ADVANCES IN APPLIED MICROBIOLOGY VOLUME 112

D/A

Contents

Contributors		vii	
1. De <u>c</u> feat	gradation strategies and associated regulatory mechanisms/ tures for aromatic compound metabolism in bacteria	1	
Pras	hant S. Phale, Harshit Malhotra, and Bhavik A. Shah		
1.	Introduction	2	
2.	Transport and uptake of aromatic compounds inside the cell	7	
3.	Routes for degradation of aromatic compounds	8	
4.	Enzymes involved in the degradation of aromatic compounds	11	
5.	Metabolism of aromatic compounds	16	
6.	Regulation of metabolic pathway for efficient degradation	24	
7.	Chemotaxis	38	
8.	Preferential utilization of carbon sources	39	
9.	Compartmentalization of enzymes involved in metabolic pathways	40	
10.	Role of biosurfactants	41	
11.	Aromatic compounds and their metabolites as inhibitors	42	
12.	Diversity in the metabolic pathways	43	
13.	Evolutionary aspects	45	
14.	Conclusion	46	
Ackr	nowledgments	48	
Refe	rences	48	
2. Pep	tidoglycan biosynthesis and remodeling revisited	67	
Moa	gi Shaku Christopher Faland, Ofentse Matlhabe, Rushil Lala		
and Payorh D. Kana			
anu			
1.	Introduction	68 •	
2.	Biosynthesis of the PG precursor	69	
3.	PG assembly	72	
4.	Penicillin binding proteins (PBPs)	73	
5.	Shape, elongation, division and sporulation (SEDS) proteins	74	
6.	L,D-Transpeptidases (LDTs)	75	
7.	The role of the bacterial cytoskeleton for PG biosynthesis and cell shape		
	maintenance	76	
8.	MreB directs PG biosynthesis, cell growth and cell shape maintenance	77	
9.	FtsZ	79	

v

	10. Bacterial tropomyosin homologs and their role in PG biosynthesis, cell	
	growth and cell division	80
	11. Regulation of PG biosynthesis by protein-protein interaction	81
	12. Regulation of PG biosynthesis by protein phosphorylation	83
	13. Regulation of PG biosynthesis and remodeling by hydrolases	84
	14. Enzymes required for PG remodeling	85
	15. PG hydrolase regulation	86
	17. PG recycling	88
	17. PG recycling in mycobacterial species	90
	18. PG recycling and β-lactamase signaling	91
	19. Conclusion	95
	References	95
3	8. Evasion of host defenses by intracellular Staphylococcus aureus	105
	Kate E. Watkins and Meera Unnikrishnan	
	1. Introduction	106
	2. S. aureus infections and recurrence	106
	3. Intracellular S. aureus: The evidence	107
	4. Host cell adhesion and invasion by S. aureus	109
	5. Bacterial factors modulating intracellular survival and replication	112
	6. Staphylococcal small colony variants	118
	7. Host cell pathways modulated during intracellular infection	120
	8. Targeting intracellular bacteria	127
	Summary	128
	References	129
4.	Antimicrobial resistance genes in bacteria from	
	animal-based foods	143
	lsadora de Alcântara Rodrigues, Rafaela Gomes Ferrari,	•
	Pedro Henrique Nunes Panzenhagen, Sergio Borges Mano,	
	and Carlos Adam Conte-Junior	
No.	1. Introduction	144
	2. Cattle	147
	3. Poultry	151
	4. Swine	154
	5. Fish	157
	6. Milk and dairy	160
	7. Eggs	164
	8. Final considerations	166
	References	167