986) and garnet- peratures related to mineral reaction history, garnet grain

orthopyroxene—plagioclase—quartz (Perkins & Chipera, size, modal proportions and cooling rates on the deduced

1985; Bhattacharya et al., 1991) barometers were applied ~ P-7 values. The Higher Himalayan garnets show textures
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Table 5: Result of geothermobarometry in metabasites

Sample Structural Cores Rims
distance from T (°C) P (kbar) T (°C) P (kbar)
MCT (km) GARH GHSP GRIPS GARH GO GOPS
642/87 83 577 5.6 — 625 —
642/87 8-3 — 6:1 — — —
665/87 9.6 600 6-6 77 — —
690/87 11-6 737 7-0 — 650 735(B) 6-4(P)
690/87 116 — — — — 865(L) 7-6(B)
690/87 116 — — — — 701(H) —
97/88 12.2 690 7-0 — — — —
97/88 12.2 — 7-5 — — — —
88/88 23 623 7-0 8.5 622 — —

—, not determined. GARH, garnet-hornblende thermometer of Graham & Powell (1984); GO, garnet-orthopyroxene ther-
mometer; H, Harley (1984); L, Lee & Ganguly (1988); B, Bhattacharya et al. (1991); GRIPS, garnet-
rutile-ilmenite-plagioclase-quartz barometer of Bohlen & Liotta (1986); GHSP, garnet-plagioclase—quartz—hornblende
geobarometer of Kohn & Spear (1990); GOPS, garnet-plagioclase-orthopyroxene—-quartz geobarometer; P, Perkins & Chipera
(1985); B, Bhattacharya et al. (1991).

and zoning patterns which suggest retrograde exchange decompressive event. Bohlen et al. (1986) experimentally
and net transfer reactions. Thus, results of thermo- calibrated the stability field of the assemblage hercynite—
barometry should show departure from peak values. quartz, which is extended to lower temperatures by
Temperatures obtained from garnet—biotite thermometry — gahnite and magnetite, and showed a positive dP/d7,
(Ferry & Spear, 1978) are scattered and some samples  centred around 880 and 1020°C: at 5:2-5-4 and 8:6-8-8
vield unrealistically high values. This is attributed to non-  kbar, respectively. High f(O,) also has the effect of
id.eal mi}(i{lqg{ in garnet and thff presence of appreciable  increasing the stability field of hercynite + quartz. In
Ti .and Al in biotite. These. higher 7 values have been  oyp samples Xy, in spinel is slightly less than that in
omitted and the corresponding values for the Dasgupta  garne (Table 1). Sengupta et al. (1991) argued that high
el al. (1991) formulatllon are used instead. Higher tem-  pe/ Mg ratios in the bulk composition and large amounts
peratures were obtained for some samples by all the ¢ 7 iy spinel can override the effect of £(Oy). At high
models, using garnet core and matrix biotite compositions T and low P, X,,, in spinel could be less than that for
. . 5 g
(c.g. Sampl'e 699./ 87, Table 4) The volumetric ratio of garnet. The spinel-quartz-bearing assemblage in the
garnet to biotite is very low in these samples. Post-peak ey i therefore, indicative of high-7" decompression.
modification of biotite composition to higher Fe/Mg F ’ . ith oth dies in adioin
: ibly because of the operation of retrogressive or comparison with other studies in adjoining areas
ratios, possibly be . . (Hubbard, 1989; Swapp & Hollister, 1991; Inger &
net-transfer reactions, may account for higher estimated . .
Harris, 1992) we have arranged the samples according

temperatures (see Spear & Florence, 1992). None the Do . .
less, we have obtained some of the highest P-7 estimates to the,lr dlstan.ce' from the ,MCT’ notw1thsta1.1dmg the
diversity of opinions regarding the exact location of the

from the Higher Himalayan domain based on both CT m Sikki . g
thermobarometry and mineral assemblages. Peak M, P-T MCT in Sikkim (Lal et al, 1981; SinhaRoy, 1982)

conditions were probably 10-12 kbar and 800-850°C. We find an excellent correlatior'l between increasing

A hercynitequartz zone is present in the uppermost ~(cmperature and pressure and higher str.uctural levels
part of the Central Crystalline sequence in Sikkim. Swapp ~ (Fig- 182 anfi b). A difference of ~125°C is seen over a
& Hollister (1991) have described earlier a hercynite— structural distance of 22:5 km, corresponding to an
quartz-sillimanite-bearing metapelite from adjoining anomalously low thermal gradient of 5-5°C/km. We
Bhutan Himalayas. The occurrence of Fe-Mg spinel and ~ expect the temperatures to have been buffered to a large
quartz in pelitic rocks implies very high temperatures —extent by melting in the HHC pile (see Hodges et al.,
and an elevated thermal gradient at mid- to lower-crustal ~ 1988). In spite of greater uncertainties in pressure de-
levels, as reported from a number of granulite terrains termination, a gradient of 0-25 kbar/km is inferred,
(Waters, 1991). We assign the breakdown of porphyro- resembling a normal lithostatic gradient of ~0-28 kbar/
blastic garnet to spinel and quartz in the pelites to the A/;  km.

93



JOURNAL OF PETROLOGY

8501 (5)

e

8001

7501

T(°C)

700-

650

(b)

P (kbar)

+ 4+

+

+

— | | ! l L
10 15 20 25 30 35
Structural distance from MCT in km

Fig. 18. Plot showing the variation of temperature (a) and pressure
(b) with structural distance from the MCT.

Comparison of our available -7 estimates and profiles
of the upper HHC with those from the MCT zone and
sillimanite isograd in Sikkim, as well as from adjoining
areas in Nepal and Bhutan, reveals significant differences.
The thermobarometric data of Mohan et al. (1989) from
Sikkim also show increasing pressure and temperature
from the staurolite to the sillimanite zone, with the
exception of garnet zone samples which record higher
pressure. Because our study began from the sillimanite
zone of Mohan et al. (1989) and ranged to higher structural
levels, the maximum temperatures recorded in this study
exceed those reported by them, as well as those from
Bhutan by Swapp & Hollister (1991), by as much as
100°C. Hubbard (1989) reported an increase in tem-
perature towards higher structural levels through the
MCT zone in Nepal, and then a decrease at middle levels.
Her pressure estimates resemble a normal lithostatic
gradient. Major variations are seen in P-7 profiles re-
ported by different workers even within a single area.
In the Langtang Valley of Nepal, Macfarlane (1995)
demonstrated a decrease in pressures towards upper
structural levels but did not detect any variation in
temperature. In the same area, Inger & Harris (1992)
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noted a clustering of high-7 estimates towards the top
of the section and a drop in pressure, confirming the
continuation of the inverted metamorphic zonation into
the HHC. We could cite a number of reasons for the
variations, without discounting the possibility that some
of these differences could be real and not just artefacts
of calculation procedures. Prima facie, the major reason
appears to be the different solution models and cal-
ibrations used in the various studies. We suggest that
relative P-7 values obtained from a particular method
are readily compared and, therefore, the P-7 gradients
we have obtained are probably robust. It can be readily
seen from Tables 4 and 5 and Fig. 18a and b that
both P and T increase progressively towards the upper
structural levels from the MCT zone. The mineral as-
semblages and other field observations support the re-
corded P-T gradient in the HHC pile. The temperature
gradient is corroborated by elimination of muscovite at
the lower HHC, the progressive increase in melt fractions
towards higher structural levels, and the appearance of
assemblages with spinel and quartz (indicative of high-
temperature decompression) only at the highest structural
levels. Rather than a true reverse metamorphic zoning
where high-7 rocks are exposed at higher structural
levels, our P-T profile for the HHC in Sikkim shows
an increase in both pressure and temperatures towards
shallower structural levels, which indicates an inverted
Barrovian sequence.

DISCUSSION

The prolonged metamorphic history for the HHC we
have inferred from textural and compositional zoning
characteristics 1s divided into distinct segments rep-
resenting the tectonothermal evolution of the region. Our
P-T path for the HHC, constrained by mineral reaction
history and thermobarometric estimates for the different
episodes of mineral growth, is shown in a P-7 grid
(Fig. 19), which also depicts the experimentally de-
termined reaction equilibria relevant to the present study.

Recent studies in the Himalayas have emphasized
a polymetamorphic history of the Lesser and Higher
Himalayan rocks (Brunel & Kienast, 1986; Hodges &
Silverberg, 1988; Hodges et al., 1988; Pecher, 1989;
Staubli, 1989; Swapp & Hollister, 1991; Inger & Harris,
1992; Macfarlane, 1995). Complex textural and mineral
zoning features have been described from northwest
Pakistan (Treloar et al., 1989), Kistwar in northwestern
India (Staubli, 1989) and Bhutan (Swapp & Hollister,
1991). Our study has yielded fairly conclusive evidence
for multi-episodic growth of different porphyroblastic
phases. Two episodes of prograde metamorphism, A,
and M, have been suggested by many workers in their
respective areas (e.g. Brunel & Kienast, 1986; Swapp &
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Fig. 19. Pressure—temperature evolutionary path for rocks in the upper
part of the HHC. M, M, M; and M, are the phases of metamorphism
as discussed in the text. Boxes indicate geothermobarometric estimates
(garnet-biotite thermometer and GASP barometer) from different
samples in the HHC using core (C) and rim (R) compositions. Boxes
also indicate the uncertainties in the estimates. The box GAHQ is
calculated after Bohlen ef al. (1986). Reaction (1A) is from Vielzeuf &
Holloway (1988), reactions (1B) and (2) are from Le Breton & Thompson
(1988) and reaction (5) is from Thompson (1976), adjusted for natural
composition. Reaction (9) has been computed from Baker & Newton
(1995).

Hollister, 1991; Hodges et al., 1994), although they differ
as to their timing, mechanism and relation to de-
formational episodes. For Sikkim, we infer a period of
heating and decompression for the M, event (Fig. 19),
based on zoning patterns of the inner parts of composite
garnets which show rimward increase in Xp, and X,
and depletion of X, with calcic plagioclase mantles.
There is, however, no way of determining quantitative
P-T estimates of the peak M, conditions. This is due to
the difficulty of identifying M, equilibrium assemblages
owing to overprinting by the later, dominant M, event.
Temperatures may have reached those of partial melting
because of the relict leucocratic layers that define rootless,
early I, fold hinges. The timing of the A/, metamorphic
event 1s uncertain, reflecting a lack of reliable geo-
chronological constraints on the age of the main marker
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fabric (S,). Although a Precambrian or Palacozoic age
has been suggested from several areas (Chamberlain et
al., 1989; Pognante & Lombardo, 1989; Metcalfe, 1993;
Oliver et al., 1995), most of the data appear to converge
towards an early Tertiary age (c.g. Inger & Harris, 1992,
34 Ma; Hodges et al., 1994, 25 Ma; Hodges et al., 1996,
early Oligocene; Brunel & Kienast, 1986; Hodges &
Silverberg, 1988; Hodges et al., 1988; Pecher, 1989).

The results of thermobarometry and the inferred P-7
evolution of the HHC suggest that the Indian plate rocks
may have undergone renewed burial during the initial
stages of collision, leading to the syn-collisional prograde
metamorphic event M, (Fig. 19). We relate the syntectonic
M,, stage with muscovite dehydration melting primarily
on two considerations: (1) the small volumes of melts
produced by muscovite melting would probably be unable
to migrate from their site of generation, and (2) the
leucosomes are conformable to the S, fabric and preserve
only the post-D, deformation (such as layer parallel
stretching). The subsequent stage, My,, shows a trend
towards higher 7 as the rocks recrystallized under static
conditions, resulting in dehydration melting of biotite,
close to Ty A relatively flat (low dP/d7) gradient has
been inferred for this segment based on Ca zoning in
the post-tectonic rims of composite garnets. It is unlikely
that such flat Ca patterns are due to relaxation zoning,
because patterns for Mg and Fe are more or less pre-
served. Well-constrained isotopic age data indicate an
age between 20 and 22 Ma for the M, event (Hubbard
& Harrison, 1989; Pecher, 1989; Parrish et al., 1992;
Macfarlane, 1993, 1995; Harris & Massey, 1994; Hodges
et al., 1994).

The AM; event represents the post-peak exhumation
history of the HHC. It is recorded by the ubiquitous
breakdown of porphyroblastic garnet in all the lithologies.
Garnet reacted to form cordierite and spinel-quartz
intergrowths the pelitic rocks, orthopyroxene—
plagioclase symplectites in the metabasites, and clino-
pyroxene—plagioclase in the calc-silicates. Such reactions
(with the exception of that forming spinel + quartz) are
observed in all the structural levels of the HHC. This
episode, characterized by near-isothermal  de-
compression, occurred in response to rapid uplift and
erosion. Exhumation may have been synchronous with
movement on the South Tibetan Detachment System,
bracketed between 17 and 20 Ma in Nepal (Copeland
& Harrison, 1987; Parrish et al., 1992; Macfarlane, 1993)
and between 13 and 16 Ma in Tibet (Hodges et al., 1994).
The late-stage retrogressive event (A1) reflects the final
cooling and hydration of the rocks under low-grade
conditions, which resulted in extensive breakdown of
the prograde phases and overprinting by retrogressive
assemblages.

The inferred clockwise P-7 path of the post-M, seg-
ment of the HHC (Fig. 19) resembles the type modelled

n
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by England & Thompson (1984) for crustal thickening
by overthrusting. The A, event would, then, pertain to
the heating following thickening as a result of the thermal
relaxation towards a steady-state geotherm, and may
have been followed by a gap of a few million years
between the thickening and beginning of exhumation,
represented by the interkinematic My, event. It remains
to be seen whether the reported high temperatures can
be obtained through crustal thickening alone. Simple
one-dimensional modelling by Harris & Massey (1994)
does not favour attainment of such high temperatures
solely through thermal relaxation. Thermal relaxation
models also fail to account for the continuous inverted
metamorphic zonation from the MCT zone to the upper
parts of the HHC. We also rule out selective heating of
the upper part of the HHC by heat focusing during M,
as proposed by Inger & Harris (1992), on the grounds
that M, was recorded at the base of the HHC in Sikkim
and the deduced P-T profile is inconsistent with such a
mechanism. Other possible sources of heat include shear
heating along thrust faults (England & Molnar, 1993)
and heat advection because of leucogranite intrusions
into the HHC (e.g. Hollister et al, 1995). The latter
possibility is not directly applicable to the present area
because we interpret the leucogranites to be the product
of M, metamorphism. Although a number of shear zones
have been mapped in Sikkim and it is likely that some
amount of localized heating may have taken place in the
vicinity of these zones, on a broader scale this model
fails to account for the observed P-7 gradients in the
area. Swapp & Hollister (1991), from their study in
the Bhutan Himalaya, developed a model of tectonic
transport of heat from the lower crust into the middle
crust because of melt-induced thrusting of high-grade
migmatitic rocks onto lower-grade rocks. Interestingly,
this model would predict higher metamorphic pressures
at upper structural levels (fig. 6, Swapp & Hollister, 1991).

Intrinsically coupled with the problem of source of
heat for the high-grade metamorphism in the Himalayas
is the occurrence of inverted metamorphic zones. In-
verted metamorphic sequences may or may not represent
mverted crustal isotherms (e.g. Jamieson et al., 1996).
In the former case, it is implicit that the pattern of
metamorphic isograds exposed at the surface records the
distribution of crustal isotherms at the time of meta-
morphism. Models falling in this category include (1) the
‘hot-iron model’ (Le Fort, 1975, 1981), and (2) dissipative
heating along thrusts (Graham & England, 1976; Barton
& England, 1979; England & Molnar, 1993). If the
observed metamorphic zonation is a result of thrusting
of a hot deeper crustal slab over the cooler Lesser
Himalayan rocks (Le Fort, 1975), it would be difficult to
explain how the hanging wall slab could show increasing
pressure and temperature towards shallower levels. Fur-
thermore, the observed metamorphic zonation is not
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consistent with dissipative heating along thrusts. Several
other models have been proposed which consider that
the inverted zones do not represent inverted isotherms.
These include (1) post-metamorphic imbricate thrusting
of a normally metamorphosed pile in a manner that
stacks progressively higher-grade rocks on top of lower-
grade ones (Treloar et al, 1989), (2) tectonic inversion
by folding (Searle et al., 1988; Searle & Rex, 1989), (3)
tectonic juxtaposition of higher- and lower-grade rocks
during or soon after metamorphism (Swapp & Hollister,
1991); (4) syn-metamorphic ductile shearing (Jain &
Manickavasagam, 1993; Grujik et al., 1996; Jamieson et
al., 1996; Davidson et al., 1997), and (5) tectonic inversion
of isograds by displacement along shear zones (Brunel &
Kienast, 1986; Reddy et al., 1993). The models (1), (2),
(3) and (4) would predict progressive increase in both
pressure and temperature towards higher structural levels,
as recorded in this work. At the present level of ob-
servation in the Sikkim Himalayas it is not possible to
select one of the above models as the cause of inversion
of the studied metamorphic sequence.
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