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INTRODUCTION 

Carbon is the primary component of the earth’s biogeochemical cycle as it enables 

living organisms to live and flourish. Climate change in recent years is a phenomenon 

that emerged as one of the leading environmental issue. The increase of greenhouse 

gas concentration in the atmosphere due to anthropogenic activity is the main reason 

for developing climate change. Carbon dioxide is the key component among 

greenhouse gases accounting for 60% of global warming and forcing climate change. 

Because of an increase in the burning of fossil fuels, deforestation, and land-use 

conversion, the atmospheric CO2 concentration increased from the pre-industrial of 

about 280.00 ppm (parts per million) to 391.19 ppm in 2011 (NOAA 2011). An 

increase of 2.11 ppm of atmospheric CO2 was recorded in the previous 10 decades 

(2005-2014) which expanded more than two-fold to the 1960s (Tans and Keeling 

2015). The total amount of CO2 present in the earth’s atmosphere plays an important 

role to maintain the earth’s surface temperature (IPCC 2001). The increasing CO2 

concentration in the atmosphere results in a rise of surface temperature by 0.5
0
C in 

the past 100 years and is projected to rise by 0.6 to 5.0
0
C in the next 100 years (IPCC 

2014). Fast industrialization, urbanization, deforestation, forest fire, agricultural 

expansion and land-use change in the past years have all prompt to release of a high 

level of greenhouse gases, mainly carbon dioxide gas in the atmosphere. Increasing 

atmospheric CO2 and its potential consequences on climate are the most significant 

environmental issues globally (Brown et al. 1989). The major natural carbon sinks on 

the earth's surface are plants, ocean and soil. The Kyoto Convention of 1997 

concludes that capturing CO2 from the atmosphere through biomass is the only way 

of mitigation of greenhouse gases especially CO2 from the air (Bhadwal and Singh 
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2002). And carbon sequestration in terrestrial sinks can be utilized to balance the 

emission of greenhouse gases in the atmosphere (Jandl et al. 2007).  

Carbon sequestration is the net expulsion of carbon dioxide from the atmosphere and 

putting away into a long live pool of carbon. These carbon pools can be living over 

the above-ground biomass such as a tree, bush and herbs, and living biomass in soil 

i.e. root and microorganism. Absorbing carbon dioxide from the atmosphere and 

converting it into the biomass of the plants and absorption in the soil is only a 

practical way of removing greenhouse gases from the atmosphere into the biological 

system (Ramchandran et al. 2007). For the overall carbon management strategy, 

carbon sequestration plays a very important role in the reduction and mitigation of 

global CO2 emissions. Hence, it is recognized as an efficient and low-cost method for 

global carbon emission mitigation. The potential of vegetation C sequestration relies 

on nature, which in turn relies on the association between species, geography, 

climate, and land-use management practices. So, the carbon sequestration potential 

changes with the place, region and species composition of an area.  Understanding of 

carbon dynamics of various land-use types and the relationship between carbon stock 

and the land-use system is essential, as each land-use system has either a positive or 

negative effect on carbon balance (Toru and Kibret 2019). The amount of carbon 

stored in any land-use system depends on the function and structures of the different 

components within the system (Albrecht and Kandji 2003). Land-use change has 

significantly affected the total ecosystem carbon stock as well as the emission of 

greenhouse gases (Singh et al. 2018). Increasing demand for food due to population 

pressure results to change in land-use, which is one of the significant aspects of 

increasing atmospheric carbon dioxide. Change in land-use systems is frequent in the 

mountains especially due to less cultivable land, low fertility and landscape. The 
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transformation of natural forests into other forms of managed land-use systems has 

been the general pattern in the mountainous region (Rai et al. 1994).  

In the terrestrial ecosystem, the significant role played by forests in capturing CO2 

from the atmosphere and transforming it into forest biomass through the process of 

photosynthesis is well known. Five carbon pools have been identified by the 

Intergovernmental Panel on Climate Change (IPCC) comprising the aboveground 

biomass, belowground biomass, litter, woody debris and soil organic matter 

(Eggleston et al. 2006). Because of the presence of woody biomass in the forest, more 

than 20-50 % of carbon is stored in the forest ecosystem as compare to other land-use 

systems (Sharma et al. 2010). Also, due to a huge amount of carbon in vegetation as 

well as in soil (Dixon et al. 1994), approximately 60% of total carbon in the terrestrial 

ecosystems is store in the forest ecosystems (FAO 2001). Undoubtedly, forests also 

sequester more carbon than other land-use in the terrestrial ecosystem. Vegetation 

cover in the forest ecosystems contains about 350,000 Tg (Teragram) of carbon 

(Dixon et al. 1994) and around 42% of carbon is accumulated by living biomass 

vegetation, while soil and litter have 49% and deadwood has 9% in the terrestrial 

ecosystems (Pan et al. 2011). Trees constitute one of the most important components 

of the forest as they are capable of absorbing a large amount of CO2 from the 

atmosphere. The estimation of biomass in the forest is, therefore, necessary to 

understand the carbon storage and sequestration potential of the forest ecosystem 

(Wang et al. 2004). Above ground vegetation act as an important factor in soil 

formation as it gives litter for the formation of organic matter in the soil (Chapman 

and Reiss 1992). Around 4.1 billion hectares of various forest ecosystems worldwide 

act as a reservoir of terrestrial carbon stock (Dixon and Wisniewski 1995) which 

sequestered about 1240 Pg (Picogram) of carbon globally (51% of total ecosystem 
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carbon) in vegetation and soils (Prentice 2001). Carbon sequestration by the forest as 

a mitigation approach has fascinated and gains much importance, as it has been 

considered a comparatively low-cost means of addressing climate change instantly 

(FSI 2017). Estimation of forest biomass including the litter biomass is therefore 

necessary for estimating and monitoring the amount of carbon lost during 

deforestation and or any land-use change. Also, this gives the value of carbon storage 

or sequestration potential by the forest ecosystem. The decomposition of plant litter in 

terrestrial ecosystems is a predominant process for the flow of carbon and nutrients 

(Hattenschwiler et al. 2005). According to FAO (2005), around 13 million hectares of 

land are being deforested every year mainly due to the transformation of forest to the 

agricultural system or other practices. Transformation of natural forest into cropland 

or other farming practices lessen soil productivity because of increased erosion. Soil 

erosion resulted in a decrease in soil fertility and microbial properties which plays a 

vital role in sustaining soil and environment quality (Kara and Bolat 2008). Different 

cropping system is characterized by different crop yield which resulted to a difference 

in carbon inputs through crop residues (Yu et al. 2009). The land-cover pattern in the 

terrestrial ecosystems will strongly be affected by future agricultural demand which in 

turn affects the flux of CO2 and other greenhouse gases (Bhadwal and Singh 2002). 

Hence, the proper management of agricultural systems is one of the essential activities 

that can control carbon loss and emissions.  

There is a rapid increase in interest in the agroforestry systems as a land-use practice 

across the globe due to the recognition of the potential of agroforestry systems in 

carbon sequestration by the International Panel on Climate Change (IPCC 2006). 

Tropical agroforestry systems in developing countries can store 12.00-228.00 Mg C 

ha
-1 

carbon (Albrecht and Kandji 2003; Watson et al. 2000) and act as carbon sink 
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both in soil and vegetation to mitigate climate change (Goswami et al. 2014). Watson 

et al. (2000) assume that by 2040 the carbon sequestration potential of agroforestry 

would be 586 Mt C per year from the available 630 million hectares areas. 

Additionally, the agroforestry system provides various ecological advantages to the 

surrounding inhabitants directly or indirectly including fuel, nourishment, feed, 

timber, soil and water protection, biodiversity preservation and other usable items 

(Kumar et al. 2012).  

Besides, vegetation carbon stock, carbon store in soil comprises an important 

component in understanding the carbon cycle of a system. Soil organic carbon in the 

terrestrial ecosystem is a storehouse of carbon pool and has been identified as an 

important factor for determining soil fertility as it works as a sink of carbon 

depending on the land management activities (Lal 2005).  Forest ecosystems have 

around 40% of the total SOC stock in the globe (Eswaran et al. 1999). Soil contains 

about 1.5 to 3 times more carbon than the vegetation and twice much carbon as in the 

atmosphere (Batjes 1996; Jobbagy and Jackson 2000). Hence understanding 

variations in SOC content and sequestration across the different depth of soils in 

different land-use systems are important. Soil carbon storage transforms rapidly in 

response to land-use change and relies upon the ecological, biogeochemical and land 

management factors (Longbottom et al. 2014). Many studies have proposed that land-

use change is the fundamental factor determining SOC content because of its effects 

on soil aggregates (Yang et al. 2009; Fang et al. 2014), microbial activity and 

biogeochemical cycles (Nsabimana et al. 2004; Yang et al. 2009). Land-use change 

has been frequently observed to have huge impacts on soil carbon stocks and the 

transformation of forest to farming lands decreased carbon stock in soil (Chapman et 

al. 2013). The study of the soil processes in different land-use systems and their effect 
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on soil ecosystem functioning due to human activities is necessary to protect and 

regenerate the ability of soil to deliver ecosystem services (Van Leeuwen et al. 2017). 

SOC plays a vital role in agricultural productivity, climate stabilization and other vital 

ecosystem services for social, ecological and economic sustainability. Subsequently, 

assessment of the function of soil as a sink for carbon in various land-use systems 

becomes important as an increase in SOC content could prompt carbon sequestration 

that can balance the annual atmospheric CO2 concentration. Several studies 

highlighted the role of carbon sequestration in maintaining a balance in greenhouse 

gas emissions and its connection to site composition, i.e. soil structure, soil carbon 

content and climatic condition (Montagnini and Nair 2004; Nair et al. 2009).  

Soil respiration is another key source of releasing carbon from the soil to the 

atmosphere in the form of CO2 and plays a vital role in understanding carbon 

exchange in soil and the atmosphere (Kutsch et al. 2009). For climate change 

mitigation strategies, the study of soil carbon flux is important because higher carbon 

is store in soil than in vegetation (Song et al. 2013). Carbon dioxide released by root 

and microbial respiration constitutes soil respiration (Luo and Zhou 2006). Soil 

respiration influences net carbon uptake from the atmosphere (Ryan and Law 2005) 

and is an important factor in soil carbon storage, soil quality, and soil biological 

activity. The emission of CO2 from the soil is considered as one of the major carbon 

fluxes in the carbon cycle globally. Different land-use systems have diverse soil 

respiration patterns due to the influence of different biotic and environmental factors. 

The biological cycle of nutrients in an ecosystem is one of the principal processes that 

support organic matter production (Sharma et al. 2000). Among geochemical, 

biogeochemical and biochemical mineral-flow pathways in terrestrial ecosystems, 
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biochemical mineral-flow pathways assume importance in redistribution and 

conservation of nutrients within the standing crop and in determining the amount of 

nutrients in litterfall (Sharma and Pande 1989). 

Soil microorganisms perform a major function in nutrient cycling and help in 

understanding and regulating the soil carbon cycle of different ecosystems. For the 

formation of the organic carbon pool, soil microbial biomass carbon act as a key 

indicator of soil organic carbon by decomposing organic matter. Microbial biomass 

carbon in the soil contributed around 1-3% carbon to the total soil organic carbon 

(Dilly et al. 2003). It also controls nutrient dynamics by affecting the primary 

productivity of most biogeochemical processes in terrestrial ecosystems (Gregorich et 

al. 2000; Kara and Bolat 2008). The functioning of an ecosystem depends on the flux 

of carbon and other chemical nutrients, mediated by the microbial interaction in the 

soil, plant and animal food web (Seneviratne 2015). The fertility of soil also depends 

upon soil microbial mechanisms and their mediated processes (Lynch 1984). 

According to Singh and Gupta (2018), soil microbial biomass acts as a keystone 

biological driver to the ecosystem functioning. Geographical area, climate variability, 

soil properties, and the dominant vegetation are the key drivers in controlling 

microbial biomass carbon dynamics in different land-use types (Singh and Gupta 

2018; Wardle 1992). Therefore, estimating soil microbial biomass carbon in the 

different ecosystems is an important tool for understanding and predicting long-term 

effects on change in land-use (Sharma et al. 2004).  

The physicochemical characteristics of soil depend on the climate, topography, 

vegetation type of different land-use systems. Nitrogen, phosphorus, and potassium 

present in soil are major constituent nutrients of vegetation in the terrestrial 
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ecosystem. The soil physicochemical characteristics differ due to differences in the 

type of vegetation growing upon it and changes in land-use systems (Yadava and 

Devi 2004). Sequestration of carbon by the green plants has been given much 

attention as a promising means of natural forest to reduce CO2 emissions as well as 

enhancing carbon sinks. Also, it is clearly seen that different vegetation or land-use 

type has the different potential to influence carbon pools and their dynamics.  

Present study postulated that the different land-use practices adopted in Sikkim 

Himalaya such as forestry, agroforestry and cropland systems have a different impact 

in terms of carbon stock and sequestration, productivity and soil nutrient distributions. 

In addition, the distribution pattern of soil nutrient, soil microbial biomass carbon and 

rate of CO2 emission from three different ecosystems were discussed in the present 

study. Therefore, the present work “Study on carbon dynamics of three different 

ecosystems i.e. forest, agroforestry and cropland ecosystems of Sikkim Himalayas” 

was carried out to understand the carbon cycle scenario, its impact and its efficiency 

on sequestration options in different land-use systems of Sikkim Himalayas.   

Thus the main objectives of the present research work are: 

1. To study the carbon stock in soil and vegetation (including the litter and 

microbial pools) in the three ecosystems of Sikkim Himalayas. 

2. To estimate the rate of soil CO2 emission in the three major land-use systems. 

3. Comparison of the rate of carbon sequestration and to establish a relationship 

between the rate of carbon sequestration with abiotic and biotic variables in 

the three ecosystems. 
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The present thesis has been presented in seven chapters: 

 Chapter I: Introduction. 

Chapter II: Study site and climate. 

 Chapter III: Soil physicochemical characteristics. 

 Chapter IV: Carbon stock and sequestration of three different land-use      

systems. 

Chapter V: Soil microbial biomass carbon. 

Chapter VI: Soil CO2 emission. 

Chapter VII: General discussion and summary. 
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DESCRIPTION OF STUDY SITES AND CLIMATE 

Study Sites 

Study sites i.e. subtropical forest, cardamom agroforestry, and rice cropland selected 

for the present research were situated at Dzongu, North Sikkim (reserved lands for the 

indigenous Lepcha tribe) which is approximately about 78 km
2 

of the state (Bhasin 

2011). The altitudinal range of the study sites was 700-6000 m asml. The subtropical 

forest is dominated by Alnus nepalensis with other broad-leaved species while the 

introduction of large cardamom (Amomum subulatum) in the subtropical forest 

converts it to the cardamom agroforestry system. Paddy cropland is another important 

cropland of the state as rice forms the staple food of the people of the state and other 

northeastern states of India. Landuse and land cover map (LULC) and map of the 

study sites are placed below as (Fig 1 and 2).  

 

Fig 1. Landuse land cover (LULC) map of Dzongu, N.Sikkim 
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Fig 2. Map of study sites 
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Subtropical Forest 

The subtropical forest was located between 27
0
31.550'N & 88

0
29.722'E and at an 

altitude ranging from 1400-1700 m asml. Dominated tree species is Alnus nepalensis 

with other species such as Schima wallichii, Lyonia ovalifolia and few other tree 

species. Besides the trees, this forest also housed luxuriant vegetation like bamboos, 

edible wild plants, firewood, fodder, medicinal plants and other non-timber forest 

produces. Herbaceous vegetation like  Arisaema sp., Asplenium sp., Begonia sp., 

Impatiens sp were also present. 

 

Plate 1: Subtropical Forest 
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Cardamom Agroforestry  

The cardamom agroforestry system is an indigenous one and lies between 

27
0
31.311′N & 88

0
24.490′E at an elevation ranging from 1350-1619 m asml and 

spread over an area of 100 hectares. Alnus species is used as the main shading tree in 

this system. Cardamom agroforestry system is getting prominence in the state as it 

provides livelihood benefits to the locals. Some of the variety of large cardamom 

cultivated were Ramsey, Ramla, Dzongu Golse, Seremna, Sawney and Varlangey 

(Gudade et al. 2013). 

 

Plate 2: Cardamom Agroforestry  
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Paddy Cropland 

Paddy cropland of the present study lies between 27
0
31.445'N & 88

0
30.380'E at an 

elevation of 1200-1400 m amsl. Paddy is grown in almost all places of the state and 

the total area under paddy cultivation in Sikkim is 106.70 sq km with a production of 

19690 tons (2015-2016) of rice (ENVIS Centre, Sikkim). Wet rice (zomal) are grown 

on waterlogged terraced farms. Some of the local rice varieties cultivated in the state 

are thulo attey, sanu attey, tukmor jho, chini jho, darmali jho, marbun jho, mumpop 

jho etc.  

 

Plate 3: Wet Paddy Cropland 
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Climate 

The climate of the study area is monsoonal with three seasons, i.e summer, rainy and 

winter. About 60-70% of monthly rainfall takes place during the rainy season. 

Maximum rainfall occurs during the month of July (495.26 mm) and minimum during 

the month of December (12.16 mm). The mean average temperature varied from 

6.40
0
C (January) to 18.40

0
C (June) and relative humidity varied from 48.00% 

(March) to 78.88% (July). An ombrothermic diagram for ten years is placed on (Fig 

3). During the study period i.e. (2016-2018) the mean annual rainfall was 3216 mm, 

average relative humidity ranged from 42.5-72.5% and mean temperature varied from 

7.00
0
C-20.00

0
C across the months (Meteorological Station Gangtok, Sikkim). The 

climate data of the study sites during the study period are presented in Fig (4). 

Summer Season 

The summer season comprises March, April and May and rainfall  during this 

season varied from 34.60 mm (March) to 264.73 mm (Apri l). The mean 

temperature and relative humidity varied from  March (12.67
0
C and 48.00%) to 

May (16.67
0
C and 64.50%) respectively during this season.  

Rainy season 

The rainy season starts from the month of June till October and the mean monthly 

rainfall varies from 421.00 mm (October) - 631.46 mm (July) during this season. The 

mean temperature ranged between 15.67
0
C - 20.00

0
C and relative humidity 60.50% - 

72.50% in this season. The highest monthly temperature and relative humidity were 

also recorded during this season in the month of August (20.00
0
C and 72.50% 

respectively).  
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Winter season 

The Winter season corresponds to the dry season and starts in November and ends in 

February. Minimum rainfall is recorded during this season from 12.20 mm 

(December) to 61.83 mm (January). The lowest temperature and relative humidity 

were also recorded during this season 6.40
0
C(January) - 8.20

0
C(December) and 

42.5% - 60.5% respectively across the months.  

 

 

Fig 3. Ten years Ombrothermic diagram of North Sikkim (2009-18) 
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Fig 4. Climate data of all the study sites during the study period (2016-18) 

 

Soil 

The soil of Sikkim Himalayas has gneissic rocks as its parent material (Saha 2013). 

The two tree-based systems (subtropical forest and cardamom agroforestry) have 

loamy soils while paddy cropland has clayey loam soil. The pH of soil varied between 

4.80-5.80 across soil depth and sites. The mean soil moisture across different landuse 

ranged between 18.22-38.33% while the mean soil temperature varied from 7.00
0
C-

18.03
0
C. Bulk density (0.56-0.91g cm

-3
), soil nutrients including organic 

carbon, nitrogen, phosphorus and potassium ranged from 1.88-4.96%, 0.15-0.37%, 

0.010-0.054%, and 0.14-0.26% respectively across the sites. 
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Vegetation  

Subtropical Forest 

Alnus nepalensis is the dominant tree species in this forest contributing more than 

50% of the total tree density while other tree species including Lyonia ovalifolia, 

Machilus edulis,  Symplocos theifolia and Schima wallichii were also found. Shrubs 

are absent as this forest is converted from the cardamom agroforestry system about 35 

years ago. However, various herbaceous vegetation like Eupatorium cannabinum, 

Ageratum conyzoides, Pouzolzia hirta, Drymaria cordata, Artemisia vulgaris, 

Impatiens sp., Arisaema sp., Digitaria ciliaris, Oplismenus compositus, Equisetum 

diffusum and Urtica dioica are also present. The list of tree species and herbaceous 

species in this site is placed in Table-1. 

Table 1. List of trees and herbaceous species in the subtropical forest site. 

Scientific Name  Family 

 

Trees 

 

Alnus nepalensis D. Don Betulaceae 

Castanopsis indica (Roxb. ex Lindl.) A.DC. Fagaceae 

Ficus racemosa Willd. Moraceae 

Juglans regia L. Juglandaceae 

Lyonia ovalifolia (Wall.) Drude Ericaceae 

Macaranga pustulata King ex Hook.f. Euphorbiaceae 

Machilus edulis King ex Hook.f.  Lauraceae 

Schima wallichi Choisy Theaceae 

Spondias axillaris Roxb. Anacardiaceae 

Symplocos theifolia D. Don Symplocaceae 

 

 

  



DESCRIPTION OF STUDY SITES AND CLIMATE CHAPTER II 

 

19 SIKKIM UNIVERSITY 

 

Herbs 

Arisaema sp Araceae 

Artesimia vulgaris Asteraceae 

Asplenium  sp Aspleniaceae 

Ageratum conyzoides Asteraceae 

Begonia sp Begoniaceae 

Centella asiatica Apiaceae 

Deparia boryana Athyriaceae 

Diplazium forrestii Athyriaceae 

Digitaria ciliaris Poaceae 

Drymaria cordata Caryophyllaceae 

Elatostema sp Urticaceae 

Equisetum diffusum Equisetaceae 

Eupatorium cannabinum Asteraceae 

Hydrocotyle javanica Araliaceae 

Impatiens sp Balsaminaceae 

Lecanthus peduncularis Urticaceae 

Nephrolepis exaltata Nephrolepidaceae 

Oxalis corniculata Oxalidaceae 

Oplismenus compositus Poaceae 

Persicaria runcinata Polygonaceae 

Pilea pumila Urticaceae 

Piper sp Piperaceae 

Pouzolzia hirta Urticaceae 

Polygonum molle Polygonaceae 

Pogonatherum crinitum Poaceae 

Selaginella sp Selaginellaceae 

Thelypteris cana Thelypteridaceae 

Urtica dioica Urticaceae 
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Cardamom agroforestry  

Cardamom (Ammomum subulatum) along with other shade provisioning trees and 

herbs are grown here in this agroforestry system. Alnus nepalesis is used as the main 

shading tree however, other tree species for fodder, timber and firewoods like Ficus 

racemosa Juglans regia, and Macaranga  pustulata are also planted within the 

agroforestry system.  Shrubs are manually removed but herbaceous species like 

Ageratum conyzoides, Drymaria cordata, Oxalis corniculata, Diplazium esculentum, 

Spilanthes acmella, Galinsoga parviflora, Pouzolzia hirta, Pteridium sp. Urtica 

dioica and  Polygonum molle are present. A list of tree species and herbaceous species 

in the cardamom agroforestry site is placed in Table- 2. 

Table 2. List of trees and herbaceous species in the cardamom agroforestry site. 

Scientific Name  Family 

 

Trees 

 

Alnus nepalensis D. Don Betulaceae 

Ficus racemosa Willd. Moraceae 

Juglans regia L. Juglandaceae 

Spondias axillaris Roxb. Anacardiaceae 

Toona ciliata M.Roem. Meliaceae 

Macaranga pustulata King ex Hook.f. Euphorbiaceae 

Viburnum cordifolium Wall. Ex DC. Adoxaceae 

  

Herbs  

Amomum subulatum Zingiberaceae 

Arisaema sp Araceae 

Begonia sp Begoniaceae 

Centella asiatica Apiaceae 

Deparia boryana Athyriaceae 
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Diplazium forrestii Athyriaceae 

Drymaria cordata Caryophyllaceae 

Elatostema sp Urticaceae 

Equisetum diffusum Equisetaceae 

Eupatorium sp Asteraceae 

Galinsoga parviflora Asteraceae 

Impatiens sp Balsaminaceae 

Lecanthus peduncularis Urticaceae 

Oxalis corniculata Oxalidaceae 

Oplismenus compositus Poaceae 

Persicaria runcinata Polygonaceae 

Pilea pumila Urticaceae 

Polygonum molle Polygonaceae 

Pouzolzia hirta Urticaceae 

Spilanthes acmella Asteraceae 

Thelypteris cana Thelypteridaceae 

Urtica dioica Urticaceae 

 

Paddy Cropland 

In the paddy cropland, trees and shrubs are absent. Besides Oryza sativa (rice), other 

weed species such as Cyperus rotundus, Cyperus difformis, Paspalum distichum, 

Fimbristylis maliacea along with certain grasses were found (Table-3). 

Table 3. List of herbaceous species in wet paddy cropland site. 

Scientific Name  Family 

Oryza sativa Poaceae 

Ageratum conyzoides Asteraceae 

Cyperus difformis Cyperaceae 

Cyperus rotundus Cyperaceae 

Digitaria ciliaris Poaceae 
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Echinochloa colona Poaceae 

Echinochloa crus-galli Poaceae 

Fimbristylis miliacea Cyperaceae 

Imperata cylindrica Poaceae 

Paspalum distichum Poaceae 

Pogonatherum crinitum Poaceae 

 

 

 



 

 

 

            

 

SOIL PHYSICOCHEMICAL 

PROPERTIES 
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SOIL PHYSICOCHEMICAL PROPERTIES 

INTRODUCTION 

Soil is characterized as a complex mixture of minerals, water, air and soil organic 

matter and plays a vital role in the global carbon balance. Soil plays a significant role 

in nutrient cycling in all terrestrial land-use systems as it acts as a source and sinks for 

nutrients and additionally gives habitat for diverse populations of soil organisms. Soil 

contains more inorganic and natural carbon than the earth’s biosphere (Post et al. 

1990) and has long been recognized as the largest organic carbon reservoir of 

terrestrial systems (Post et al. 1982). Soil helps in maintaining long term site 

productivity and water quality in forest, and crop productivity in agricultural fields as 

yield is directly impact by soil nutrient and physical properties (Schoonover and Crim 

2015). Various basic components required for plant development, classified as 

macronutrients or micronutrients are present in soil which can affect the composition 

and structure of terrestrial flora. 

 Soil quality and fertility can be estimated through the physical, chemical and 

biological properties of soil (Shukla et al. 2006). Soils differ in their physicochemical 

properties depending upon their parent material, topography, climate and vegetation 

under which soil was formed (Shrikant and Bapat 1993). In the terrestrial ecosystems, 

the nutrient is slowly accumulated in various forms, such as atmospheric nutrients 

input, weathering of minerals, release from litterfall and fixation by microorganisms 

of certain nutrients (Glumphabutr et al. 2007). Physicochemical properties i.e. soil 

moisture, soil temperature, soil texture, bulk density and other important nutrients like 

carbon, nitrogen, phosphorus and potassium were studied owing to the importance of 

these nutrients to plants. 
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Soil texture is an important physical indicator of the terrestrial ecosystem affecting the 

balance between water and air (Qin et al. 2010). It is characterized by the amount of 

sand, silt and clay particle present in the soil. The measurement of the particle size of 

clay is (<0.002 mm), silt (0.002-0.05 mm), and sand (0.05-2.0 mm) that can help in 

assigning textural classes of soil. Sandy soils have limited nutrient capacity due to low 

water holding capacity and limited soil organic matter content (Walpola and 

Arunakumara 2010). High silt content in the soil increases water holding capacity 

(Burke et al. 1989) and clay-rich soil has a high water-holding capacity and nutrient 

content (Hamarashid et al. 2010).  

Soil moisture is another key parameter of plant productivity and plays a crucial role in 

controlling the soil processes including the biological, physical and chemical 

processes of the soil system (Brevik et al. 2015). Water availability in soil has been 

considered as one of the most significant environmental parameters regulating plant 

richness (Lavers and Field 2006). Soil moisture acts as a vital role in the supply of 

water and nutrient to the plant that helps to increased plant growth and productivity. 

In the global terrestrial system, the greater part of primary productivity is influenced 

by water content in the soil (Heimann and Reichstein 2008).  

Bulk density is the mass of the soil corresponding to a known volume of soil and is 

frequently utilized as an indicator of soil compaction. The bulk density of the 

terrestrial ecosystem is identified with soil textural class and soil porosity.  

Soil pH is a proportion of hydronium particles in the soil, which controls the acidity 

and alkalinity of the soil. Soil pH is one of the most significant elements for the 

growth and development of plants. Generally, the pH values of natural soils ranged 

from 3.0-8.4. It varies by region and generally, the soil is acidic in wet climate and 
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alkaline in the dry region where rainfall is limited. A slightly acidic pH ranged 

between 6.0-7.0 appears to provide optimum nutrient availability to plants (Kimmins 

1997) as most macronutrients are available within this range.   

Generally, carbon, nitrogen, phosphorous and potassium are primary supplements for 

plant growth. These elements and their interaction play a crucial role in shaping the 

earth’s landscape and climate system (Post et al. 1982).  

 Soil organic matter, the key indicator of soil quality and productivity, is formed by 

the decomposition of living plant parts and animal bodies by microorganisms living in 

the soil. Soil organic carbon (SOC) is the key component of the soil-plant ecosystem 

and has an important influence on the physicochemical characteristics of soil as it 

releases nutrients to the plants through mineralization (Lal 2004). SOC is directly 

related to the productivity of the ecosystem and acts as an indicator of environmental 

change (Chapin 2003). In general, soil organic matter improves the health of the soil 

by bringing changes in soil parameters like water holding capacity, bulk density, soil 

structure, nutrient availability and microbial population (Kononova 1966). 

Nitrogen (N) and Phosphorous (P) are the major components of soil fertilizer for 

optimal plant growth and are essential for photosynthesis and other processes related 

to primary productivity (Quilchano et al. 2008; Liu et al. 2013a). Soil nitrogen and 

phosphorus are closely associated with SOC cycles (Gao et al.  2014) and helps to 

mitigate the effects of climate change globally (Lal 2004; IPCC 2007; Sardans and 

Penuelas 2012). The concentrations and distribution of soil carbon, nitrogen and 

phosphorus varied in diverse plant communities due to different chemical traits and 

litter content in the soil (Zhao et al. 2010; Deng et al. 2013). 
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The physicochemical properties of soil i.e texture, moisture, bulk density, pH, carbon, 

nitrogen, phosphorous and potassium content regulates different ecosystem processes 

and communities in an ecosystem. Hence, studying the physical and chemical 

properties of soil in different land-use systems can help in understanding the various 

processes of these ecosystems. Therefore, chapter III deals with the dynamics of the 

physical and chemical properties of the soil in three different land-use systems i.e. 

subtropical forest (STF), cardamom agroforestry (CAF) and wet paddy cropland 

(WPC) in different seasons of the study period (2016 - 2018). 
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MATERIAL AND METHODS 

Soil physicochemical properties in the three different land-use systems were 

determined on a seasonal basis during 2016-2018. A total of 405 soil samples from 

135 different soil pits (5 each from each land-use system) were collected seasonally 

across three soil depths, i.e. 0-15 cm, 15-30 cm, and 30-45 cm by using a soil corer 

(5.2 cm diameter). Soil samples were placed in sterilized polythene bags and brought 

into the laboratory. Each soil sample is separated into two parts. The first half of fresh 

soil samples were used for the analysis of soil moisture and bulk density. The 

remaining soil sample was air-dried, crushed and passed through a sieve (2 mm) to 

separate coarse material, stones and gravel, and live roots were sorted out manually. A 

composite soil sample of each soil depth from every land-use was prepared by using 

different soil samples collected from different soil pits. Then the sieved soil samples 

were used to analyze for nutrient concentrations in the laboratory following standard 

procedures and methods. All the analyses of soil were done in 5 replicates of the 

composite soil samples from all three land-use types. 

Soil Texture 

Soil texture fraction (silt, clay and sand) was analyzed by the soil hydrometer method 

(Motsara and Roy 2008) using sodium hexametaphosphate as a dissolving agent. Soil 

texture was calculated using the following formula. 

( )     
                                         

                         
 

 ( )          
                                              

                         
 

(%) Sand= 100-silt(%) + clay 
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(%) Silt= % Silt + clay- clay(%) 

Soil Moisture 

Soil moisture content was determined by the gravimetric method. Ten (10 g)  of fresh 

soil is kept in an oven at 105
0
C until the weight becomes constant and reweighed 

(Allen et al. 1974). Moisture content in soil was calculated by using the formula. 

( )              
(     )       

  
 

W1=Weight of fresh soil and W2= Weight of oven-dried soil. 

Soil Bulk Density 

Soil bulk density was determined by a soil corer of diameter 5.2 cm without 

disturbing the soil and the cored soil was dried in an oven at 105
0
C for 48 hours or till 

constant weight was achieved. Bulk density was determined by the formula of  

Ravindranath and Ostwald (2008): 

             (     )  
                         

                   
 

Soil Temperature 

Soil temperature was determined using a soil thermometer. 

Soil pH 

Soil pH was measured by using an auto digital pH meter (Coslab). Ten (10) g of fresh 

soil sample was dissolved in 50ml of distilled water and subjected to a rotary shaker 

for 30 minutes and an aliquot was used for determination of pH. 
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Soil Organic Carbon (SOC) 

Organic carbon in soil was determined by the colorimetric method (Anderson and 

Ingram 1993). One (1g) of the finely grounded air-dried soil sample was added to 10 

ml of 5% potassium dichromate. Then 20ml of H2SO4 is added and allowed to cool at 

room temperature and 50 ml of barium chloride was added and left overnight. The 

supernatant solution was estimated for organic carbon by using a spectrophotometer 

(Systronics) at 600 nm. 

               ( )  
(     )

(      )
 

Where K is the carbon concentration of the sample and W is the weight of soil. 

Total Nitrogen 

Total nitrogen was estimated by using Kjeltec 8500 (FOSS) using 1g of finely sieved 

air-dried soil sample and 7g of K2SO4, 0.8 g CuSO4. 5H2O and 12ml H2SO4 followed 

by distillation with boric acid and NaOH solution and thereafter titrated with 0.1N 

HCL solution. 

( )  
(   )                   

                     
 

T=Titration volume for sample (ml), B=Titration volume for blank (ml), 

N=Normality of acid  

Available Phosphorus 

Available phosphorus was determined by the ammonium molybdate stannous chloride 

method (Allen et al. 1974).  1  gram of air-dried soil sample was extracted with 2.5% 

acetic acid extract and filtered through Whatman no.42 and 20 ml of distilled water 
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was added to twenty (20) ml of the aliquot. Thereafter, 2ml of acidified ammonium 

molybdate reagent and stannous chloride were added and volume was adjusted to 

50ml. The phosphorus content was determined by using a Spectrophotometer 

(Systronics) at 700 nm and phosphorus concentration in the soil sample was 

calculated by: 

( )   
  (  )                   (  )

                    (  )            ( )
 

Where C = mg P obtained from the standard graph. 

Exchangeable Potassium  

Exchangeable potassium was determined by flame photometer method (Allen et al. 

1974). 5 gram of soil samples were extracted with Normal ammonium acetate 

solution ( NH4OAc) solution and filtered through Wattman paper 1 and the extract 

was analyzed in flame photometer after calibration. 

( )  
 (   )                 (  )

                    (  )
 

Where C = concentration of K in ppm. 
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Plate 4: A) Soil sampling from three different soil depth (0-45); B) Soil texture estimation; C) 

Measurement of soil temperature; D) Soil sampling with a soil corer 
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Plate 5: E) Soil samples; F) Soil organic carbon estimation; G) Digested soil samples; D) 

Nitrogen estimation 

 

 

 

RESULT 
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Soil Temperature 

A physicochemical property of soil in three different land-use types has been 

presented in (Table-4). The soil temperature ranged from 6.20
0
C-16.30

0
C in the 

subtropical forest (STF), 6.20
0
C-17.50

0
C in cardamom agroforestry (CAF) and 

6.10
0
C-17.50

0
C in the wet paddy cropland (WPC). Seasonally, the soil temperature 

was maximum during the rainy season followed by the summer season and minimum 

in the winter season in all the study sites (Fig 5). Soil temperature exhibited 

significant variation with land-use, seasons, and interaction between land-use 

(p<0.01) and soil depths (p<0.001) (Table-5).  

 

Fig 5. Variation of soil temperature across the seasons of three different study 

sites(mean±SE) 
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Table 4. Soil physical and chemical properties in the three land-use systems. 

 

BD-Bulk density; C-Carbon concentration; N-Total Nitrogen; P-Available Phosphorous; K-

Exchange potassium; C:N- Carbon Nitrogen Ratio 

 

 

 

 

 

 Land-use Type 

Soil Properties Subtropical 

Forest 

Cardamom 

Agroforestry 

Paddy 

Cropland 

Sand (%) 42.52 46.72 38.55 

Silt (%) 30.82 30.10 31.95 

Clay (%) 26.66 23.08 29.50 

Soil Type Loam Loam Clayey Loam 

Soil Temperature (
0
C) 6.20-16.30 6.10-17.50 6.20-17.50 

Soil pH  4.80-5.70 4.80-5.70 5.20-5.80 

BD (g cm
-3

) 0.68-0.91 0.61-0.80 0.56-0.78 

Soil Moisture (%) 18.22-36.00 19.00-37.00 20.22-38.33 

C (%) 2.30-4.96 2.03-4.53 1.88-3.99 

N (%) 0.19-0.37 0.18-0.34 0.15-0.27 

P (%) 0.022-0.054 0.016-0.040 0.010-0.033 

K (%) 0.26 0.17 0.14 

C:N 11.60-15.22 10.10-15.01 9.62-14.82 
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Table 5.  ANOVA (Two-way) of soil parameters in different land-use system (2016-18). 

pH Soil Moisture  

 

F P-value F crit F P-value F crit 

Land-use  51.86594 2.08E-12** 3.204317 5.780461 0.00483* 3.204317 

Seasons  107.8442 6.83E-18** 3.204317 64.24477 6.51E-14** 3.204317 

Interaction  1.594203 0.192294
ns

 2.578739 0.748919 0.563939
ns

 2.578739 

Bulk Density Soil Temperature 

 

F P-value F crit F P-value F crit 

Land-use  95.27539 6.69E-17** 3.204317 119.2769 1.03E-18** 3.204317 

Seasons  54.08268 1.07E-12** 3.204317 9110.038 2.05E-59** 3.204317 

Interaction  2.506719 0.055196
ns

 2.578739 38.49591 5.48E-14** 2.578739 

Total Nitrogen Available Phosphorous 

 

F P-value F crit F P-value F crit 

Land-use  11.98715 6.71E-05** 3.204317 11.45492 9.52E-05** 3.204317 

Seasons  6.94743 0.002347* 3.204317 26.08607 3E-08** 3.204317 

Interaction  0.435748 0.782063
ns

 2.578739 1.311475 0.280185
ns

 2.578739 

 

*Significance at P-value<0.01, **Significant at P-value<0.001, 
ns

Not Significant 
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Soil Texture 

The soil texture was loam in STF and AGF study site while in the WPC it is clayey 

loam in nature (Table-4). Sand percentage content is highest in CAF (46.72%) 

followed by STF (42.52%) and lowest in the WPC (38.55%). Silt and clay content is 

higher in WPC (31.95%, 29.50%) followed by STF (30.82%, 26.67%) and CAF 

(30.10%, 23.09%) (Fig 6). 

 

Fig 6. Variation of soil texture across the seasons of three different study sites (mean±SE) 

Soil Moisture 

Moisture content in soil ranged from 18.22% to 38.33% across different soil depths 

and seasons in all the study sites. Paddy cropland exhibited maximum soil moisture 

content (20.22%-38.33%) followed by cardamom agroforestry (19.00%-37.00%) and 

minimum in the subtropical forest (18.22%-36.00%) (Fig 7). All the study sites show 

peak soil moisture during the rainy season and the lowest in the winter season. 

Moisture content decreases along with the soil depth with a maximum in the upper 
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soil layer (0-15 cm) and a minimum in the inner soil layer (30-45 cm). Soil moisture 

in the present study showed a significant variation with land-use type (p<0.01)  and 

seasons (p<0.001) (Table-5). 

 

Fig 7. Variation of soil moisture across the seasons and soil depth of three different study 

sites (mean±SE) 

Bulk density 

Bulk density varied from 0.56-0.91 g cm
-3

 and increased with soil depth across the 

land-use systems. Maximum bulk density was recorded in the STF (0.68-0.91g cm
-3

) 

followed by CAF (0.61-0.80 g cm
-3

) and lowest in the WPC (0.56-0.78 g cm
-3

). 

Seasonally, bulk density is observed highest during winter and lowest in the rainy 

season in all the study sites (Fig 8). Soil BD showed a significant variation with land-

use type (p<0.01) and seasons (p<0.001) (Table-5). 
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Fig 8. Variation of bulk density across the seasons and soil depth of three different study sites 

(mean±SE) 

Soil pH 

The pH in soil was higher in the WPC (5.2-5.8) than STF (4.8-5.7) and CAF (4.8-5.7) 

and it increases with soil depth across the seasons and land-use types (Table 4). 

Winter season experienced a slightly higher pH of the soil than the rest of the season 

while the rainy season showed the minimum in all the land-use types (Fig 9). There is 

a significant variation in soil pH value with land-use type (p<0.01)  and seasons 

(p<0.001) (Table-5). 
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Fig.9. Variation of soil pH across the seasons and soil depth of three different study sites 

(mean±SE) 

Soil Organic Carbon (SOC) 

Soil organic carbon (SOC) varied from 1.88% to 4.96% across the soil depths and 

study sites. In the subtropical forest, SOC ranged between 2.30%-4.96% while in 

cardamom agroforestry and paddy cropland it varied from 2.03%-4.53% and 1.88%-

3.98% respectively. SOC decreases along with soil depth with the highest in the upper 

soil layer i.e. 0-15cm (3.40%-4.96%), followed by 15-30 cm (2.96%-4.15%) and 

minimum in the 30-45 cm (1.88%-2.90%). In all the study sites, the maximum value 

of soil organic C was observed during the rainy season, followed by summer and 

minimum in the winter season (Fig 10). SOC showed a significant variation and with 

land-use type (p<0.01) and seasons (p<0.001) (Table-5). 
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Fig 10. Variation of soil organic carbon across the seasons and soil depth of three different 

study sites(mean±SE) 

Total Nitrogen (N) 

Total nitrogen was maximum in the STF (0.19%-0.37%) followed by CAF (0.18%-

0.34%) and minimum in the WPC (0.15%-0.27%). Across the seasons and soil depths 

total nitrogen in soil varied from 0.15% to 0.37%. The seasonal trend was highest in 

the rainy season and lowest in the winter season in all three study sites (Fig 11). 

Similarly, total nitrogen also showed a significant variation with land-use type 

(p<0.01) and seasons (p<0.001) (Table-5). 
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Fig 11. Variation of total nitrogen across the seasons and soil depth of three different study 

sites(mean±SE) 

 Available Phosphorous (P) 

Across the study sites, available phosphorous ranged from 0.010%-0.054% in 

different seasons and soil depth. Subtropical forest recorded highest P (0.022%-

0.054%), followed by cardamom agroforestry (0.016%-0.040%) and paddy cropland, 

(0.010%-0.033%). The concentration of available phosphorous decreases along with 

soil depth and showed a maximum in the rainy season and a minimum in the winter 

season in all the study sites (Fig 12). Available phosphorous showed a significant 

variation with land-use type (p<0.01) and seasons (p<0.001) (Table-5). 
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Fig 12. Variation of available phosphorous across the seasons and soil depth in different 

study sites (mean±SE) 

Exchangeable potassium (K) 

Exchangeable potassium in all study sites varied from (0.14%-0.26%). The 

concentration of potassium was highest in the STF (0.26%) followed by AGF (0.17%) 

and lowest in the WPC (0.14%). 

Soil Carbon :Nitrogen(C:N) ratio 

The C:N ratio of the soil ranged from 11.60-15.22 in the STF, 10.10-15.01 in CAF 

and 09.62-14.82 in WPC. Maximum C:N ratio was observed during the winter season 

and minimum during the summer season in all study sites (Table-4). 
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Relationship between abiotic variables and soil properties 

The Pearson correlation matrix between the biotic and abiotic variables of three 

different land-use systems was shown in Fig 13. The concentration of sand in soil 

showed a positive significant correlation (p<0.05) with bulk density, C, N, P and 

rainfall but show a negative significant correlation (p<0.05) with pH, silt and clay. 

However, silt exhibited a positive significant correlation (p<0.05) with pH and rainfall 

but show a negative significant correlation (p<0.05) with bulk density, total nitrogen, 

sand and clay. Similarly, clay fraction showed a positive significant correlation 

(p<0.05) with pH, silt and rainfall but show a negative significant correlation (p<0.05) 

with C, N, P and sand fraction. Soil temperature and soil moisture showed a positive 

significant correlation (p<0.01) with C, N, P, and air temperature but a negative 

significant correlation (p<0.01) with bulk density, pH and rainfall. Bulk density 

exhibited a significant negative correlation (p<0.05) with soil moisture, sand, silt, air 

and soil temperature, and relative humidity. Soil pH showed a significant positive 

relation (p<0.01) with silt and clay only, whereas it is negatively correlated (p<0.05) 

with moisture, C, N, P, sand, soil and air temperature and relative humidity. C, N, P 

showed a significant positive relation (p<0.01) with soil moisture, sand, soil and air 

temperature and relative humidity however correlation with soil pH, silt and clay was 

negatively significant (p<0.05).   
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M = Moisture, BD = Bulk Density, C = Soil organic carbon, N =Total nitrogen, P = Available 

phosphorus, Sd= Sand, Si= Silt, Cl= Clay, ST = Soil temperature, AT= Air temperature, RH = 

Relative Humidity, RF = Rainfall 

 

Fig 13. Pearson correlation matrix between biotic and abiotic variables in different 

study sites 
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DISCUSSION 

The results of the present study revealed that all soil physicochemical properties (soil 

texture, moisture, temperature, bulk density, pH, C, N, P, C:N ratio) vary in different 

land-use types. This is due to the difference in vegetation composition and other 

management practices used in each of the land-use types. Several studies also showed 

a change in soil properties due to land-use change (Pabst et al. 2013; Ravindran and 

Yang 2015; Reza et al. 2018).  

Present study indicated a difference in the sand, silt and clay content with land-use 

type and soil depth. Similar results were reported by another previous study Yuksek 

and Yuksek (2011). However, contrasting results were also reported wherein no 

significant differences in soil texture were observed with the change in land-use types 

and soil depth by other studies (Evrendilek et al. 2004; Korkonc 2014).  In the CAF, 

sand particles were maximum, followed by STF and minimum in WPC, while clay 

and silt particles showed a reverse pattern with a highest in WPC and a lowest in CAF 

study site. The present results agree with the findings of Tellen and Yerima (2018). 

The reason for this reverse trend may be due to the variation in the management 

practices of these two agriculture-based systems. In cardamom agroforestry, slightly 

higher sand content than that of the subtropical forest may be due to the removal of 

herbaceous layers that makes the soil susceptible to erosion while adopting the 

terraced farming practice in paddy cropland reduces soil erosion leading to an 

increase in clay and silt content.  Distribution of particle size plays an important role 

in vegetation as they influence the consistency of soil texture quality and erosion 

(Aderonke and Gbadegesin 2013). Also, bioclimatic conditions change rapidly in 
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dissected landscapes of Himalaya within short distances resulting in heterogeneous 

soil types and physical and chemical properties (Baumler 2015).  

A maximum mean soil temperature in the subtropical forest than the other two 

agriculture-based systems may be due to dry soil in the forest as water is used for 

irrigation in the other two agricultural systems. Higher soil moisture content in the 

cropland than that of forest and agroforestry soils could be attributed to a higher clay 

content in the former. Such a trend was observed by several other studies (Sala et al. 

1998; English et al. 2005; Kara and Baykara. 2014). 

 Bulk density (BD) range of 0.6-1.8 g cm
-3 

in the present study is within the range 

reported by Baumler and Zech (1994) and increased with a decrease in soil depth in 

all types of land-use. Such a trend was reported by several other studies (Barbhuiya et 

al. 2004; Li et al. 2013a; Zhang et al. 2014;  Francaviglia et al. 2017). Less organic 

matter and the weight of the overlying horizons are attributed to higher soil bulk 

density in the inner soil layers (Gruneberg et al. 2014). The variation in the BD of the 

various systems may be due to the difference in the distribution of particle size. The 

dependency of bulk density on soil texture is shown by several studies (Smith et al. 

1997; Dumig et al. 2006). 

The slightly or moderately acidic pH range of the soil in all three land-use types is 

comparable with the values reported from different land-use types of Arunachal 

Pradesh (Arunachalam and Arunachalam 2006), and different agroecological zones of 

Sikkim (Deb et al. 2018). Soil pH concentrations of the present study sites increased 

with soil depth because of the rich organic matter in the upper soil layer that 

decomposed to produce more organic acids, leading to a low pH concentration in the 

top soil layer (Hong et al. 2019).  
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Soil organic carbon (SOC) decreased with soil depth in all land-use types with a 

maximum concentration in the forest due to the presence of litter from trees that 

continuously increases root turnover (Kimmins 2004). The lower amount of organic 

carbon in the agricultural field may be because of the harvest of all above-ground 

plant parts for fodder (Shrestha et al. 2004), that lowers the rate of organic matter 

turnover. Additionally, continuous cultivation for years with minimum inputs of soil 

organic matter lowers SOC content in the paddy cropland (Poudel and Thapa 2001).  

A higher SOC in the forest as compared to other land-use types was reported by 

Soleimani et al. (2019). Similarly, lower annual carbon input in agricultural lands than 

that of the natural forest lead to lower SOC has been reported by (Huang and Song 

2010). The total amount of SOC in the paddy cropland is lowest as compared to 

cardamom agroforestry and natural forest which confirmed that the transformation of 

the forest into cultivation land can decrease SOC stock. 

The maximum total nitrogen (N) of soil in the subtropical forest is due to the presence 

of Alnus nepalensis nitrogen-fixing tree species, as a dominant tree in both the 

systems. Rothe et al. (2002) reported that the presence of N-fixing species increases 

soil total nitrogen content. Further, the high accumulation of litter from trees on the 

soil surface and the decomposition of organic matter by microorganisms in tree-based 

systems enhanced nutrient content in the soil. The present trend is consistent with that 

(Ufot et al. 2016; Chemada et al. 2017), where higher N content was reported in the 

forest than in the nearby agricultural areas. The available phosphorus and potassium 

decreased with soil depth in all the systems which are due to a higher organic matter 

in the upper soil layer, and low soil pH which helps in soil P immobilization (Chase 

and Singh 2014).  Soils of the present study indicate phosphorus limitation which 

could be due to the acidic nature of these soils. Available P is higher in the forest than 
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agricultural lands which may be due to the high SOC content resulting in the release 

of organic phosphorus thereby enhancing available P under forest land. A similar 

finding was reported by (Takele et al. 2014; Tufa et al. 2019).  

The maximum exchangeable K recorded in STF can be attributed to a higher input of 

soil organic matter that increases the ability of soil cationic exchange, thereby 

reducing leaching rate in the soil (Mbah 2008). Minimum K concentration in WPC 

may be due to the leaching of soil K through irrigation water, limited crop residue 

recycling, intensive management practices, and soil erosion which led to the depletion 

of basic cations on agricultural lands (Lechisa et al. 2014; Akbas et al. 2017).  

The C:N ratio was lower in soils of WPC as compared to STF and AGF soils because 

of intensive management practices and frequent tillage which encourage oxidation of 

organic matter that leads to loss of carbon and nitrogen from the soil. The present 

trend of C:N ratio is in agreement with the finding of various researchers that reported 

higher C:N ratio in the forest soils than in other agricultural land-use systems (John et 

al 2005; Puget and Lal 2005; Abera and Belachaw 2011). 

 

https://www.tandfonline.com/doi/full/10.1080/23311932.2019.1600460


 

 

 

            

 

CARBON STOCK AND 

SEQUESTRATION 

 



CARBON STOCK AND SEQUESTRATION CHAPTER IV 

 

49 SIKKIM UNIVERSITY 

 

CARBON STOCK AND SEQUESTRATION 

INTRODUCTION 

Climate change is now a reality and it's not about trying to find definitive facts, but 

about taking action. Atmospheric temperature increase known as global warming is 

one of the main consequences of increase in atmospheric carbon dioxide. An 

unpredictable rise in the concentration of carbon dioxide in the atmosphere involves 

the identification of methods for mitigating the global warming (Sheikh et al. 2014). 

This warming effect will lead to numerous adverse environmental changes, such as 

the depletion of mountain glaciers, the degradation of coral reefs (IPCC 2007), habitat 

loss and deforestation (Buizer et al. 2014). Carbon storage by green plants and soils in 

terrestrial ecosystems can effectively overcome the problems of climate change and 

global warming for longer periods (Sheikh et al. 2014). The sequestration of terrestrial 

carbon is recognized as the most relevant and economic way of storing carbon in 

living plants and thus helps to mitigate the increasing CO2 emission in the 

atmosphere. 

Biomass of plants and animals origin is considered as a renewable natural resource 

and can be used to evaluate the amount of carbon stored in the ecosystems. The 

amount of plant biomass is determined by the net primary productivity which has 

been produced through the process of photosynthesis (Clark et al. 2001). It is often 

used to understand the carbon cycling process between the atmosphere and the 

terrestrial ecosystem concerning global climate change (Cairns et al. 2000). 

Therefore, the estimation of biomass is important for national development planning 

and scientific studies of ecosystem productivity (Pandey et al. 2010). Certain methods 

employed for the estimation of biomass or carbon stock (aboveground and 



CARBON STOCK AND SEQUESTRATION CHAPTER IV 

 

50 SIKKIM UNIVERSITY 

 

belowground) in vegetation includes destructive, non-destructive, and remote sensing 

methods (Lu 2006). Carbon can be stored in the aboveground and belowground part 

of the plants however, carbon can also be stored in soil, detritus or litter on the forest 

floor. Estimating biomass and carbon in terrestrial systems is gaining importance 

across the world (Sharma et al. 2010; Ekoungoulou et al. 2014; Salunkhe et al. 2016), 

and several countries are working in compliance with the greenhouse gas reduction 

agreements under the United National Framework Conversion on Climate Change 

(Brown 2002).  

Aboveground biomass (AGB) includes all living biomass above the soil i.e stem, 

branches, leaves, fruit and bark, and below-ground biomass (BGB) includes all live 

roots (Penman et al. 2003). Both AGB and BGB have great importance for the 

characterization of the structure and function of the ecosystems. The total amount of 

carbon stored in the global vegetative biomass exceeds that of atmospheric carbon 

dioxide, and about 90% of the plant biomass carbon is stored in the form of tree 

biomass (Komer 2006).  

Soils are potentially viable sinks for atmospheric carbon as it stores the largest carbon 

pool in terrestrial ecosystems and may significantly contribute to the mitigation of 

global climate change (Lai et al. 1998). Soil organic carbon (SOC) is a key 

component of the soil-plant ecosystem and is closely associated with soil properties 

and processes, nutrient buffering and supply, as well as emission and storage of 

greenhouse gases (Kasel and Bennett 2007; Yang et al. 2009). The assessment of 

potential C sequestration in soil requires the estimation of carbon pools under existing 

land-uses and the distribution of soil profiles. Removal of trees from the forest 

displaces a large amount of sequestered carbon (IPCC 2000) and consequently 

reduces the SOC held in soil profiles (Glaser et al. 2000). Gradual conversion of 
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forest and grassland to cropland has resulted in significant losses of soil carbon 

worldwide (Lai 2002). The type of land-use, degree of land-use, change and post-

conversion land management harm the degree of variation in SOC content (West et al. 

2010). Carbon stored in the soil varies in different ecosystems depending on the 

species composition, climate, soil types, and other characteristics of the site (Trumper 

et al. 2009).  

Litter or detritus constitute an important source for transferring energy and nutrient 

cycling from vegetation to soil particularly in low fertile soil where trees greatly rely 

on the recycling of their nutrients (Okeke and Omaliko 1992; Negash and Starr 2013). 

It also represents a connecting link between carbon captured through photosynthesis 

and release through decomposition (Meentemeyer et.al. 1982) and helps us in 

understanding the global carbon cycle.   

All these carbon pools play a vital role in identifying the total amount of carbon 

captured in the terrestrial vegetation (Chave et al. 2003). Hence, estimation of 

biomass and carbon stock in different compartments of an ecosystem is necessary for 

the characterization of structure and function of different ecosystems and in 

identifying the amount of carbon stored in terrestrial vegetation (Chava et al. 2003). 

Different regions and land-use types have different biomass and carbon stock or 

storage potential depending on the type of vegetation or species and management 

practices adopted in each of the systems. Carbon sequestration by plants is the 

absorption of CO2 from the atmosphere by photosynthesis and storing it in different 

parts of the plants for a very long period in the terrestrial ecosystems. Carbon 

sequestration depends upon the biomass production capacity of the vegetation, which 

in turn depends upon the interaction between edaphic, climatic, topographic factors of 

an area and type of land-use system. Biomass carbon moving from non-tree-based 
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land-use types such as agricultural land, grassland to tree-based land-use types such as 

agroforestry, plantation and natural forest helps in increasing carbon sequestration 

(Quinkenstein et al. 2011). 

Among the known terrestrial land-use types, forests play a most significant role in the 

global carbon cycle as these ecosystems act as the most important carbon sink 

(Houghton 2007). Forests store more carbon than any other terrestrial ecosystem 

because of greater biomass accumulation in trees. Forest habitats play a crucial role in 

atmospheric carbon sequestration, which helps to minimize the carbon footprint and 

helps to moderate global warming and consequent climate change (Ramachandra and 

Bharath 2019). It has been estimated that the quantification of carbon sequestered by 

forests worldwide is 861±66 Pg C (Pan et al. 2011). Indian forests can store about 

74% of the total carbon stored in vegetation and can sequester 7.35% of total carbon 

emissions annually (Ramachandra and Shwetamala 2012).  

Besides the forests, man-managed ecosystems such as agroforestry ecosystems have 

huge potential to mitigate climate change and global warming by storing and 

sequestering carbon (Pala et al. 2015). Tropical agroforestry systems can accumulate 

12.00-228.00 Mg C ha
-1 

(Soto-Pinto et al. 2010) and can also simultaneously reduce 

the problem of land-use and land cover change due to agriculture. Several studies 

have shown the negative impact of agricultural systems on carbon stock (Girmay et al. 

2008; Toru and Kibret 2019). Nevertheless, agriculture systems are one of the 

important land-use practices that emit as well as sequester carbon dioxide. Indigenous 

agroforestry systems play a crucial role in maintaining rural communities livelihoods 

and can help to offset the rising potential impacts of climate change (Sharma et al. 

2016). 
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The increasing human population has led to fast land-use and land cover change 

(LULC) in the globe affecting the global carbon cycle. Every land-use system has 

either a positive or negative impact on the carbon balance (Toru and Kibret 2019). 

The net flux of carbon due to land-use change during 1850-2000 is 148 Pg C (Kaul et 

al. 2009). The rapid global change in land-use through forest-to-cropland transition 

has increased fivefold over the last few decades from about 3 to about 15 million km
2
 

during the year 1700-2007 (Ramankutty et al. 2018). The area of South East Asia also 

experienced 11.30 percent of the total forest cover loss during the period 2000 to 

2014, i.e. 29.3 × 10
10

 m
2
 (Zeng et al. 2018). In the Sikkim Himalaya, Kanade and 

John (2018) have recorded a decrease in primary forest cover and an increase in 

secondary forest and agriculture by 30 percent and 16 percent of primary forest at an 

altitude range of 800-2200 m and 2200-2800 m. 

Sikkim, one of the tiny mountainous states of India located at the Eastern Himalayas 

hosts several types of land-use systems including forests, grassland, agricultural land, 

etc. However, increasing demand for resources due to several pressures lead to a 

change in land-use type in this region too. Approximately 8.30 km
2
 and 5.26 km

2 
have 

been transformed from open forest to agricultural land and agricultural land to 

agroforestry systems between 2007 and 2018 in Sikkim Himalaya (Mishra et al. 

2019).  

This chapter discusses:  

I. Biomass carbon of vegetation and soil in three different land-use systems 

i.e. subtropical forest, cardamom agroforestry and wet paddy cropland. 

II. Total ecosystem carbon and sequestration potential of different carbon 

pools in the three land-uses. 
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III. Changes in carbon stocks and sequestration in three different land-use

 systems. 

 

METHODS 

Plant Sampling and Analysis 

Vegetation 

 For the sampling of vegetation, both destructive methods and non-destructive 

methods were used depending on the type of vegetation to be sampled. In the present 

study sites, the plant of different categories such as trees and herbs were sampled by 

using appropriate quadrats of different sizes. 

Trees 

For the sampling of, tree species, 10 permanent quadrats, five in each land-use of 31.6 

x 31.6 m (0.1 ha) size were earmarked in subtropical forest and agroforestry systems, 

(Fig.14). All individual trees present in each quadrat were enumerated, marked, and 

identified, and geo locations of each permanent plot were also recorded. Diameter at 

breast height (dbh) of each tree was measured at 1.3 m height of the tree trunk and the 

height of each tree was measured by using a hypsometer (Forestry Pro, Nikon).  

Shrubs 

To estimate the shrubs present in the study sites, permanent quadrats of 5m x 5m were 

established within the opposite corner of the 31.6m x 31.6m permanent plots. All the 

shrubs within the plots were marked, enumerated, and dbh was measured.  
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Herbs 

All the herbaceous vegetation present within a 1m x 1m quadrat located within the 

bigger quadrat of shrubs were harvested and transferred to the laboratory in an airtight 

polythene bag to estimate the fresh weight. Soil particles and other debris from the 

roots were removed and washed under running tap water whenever necessary and 

allow to drip water for some time. Thereafter, fresh weight was measured and the 

plants are oven-dried at 80
0
C until the constant weight was achieved. 

 

Fig 14. Sampling design layout  

Importance value index (IVI) 

Density  

Tree densities of all tree species within ten (10) quadrats of 0.1 ha (31.6 x 31.6 m) 

each in the subtropical forest and cardamom agroforestry systems were estimated. 

Species of trees were identified from Flora of Bhutan (Gierson and Long 1983) and 

the density of each tree species was calculated by the formula.  
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Frequency 

The frequency of each tree species within the quadrat was estimated by the given 

formula, 

                   
                                       

                           
 

Basal area 

Basal area of the tree species was determined by using the girth size (m) of the tree 

from the sample plots of 31.6 x 31.6 m (0.1ha),  

                    
     

 
 

From the density, frequency and basal area of each tree species relative frequency,  

relative density and relative basal area of each tree species were calculated and added 

up to calculate the IVI of each tree species across different land-use systems (Misra 

1968). 

                 
                                

                            
       

                   
                                    

                                  
       

                    
                                    

                                   
       

IVI (%) = Relative density+ Relative frequency +Relative basal area 

 

Diversity and other indices 

Different diversity indices like Simpson and Shannon Weiner indices along with 

dominance, evenness and species richness indices were calculated from two different 

tree-based land-use types using the following formulas: 
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Simpson’s dominance index (Simpson 1949)
 

D=1-¡∑(n(n-1)/N(N-1) 

Where n=no of individual of each species and N=total number of individuals of all the 

species 

Shannon Weiner- diversity index (Shannon and Weaver 1963) 

H= SUM [(Pi)*ln(Pi)] 

Where pi is the proportion of individuals in the i
th 

species i.e. (ni/N) 

Pielous Evenness (Pielou 1966)
 

Evenness=H/lnN 

Where H= Shannon index and N= Number of species 

Margalef species Richness index (Margalef 1958) 

d= (S-1)/log (N) 

Where S= Number of species and N= Number of individual species. 

 

Biomass, carbon stock and sequestration 

Aboveground biomass carbon 

Biomass carbon in the vegetation of three different land-use types was estimated by 

demarcating five plots in each land-use and inside each plot, two random quadrats of 

31.6m X 31.6m were earmarked.  All individual trees ≥ 10cm diameter at breast 

height (DBH) 1.3 m within the quadrats were enumerated and numbered for the first 

and third year (2016 and 2018). Wood specific gravity for each tree species was also 

determined by oven drying the wood samples of trees collected by using an increment 

borer at a height of 1.3 m above the ground. FSI species-specific volume equations 

(FSI 1996) were used to calculate the tree volume of each tree species and 
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aboveground biomass was computed by using the procedure of (Ravindranath and 

Ostwald 2008). 

Aboveground Biomass = Volume of tree × Specific gravity × BEF       (IPCC 2006)
 

Where BEF is the Biomass Expansion Factor 

Belowground biomass carbon 

Quantification of belowground biomass (BGB) of trees was done using standard root 

to shoot ratio default value of 0.26 (Ravindranath and Ostwald 2008). 

Total biomass was calculated by adding aboveground biomass and belowground 

biomass and carbon stock in trees were computed using the following formula: 

                           C= Total AGB x 0.47                       (Ravindranath and Oswald, 

2008) 

Where AGB is aboveground biomass,  

C is a carbon (Mg ha
-1

), 0.47 is the default carbon fraction. 
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Plate 6 (A,B,C,D):  Above-ground biomass estimation 
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Wood specific gravity  

The specific gravity of each tree species was estimated following the maximum 

moisture content method (Smith 1954), where the wood core of tree species was 

extracted by increment borer (Hagloff, Sweden) and the wood core was weighed and 

oven-dried at 105°C until the weight becomes constant. The specific gravity of each 

tree species was computed using:  

Specific gravity (gm/cm³) = 1/(Mm-Mo/Mo+1/Gso) 

 Where, Mm= Initial fresh weight of the wood core, Mo= Oven-dried weight of the 

core and Gso = 1.53(Moisture correction factor). 

 

Plate 7 (E,F,G,H):  Wood density estimation 
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Herbaceous biomass carbon 

All herbaceous vegetation from the three study sites including the rice cropland were 

harvested completely from ten quadrats of 1m x 1m size during the rainy season and 

growing season of rice (2016 and 2018). All herbaceous plants, including cardamom, 

were brought to the laboratory, washed, weighed and oven-dried (80
0
C) to achieve a 

constant weight and reweighed to estimate biomass. Carbon in the herbs was 

computed by using the default carbon fraction (0.50) of IPCC (2006). 

 

Plate 8(I,J,K,L): Herbaceous biomass estimation 
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Litter biomass carbon 

Monthly litter from ten (10) permanent litter traps of 1m x 1m size was collected 

during the year 2016 and 2018 in the subtropical forest and cardamom agroforestry 

systems to quantify the carbon stock in litters. Litters from the traps were transported 

to the laboratory, washed and dried in an oven at 80
0
C until weight became constant 

and weighed to determine the total value of biomass. The annual litter biomass of the 

study site was then estimated by summing up all the litter collected in different 

months of the year. The carbon in the litter was estimated using a carbon default value 

of 0.50 (IPCC 2006) from the litter biomass. In the cropland, no litter was estimated 

however the belowground parts of the rice left after harvesting of the crops were used 

as litter in the present study. 

 

 Plate 9 (M,N,O,P):  Litter biomass estimation 
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Soil carbon stock and sequestration  

A total of 540 soil samples from thirty different soil pits (10 each from each land-use 

system) were collected for the estimation of SOC stock and concentration using a soil 

corer (5.2 cm diameter) across three soil depths, i.e. 0-15 cm, 15-30 cm, and 30-45 

cm. Samples were air dried, crushed and passed through a sieve (2mm) to separate 

coarse material and gravel and live roots were sorted out manually. Then the sieved 

soil samples were colorimetrically analyzed for organic carbon content (Anderson and 

Ingram 1993). Bulk density and SOC for each soil depth was estimated using the 

formula provided by Ravindranath and Ostwald (2008). 

BD = Weight of known volume of soil / Volume of soil 

SOC (Mg ha
-1

) = bulk density (g cm
-3

) x soil depth interval (cm) x SOC (%) 

 

 Plate 10(Q,R,S,T):  Soil organic carbon estimation 
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RESULT 

 

Tree Density, basal area and Important Value Index (IVI) 

The total number of tree species in the subtropical forest was 10. Alnus nepalensis 

was the dominant species in the subtropical forest (IVI 128.55) and Machilus edulis, 

Lyonia ovalifolia, Juglans regia, Schima wallichi (IVI 51.78, 37.41, 20.32 and 15.15 

respectively) were co-dominant tree species (Table-6). The total tree density in the 

subtropical forest was (188.28 individual/ha) (Table-6). Alnus nepalensis has the 

highest tree density (98.14 individual/ha) contributing more than 50% of the total tree 

density of the forest. The basal area of tree species in the present study site was 33.52 

m
2 

ha
-1 

with the highest contribution by Alnus nepalnesis (10.21 m
2 

ha
-1

) (Table-7). 

 

Table 6. List of dominant tree species in the subtropical forest site. 

 

 

 

 

Name of Species Density Frequency IVI 

Alnus nepalensis D. Don 98.14 100 128.55 

Machilus edulis King ex Hook.f.  17.02 30 51.78 

Schima wallichi Choisy 9.01 10 15.15 

Lyonia ovalifolia (Wall.) Drude 25.03 50 37.41 

Juglans regia L. 8.01 30 20.32 

Symplocos theifolia D. Don 12.02 20 13.19 

Spondias axillaris Roxb. 2.00 10 5.4 

Castanopsis indica (Roxb. ex Lindl.) A.DC. 3.00 10 5.68 

Macaranga pustulata King ex Hook.f. 9.01 20 10.96 

Ficus racemosa Willd. 5.01 30 11.6 

Total 188.25 310 300.04 
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Table 7. Density (individual ha
-1

) and basal area (m
2
 ha

-1
) of trees in forest and 

agroforestry sites. 

Major Land-use 

 

Mean age (years) Trees 

Density 

(Individual/ha) 
Basal Area 

(m
2 

ha
-1

) 

Subtropical Forest 40 188.28 33.52 

Cardamom Agroforestry  25 124.90 18.28 

 

In the cardamom agroforestry system, the total number of tree species was seven (7) 

and Alnus nepalensis (IVI-175.74) is the main shading tree. Ficus racemosa (IVI- 

46.60) and Macaranga pustulata (IVI-22.16) were other co-dominant shading trees 

(Table-8). Tree density in the present site was 124.90 individual/ha and Alnus 

nepalensis (80.13 individual/ha) had the maximum tree density (Table-8). The total 

basal area of the cardamom agroforestry site was 18.28 m
2
ha

-1 
with the highest basal 

area contributed by Alnus sp.  (11.54 m
2
ha

-1
) (Table-7).  

Table 8.  List of dominant tree species in the cardamom agroforestry site. 

Name of Species Density Frequency IVI 

Alnus nepalensis D. Don 80.13 100 175.74 

Ficus racemosa Willd. 26.04 60 46.60 

Juglans regia L. 4.01 20 16.27 

Toona ciliata M.Roem. 4.01 40 19.27 

Macaranga pustulata King ex Hook.f. 6.01 40 22.61 

Spondias axillaris Roxb. 2.00 20 10.50 

Viburnum cordifolium Wall. Ex DC. 2.00 20 8.95 

Total 124.20 300 300.04 
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Simpson’s dominance, Shannon-Weiner diversity 

Different indices i.e. Simpson’s dominance, Shannon-Weiner diversity, Pielou’s 

evenness index and Margalef’s species indices of the tree species in the subtropical 

forest and cardamom agroforestry were presented in (Table-9).  The subtropical forest 

has a higher value of all the indices as compared to the cardamom agroforestry 

system. 

Table 9. Dominance, Diversity and Evenness of trees across two study sites. 

Land-uses Tree 

Simpson’s 

dominance 

index 

Shannon -

Weiner 

diversity 

index 

Pielou’s 

evenness 

index 

Margalef’s 

species 

richness 

index 

Subtropical Forest 0.677 1.653 0.689 1.909 

Cardamom Agroforestry 0.562 1.241 0.596 1.696 

 

 

Tree above-ground and below-ground biomass 

Subtropical forest 

Above-ground biomass of trees in the present subtropical forest was 123.41 Mg ha
-1

in 

the first year and 128.42 Mg ha
-1

 in the third year respectively (Table-10). Alnus 

nepalensis recorded the highest aboveground biomass in the first year (54.45 Mg ha
-1

) 

and 55.87 Mg ha
-1

 in 3
rd

 year contributing 44.12% and 43.51% respectively to the 

total aboveground biomass. The lowest aboveground biomass value was contributed 

by Ficus racemosa (0.32 Mg ha
-1

 and 0.44 Mg ha
-1

) in the 1
st
 and 3

rd
 year 

respectively.  
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Belowground biomass (BGB) value in the present study was 32.09 Mg ha
-1 

and 33.39 

Mg ha
-1

 in the first and third years respectively. The highest BGB was recorded for 

Alnus nepalensis (14.16 Mg ha
-1

in 1
st
 year and 14.53 Mg ha

-1
in 3

rd
 year) and the 

lowest for Ficus racemosa (0.08 Mg ha
-1

, 0.11 Mg ha
-1

) in both the years. Total 

biomass (tree aboveground + belowground) in the subtropical forest was 155.50 Mg 

ha
-1

in the first year and 161.81 Mg ha
-1

 in the third year respectively (Table 10). 

Table 10. Above-ground, Below-ground biomass (Mg ha
-1

) and Total Biomass (Mg ha
-1

) 

in different species of subtropical forest (2016 and 2018). 

 

Sl 

No 

Species 2016 2018 

AGB 

(Mg ha
-1

) 

BGB 

(Mg ha
-1

) 

Total 

(Mg ha
-1

) 

AGB 

(Mg ha
-1

) 

BGB 

(Mg ha
-1

) 

Total 

(Mg ha
-1

) 

1 Alnus nepalensis D. Don  54.45 14.16 68.61 55.87 14.53 70.40 

2 Machilus edulis King ex 

Hook.f.   
37.89 9.85 47.74 38.65 10.05 48.70 

3 Schima wallichi Choisy  11.85 3.08 14.93 12.42 3.23 15.65 

4 Lyonia ovalifolia 

(Wall.) Drude  
8.18 2.13 10.31 8.87 2.31 11.18 

5 Juglans regia L.  6.41 1.67 8.08 6.86 1.78 8.64 

6 Symplocos theifolia D. 

Don  
1.08 0.28 1.36 1.38 0.36 1.74 

7 Spondias axillaris Roxb.  1.36 0.35 1.71 1.66 0.43 2.09 

8 Castanopsis indica 

(Roxb. ex Lindl.)A.DC. 
1.00 0.26 1.26 1.26 0.33 1.59 

9 Macaranga pustulata 

King ex Hook.f. 
0.87 0.23 1.10 1.01 0.26 1.27 

10 Ficus racemosa Willd.  0.32 0.08 0.40 0.44 0.11 0.55 

 Total 123.41 32.09 155.50 128.42 33.39 161.81 

 

Cardamom agroforestry 

The total aboveground biomass for trees was 65.01 Mg ha
-1 

and 69.04 Mg ha
-1 

in the 

first and third year respectively (Table-11). Among the tree species, the highest AGB 
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was observed for Alnus nepalensis with a value of 45.61 Mg ha
-1

 in 1
st
 year and 47.84 

Mg ha
-1 

in 3
rd

 year contributing 70.67% and 69.86% respectively to the total 

aboveground biomass. The lowest AGB was recorded for Viburnum cordifolium 

contributing 0.45% (0.28 Mg ha
-1

) in 1
st
 year and 0.60% (0.41 Mg ha

-1
) in the 3

rd
 year 

to the total aboveground biomass. 

Belowground biomass of trees was 16.90 Mg ha
-1

 and 17.96 Mg ha
-1 

in the 1
st 

and 3
rd 

year respectively. The highest BGB was recorded for Alnus nepalensis with a value of 

11.86 Mg ha
-1 

in 1
st
 year and 12.44 Mg ha

-1
 in 3

rd
 year. Viburnum cordifolium has the 

lowest BGB with a value of 0.07 Mg ha
-1 

in 1
st
 year and 0.11 Mg ha

-1
 in 3

rd
 year. 

Therefore the total tree biomass (above and belowground) of the cardamom 

agroforestry system was 81.91 Mg ha
-1 

in 1
st
 year and 86.99 Mg ha

-1
 in 3

rd 
year 

respectively (Table-11). 

Table 11. Above-ground, Below-ground biomass (Mg ha
-1

) and Total Biomass (Mg ha
-1

) 

in different species of Cardamom Agroforestry(2016 and 2018). 

Sl 

No 

Species 2016 2018 

AGB 

(Mg ha
-1

) 

BGB 

(Mg ha
-1

) 

Total 

(Mg ha
-1

) 

AGB 

(Mg ha
-1

) 

BGB 

(Mg ha
-1

) 

Total 

(Mg ha
-1

) 

1 Alnus nepalensis D. Don 45.61 11.86 57.47 47.84 12.44 60.28 

2 Ficus racemosa Willd. 8.15 2.12 10.27 8.66 2.25 10.91 

3 Juglans regia L. 4.01 1.04 5.05 4.42 1.15 5.57 

4 
Toona ciliata M.Roem. 3.46 0.90 4.36 3.77 0.98 4.75 

5 Macaranga pustulata 

King ex Hook.f. 
3.19 0.83 4.02 3.44 0.89 4.33 

6 Spondias axillaris Roxb. 0.31 0.08 0.39 0.50 0.13 0.63 

7 Viburnum cordifolium 

Wall. Ex DC. 
0.28 0.07 0.35 0.41 0.11 0.52 

 Total 65.01 16.90 81.91 69.04 17.96 86.99 
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Tree carbon stock 

Subtropical forest 

The total tree carbon stock in the subtropical forest site was 73.08 Mg C ha
-1 

and 

76.05 Mg C ha
-1 

in the 1
st
 and 3

rd
 year respectively (Table-12). The above-ground 

biomass carbon stock was 58.00 Mg C ha
-1

 in 1
st
 year and 60.36 Mg C ha

-1
 in 3

rd
 year 

in this forest while the carbon stock in the belowground biomass was recorded to be 

15.08 Mg C ha
-1 

and 15.69 Mg C ha
-1 

in the 1
st
 and 3

rd
 year respectively. Carbon 

density showed a positive and significant relation (Fig 15) with tree density (p<0.10), 

basal area (p<0.05), and aboveground biomass (p<0.001). 

Table 12: Above-ground, Below-ground biomass carbon (Mg C ha
-1

) and Total biomass 

carbon (Mg C ha
-1

) in different species of subtropical forest (2016 and 2018). 

Sl 

No 

Species 2016 2018 

ABGC 

(Mg C 

ha
-1

) 

BGBC 

(Mg C 

ha
-1

) 

Total 

(Mg C 

ha
-1

) 

ABGC 

(Mg C 

ha
-1

) 

BGB 

(Mg C 

ha
-1

) 

Total 

(Mg C 

ha
-1

) 

1 Alnus nepalensis D. Don  25.59 6.65 32.25 26.26 6.83 33.09 

2 Machilus edulis King ex 

Hook.f.   
17.81 4.63 22.44 18.17 4.72 22.89 

3 Schima wallichi Choisy  5.57 1.45 7.02 5.84 1.52 7.36 

4 Lyonia ovalifolia 

(Wall.) Drude  
3.84 1.00 4.84 4.17 1.08 5.25 

5 Juglans regia L.  3.01 0.78 3.80 3.22 0.84 4.06 

6 Symplocos theifolia D. 

Don  
0.51 0.13 0.64 0.65 0.17 0.82 

7 Spondias axillaris Roxb.  0.64 0.17 0.81 0.78 0.20 0.98 

8 Castanopsis indica 

(Roxb. ex Lindl.)A.DC. 
0.47 0.12 0.59 0.59 0.15 0.75 

9 Macaranga pustulata 

King ex Hook.f. 
0.41 0.11 0.52 0.47 0.12 0.60 

10 Ficus racemosa Willd.  0.15 0.04 0.19 0.21 0.05 0.26 

Total 58.00 15.08 73.08 60.36 15.69 76.05 
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Cardamom agroforestry 

In the agroforestry study site, the total carbon stock was recorded to be 38.50 Mg C 

ha
-1

 and 40.89 Mg C ha
-1 

in the 1
st
 and 3

rd
 year respectively (Table-13). The 

aboveground biomass carbon stock was 30.55 Mg C ha
-1

 in 1
st
 year and 32.45 Mg C 

ha
-1

in 3
rd

 year. Below-ground biomass carbon stock was 7.94 Mg C ha
-1

and 8.44 Mg 

C ha
-1

 in the first and third year respectively. Carbon density exhibited a positive and 

significant relation (Fig 15) with tree density (p<0.10), basal area (p<0.05), and 

aboveground biomass (p<0.001) in this system too. 

Table 13. Above-ground, Below-ground biomass (Mg ha
-1

) and Total Biomass (Mg ha
-1

) 

in different species of cardamom agroforestry (2016 and 2018). 

Sl 

No 

Species 2016 2018 

AGBC 
(Mg C 

ha
-1

) 

BGBC 
(Mg C 

ha
-1

) 

Total 
(Mg C 

ha
-1

) 

AGBC 
(Mg C 

ha
-1

) 

BGBC 
(Mg C 

ha
-1

) 

Total 
(Mg C 

ha
-1

) 

 

1 Alnus nepalensis D. Don 21.44 5.57 27.01 22.48 5.85 28.33 

2 Ficus racemosa Willd. 3.83 1.00 4.83 4.07 1.06 5.13 

3 Juglans regia L. 1.88 0.49 2.37 2.08 0.54 2.62 

4 Toona ciliata M.Roem. 1.63 0.42 2.05 1.77 0.46 2.23 

5 Macaranga pustulata King ex 

Hook.f. 

1.50 0.39 1.89 1.62 0.42 2.04 

6 Spondias axillaris Roxb. 0.15 0.04 0.18 0.24 0.06 0.30 

7 Viburnum cordifolium Wall. 

Ex DC. 

0.13 0.03 0.16 0.19 0.05 0.24 

Total 30.55 7.94 38.50 32.45 8.44 40.89 
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Fig 15. Regression models between carbon density and tree density, basal area, and biomass 

stock in STF and AGF system 
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Herbaceous biomass and carbon stock 

The herbaceous biomass in the 1
st
 and 3

rd
 year of the present study sites was 

8.44±0.76 Mg ha
-1

; 8.74±0.49 Mg ha
-1 

(forest), 4.69±0.50 Mg ha
-1

; 5.49±0.48 Mg ha
-1 

(agroforestry) and 10.66±0.63Mg ha
-1

; 10.86±0.72 (cropland) respectively. The 

herbaceous carbon stock in the two years was observed to be highest in cropland 

(5.33±0.31 Mg C ha
-1

; 5.43±0.36 Mg C ha
-1

)  followed by forest (4.22±0.38 Mg C ha
-

1
; 4.37±0.24 Mg C ha

-1
) and lowest in the subtropical forest (2.34±0.25 Mg C ha

-1
; 

2.70±0.27 Mg C ha
-1

) (Table-14).  Herbaceous carbon stock value of forest system 

contributes 5.46% of carbon in the 1
st
 year and 5.88% in the 3

rd
 year to the total 

vegetation carbon stock. Similarly in cardamom agroforestry, herbaceous carbon 

stock contributes 5.24% and 5.62% of carbon to the total vegetation carbon of the site 

in the 1
st
 and 3

rd
 year respectively. Herbaceous biomass and carbon stock were highest 

in the paddy cropland followed by subtropical forest and lowest in the cardamom 

agroforestry. 

 

Table 14. Herbaceous biomass (Mg ha
-1

) and carbon (Mg C ha
-1

) in three different land-

use types (2016 and 2018). 

Land-use 2016 2018 

Herbaceous 

Biomass 

(Mg ha
-1

) 

Herbaceous 

Carbon 

 (Mg C ha
-1

) 

Herbaceous 

Biomass 

(Mg ha
-1

) 

Herbaceous 

Carbon 

(Mg C ha
-1

) 

Subtropical 

Forest  
8.44±0.76 4.22±0.38 8.74±0.49 4.37±0.24 

Agroforestry 

Cardamom  
4.69±0.50 2.34±0.25 5.49±0.48 2.70±0.27 

Wet Paddy 

Cropland  10.66±0.63 5.33±0.31 10.86±0.72 5.43±0.36 
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Litter biomass and carbon stock 

Annual litter biomass and carbon of subtropical forest were recorded to be 7.12±0.53 

Mg ha
-1

and 3.56±0.27 Mg C ha
-1

 respectively in 1
st
 year, and 7.16±0.38 Mg ha

-1 
and 

3.58±0.20 Mg ha
-1

 in 3
rd

 year (Table-15). Similarly, the total annual detritus biomass 

and carbon of cardamom agroforestry were 6.02±0.36 Mg ha
-1

and 3.56±0.27 Mg C 

ha
-1

 in 1
st
 year and 6.18±0.43 Mg ha

-1 
and 3.09±0.21 Mg C ha

-1
 in the 3

rd
 year.  

Litterfall contributed 1.84 % and 1.95% to the total ecosystem carbon in subtropical 

forest and agroforestry study sites respectively. Litter carbon in the subtropical forest 

was slightly higher than agroforestry with a peak litterfall during the winter season 

(Nov-Feb) and least during the rainy season (June-Oct) in all the study sites. The 

monthly litterfall ranged from 0.23-0.40 Mg C ha
-1

 in the subtropical forest and was 

highest in December (0.40 Mg C ha
-1

) and lowest in August (0.23 Mg C ha
-1

) (Fig 

16). In the agroforestry system, the litterfall ranged from 0.20-0.34Mg C ha
-1 

with the 

maximum in December (0.34 Mg C ha
-1

) and minimum in June (0.20 Mg C ha
-1

) (Fig 

16). 

 

Table 15:  Litter biomass (Mg ha
-1

) and litter biomass carbon (Mg C ha
-1

) in three 

different land-use types (2016 and 2018). 

 

Land-use 2016 2018 

Litterfall 

Biomass 

(Mg ha
-1

) 

Litterfall 

Carbon 

(Mg C ha
-1

) 

Litterfall 

Biomass 

(Mg ha
-1

) 

Litterfall 

Carbon 

(Mg C ha
-1

) 

Subtropical 

Forest  
7.12±0.53 3.56±0.27 7.16±0.38 3.58±0.20 

Agroforestry 

Cardamom  
6.02±0.36 3.01±0.18 6.18±0.43 3.09±0.21 
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Fig 16. Monthly litterfall carbon in the subtropical forest and cardamom agroforestry systems 

during the study period (mean±SE) 
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Soil organic carbon stock (SOC) 

The soil organic carbon stock in 0-45cm in the three different land-use systems varied 

from 87.41±3.22 to120.93±4.15 Mg C ha
-1

 in 1
st
 year and 87.52±4.27 to 122.40±5.37 

Mg C ha
-1

 in the 3
rd

 year (Table-16). SOC stock and concentrations in different soil 

layers were highest in the subtropical forest in both the sampling years (110.15±10.72 

and 112.76±10.06 Mg C ha
-1

) followed by cardamom agroforestry (105.24±9.92 and 

107.43±9.21 Mg C ha
-1

) and paddy cropland (92.01±10.23 and 92.74±11.53 Mg C ha
-

1
). SOC decreases with an increase in soil depth, and maximum soil carbon was 

recorded in the rainy season and minimum in the winter season in all the study sites 

(Fig 17).  

The Analysis of variance (ANOVA) in subtropical forest indicated a significant 

difference in SOC stock between different sampling months of summer (P<0.01), 

rainy (P<0.001), winter (P<0.05) and annually (P<0.05) (Table-17). Similarly, in 

cardamom agroforestry study sites, the analysis of variance (ANOVA) shows a 

significant difference between sampling months of summer (P<0.05), Rainy (P<0.05), 

winter (P<0.05) and annually (P<0.001) (Table-18). The Analysis of variance 

(ANOVA) in paddy cropland indicated a significant difference in SOC stock between 

different sampling months of summer (P<0.05), Rainy (P<0.05), winter (P<0.001) and 

annually (P<0.001) respectively (Table-19). The Analysis of variance (ANOVA) in 

different land-use shows a significant difference in SOC stock between and within 

different land-use systems (P<0.05) (Table-20).  
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Table 16.Soil organic carbon (SOC) concentration and soil organic carbon stock at various soil depths in different land-use 

systems (2016 and 2018). 

 

 

Land-use types 
SOC (%) 

(2016) 

SOC stock (Mg C ha
-1

) 

(2016) 

0-15 15-30 30-45 Total 0-15 15-30 30-45 Total 

Subtropical Forest 4.04±0.56 3.45±0.45 2.21±0.35 9.70±1.35 40.99±4.01 38.17±3.78 31.00±2.93 110.15±10.72 

Cardamom Agroforestry 3.85±0.42 3.32±0.35 2.04±0.40 9.21±1.17 40.14±3.41 35.89±3.63 29.21±2.88 105.24±9.92 

Paddy Cropland 3.23±0.59 3.20±0.32 1.88±0.47 8.31±1.38 34.16±4.02 31.64±3.22 26.21±2.98 92.01±10.23 

 

SOC (%) 

(2018) 

SOC stock (Mg C ha
-1

) 

(2018) 

Subtropical Forest 3.96±0.43 3.42±0.56 2.51±0.41 9.89±1.40 42.03±3.51 36.76±3.32 33.97±3.23 112.76±10.06 

Cardamom Agroforestry 3.63±0.46 3.45±0.38 2.31±0.31 9.42±1.13 38.72±3.42 36.21±3.01 32.50±2.78 107.43±9.21 

Paddy Cropland 3.36±0.55 3.11±0.51 1.96±0.24 8.43±1.30 35.22±4.22 30.41±4.03 27.11±3.28 92.74±11.53 
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Fig 17. Seasonal  SOC stock in the three land-use systems during the study period (mean±SE) 
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     Table 17. ANOVA (One-way) of SOC in a subtropical forest. 

Seasons  
Source of 

Variation  
SS  df  MS  F  P-value  F crit  

Summer  
Between Months  157.823  2  78.91151  

10.9123  0.003927**  4.25649  

Within Month  65.0832  9  7.231466  

 

Rainy  
Between Months  885.046  4  221.2614  

9.05804  0.000629***  3.0555  

Within Month  366.406  15  24.42708  

 

Winter  
Between Months  127.867  3  42.62239  

5.91158  0.010239*  3.49029  

Within Month  86.5197  12  7.209978  

 

Annual  
Between Months  127.867  3  42.62239  

5.91158  0.010239*  3.49023  

Within Month  86.5197  12  7.209978  

*Significant at P-value< 0.05, **Significant at P-value< 0.01, ***Significant at P-value< 0.001  
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Table 18 ANOVA (One-way) of SOC stock in a cardamom agroforestry.  

Seasons  
Source of 

Variation  
SS  df  MS  F  P-value  F crit  

Summer  
Between Months  211.2058  2  105.6029  

5.753374  0.024579*  4.256495  

Within Month  165.1945  9  18.35495  

 

Rainy  
Between Months  1487.276  4  371.8189  

3.305527  0.039428*  3.055568  

Within Month  1687.26  15  112.484  

 

Winter  
Between Months  270.2677  3  90.08922  

4.306124  0.027996*  3.490295  

Within Month  251.0542  12  20.92119  

 

Annual  
Between Months  6407.155  11  582.4686  

3.869635  0.000992***  2.066608  

Within Month  5418.824  36  150.5229  

*Significant at P-value< 0.05, **Significant at P-value< 0.01, ***Significant at P-value< 0.001  
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Table 19 ANOVA (One-way) of SOC stock in a wet paddy cropland.  

Seasons  
Source of 

Variation  
SS  df  MS  F  P-value  F crit  

Summer  
Between Months  108.2113  2  54.10563  

4.649852  0.041029*  4.256495  

Within Month  104.7239  9  11.63599  

 

Rainy  

Between Months  357.7441  4  89.43601  

3.456239  0.034269*  3.055568  

Within Month  388.1503  15  25.87669  

 

Winter  

Between Months  562.7523  3  187.5841  

11.81305  0.00068***  3.490295  

Within Month  190.5527  12  15.87939  

 

Annual  
Between Months  3097.608  11  281.6007  

9.557653  9.65E-08***  2.066608  

Within Month  1060.681  36  29.46337  

*Significant at P-value< 0.05, ***Significant at P-value< 0.001  
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Table 20. Analysis of variance (ANOVA) between soil carbon stock of different land-use 

types. 

ANOVA       

Source of Variation  Sum of Squares  df  Mean Square  F  Sig (P)  

 

Within Land-use  

 

1145.431  

 

2  

 

572.7156  

 

115.9641  

 

P<0.05  

Between Land-use  743.7419  5  148.7484  30.11875   

Total  1938.56  17     

 

Total ecosystems carbon pool  

Total ecosystem biomass carbon in the present subtropical forest was 191.01 Mg C ha
-1 

in 

1
st
 year and 196.76 Mg C ha

-1 
in the 3

rd
 year (Table-21). Soil carbon has the highest 

carbon stock and contributed 57.67% (1
st
 year) and 57.31% (3

rd
 year) of the total 

ecosystem carbon while the contribution of litter is least with 1.86% and 1.82% in the 1
st
 

and 3
rd

 year respectively (Fig 18).  

 In the agroforestry system, the total ecosystem carbon value was 153.56 Mg C ha
-1 

and 

158.62 Mg C ha
-1

 in the 1
st
 and 3

rd
 year respectively (Table-21). Among the different 

carbon pools, soil carbon contributed maximum carbon 68.53%, and 67.73% to the total 

ecosystem carbon in the first and third year respectively. 

The total ecosystem carbon in the paddy cropland during the first and third year i.e. 2016 

and 2018 was 97.34 Mg C ha
-1 

and 98.17Mg C ha
-1

 respectively (Table-21). As in the 

other two ecosystems, the highest contribution to total ecosystem carbon was by soil 

94.52% in 1
st
 year and 94.47% in 3

rd
 year, while the contribution of the vegetation to the 

total ecosystem carbon is least in this system 5.48% and 5.53% in first and third year 

respectively (Fig 18). 
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Table-21. Vegetation Biomass Carbon (VBC), Soil Organic Carbon (SOC) and Total Ecosystem Carbon (EC) stock expressed in Mg C 

ha
−1

 of study sites during study periods (2016 and 2018). 

 

 

 

Major land-uses  VBC SOC Stock 

Mg C ha
−1

 

EC stock 

Mg C ha
−1

 AGBC 

Mg C ha
−1

 

BGBC 

Mg C ha
−1

 

HERBS 

Mg C ha
−1

 

LITTER 

Mg C ha
−1

 

2016 

Subtropical Forest 58.00±3.38 15.08±0.87 4.22±0.38 3.56±0.27 110.15±10.72 191.01±15.62 

Cardamom Agroforestry 30.55±2.12 7.94±0.55 2.34±0.25 3.01±0.18 105.24±9.92 149.08±13.02 

Paddy Cropland 0 0 5.33±0.31 0 92.01±10.23 97.34±10.54 

2018 

Subtropical Forest 60.36±3.63 15.69±0.94 4.37±0.24 3.58±0.20 112.76±10.06 196.76±15.07 

Cardamom Agroforestry 32.45±3.02 8.44±0.78 2.70±0.27 3.09±0.21 107.43±9.21 154.11±13.49 

Paddy Cropland 0 0 5.43±0.36 0 92.74±11.53 98.17±11.89 
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Fig 18. Different carbon pools in three different land-use systems 
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Carbon Sequestration 

Carbon sequestration of the subtropical forest was 5.75 Mg C ha
-1

 yr
-1

 with the highest 

sequestration by SOC (2.61 Mg C ha
-1

 yr
-1

)
 
followed by AGB (2.36 Mg C ha

-1
 yr

-1
), BGB 

(0.61 Mg C ha
-1

 yr
-1

), herbaceous plants (0.15 Mg C ha
-1

 yr
-1

) and lowest by the detritus 

(0.02 Mg C ha
-1

 yr
-1

) (Table-22). Percent contribution of different carbon pools to the 

total ecosystem carbon sequestration in the forest was SOC- 57.67%, AGB- 30.36%, 

BGB- 7.89%, herbs - 2.21% and litterfall -1.86%. 

Similarly in the cardamom agroforestry, the total carbon sequestration was 5.03 Mg C ha
-

1
 yr

-1 
of which  SOC sequester 2.19 Mg C ha

-1
 yr

-1 
followed by AGB 1.90 Mg C ha

-1
 yr

-1
, 

BGB 0.50 Mg C ha
-1

 yr
-1

, herbs 0.36 Mg C ha
-1

 yr
-1

 and least by the litterfall 0.08 Mg C 

ha
-1

 yr
-1

 (Table-22). SOC contributed 68.53%, AGB-22.21%, BGB-5.78%, detritus-

1.96% and herbs-1.52% respectively to the total ecosystem carbon sequestration of the 

site. 

Paddy cropland, sequester 0.83 Mg C ha
-1

 yr
-1

 with the highest contribution by SOC (0.73 

Mg C ha
-1

 yr
-1

)
 
contributing 94.52% to the total ecosystem carbon and lowest by the 

herbs or vegetation (0.10 Mg C ha
-1

 yr
-1

) (Table-22) contributing only 5.48% to the total 

ecosystem carbon sequestration.  
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Table 22. Carbon sequestration in different components of three land-use systems. 

Different components 
Carbon Sequestration 

Subtropical Forest Cardamom Agroforestry Paddy Cropland 

Aboveground Biomass 2.36 1.90 0.00 

Belowground Biomass 0.61 0.50 0.00 

Herbs 0.15 0.36 0.10 

Litter 0.02 0.08 0.00 

Total vegetation Carbon 3.14 2.84 0.10 

Soil Organic Carbon 2.61 2.19 0.73 

Total ecosystem carbon 5.75 5.03 0.83 
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Biomass and Carbon Density Map 

Biomass and carbon density maps of the year 2016 and 2018 (Fig 19 and 20) revealed  that there is a net increase in carbon stock and 

sequestration in forest and agroforestry systems except for the agricultural systems where there is a decrease in carbon stock and 

sequestration.

 

 

Fig 19. Biomass Map of Sikkim in 2016 and 2018 
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Fig 20. Carbon density Map of Sikkim in 2016 and 2018
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Changes in carbon stocks in the different land-use system 

Carbon is lost when a forest is converted to agroforestry and cropland ecosystems. 

However, the reverse process leads to an increase in carbon stock (Fig 21). The same 

trend was also observed for carbon sequestration (Fig 22). 

 

STF- Subtropical Forest, CAF- Cardamom agroforestry, WPC- Wet paddy cropland, TBCS- 

Total biomass carbon sequestration, SOCS- Soil organic carbon sequestration, TECS- Total 

ecosystem biomass sequestration.  

Fig.21. The magnitude of changes in carbon stock from the conversion of STF to other land-uses, 

CAF to other land-use and WPC to other land-use sys



CARBON STOCK AND SEQUESTRATION CHAPTER IV 

 

89 SIKKIM UNIVERSITY 

 

 

 

STF- Subtropical Forest, CAF- Cardamom agroforestry, WPC- Wet paddy cropland, TBCS- Total biomass carbon sequestration, SOCS- Soil 

organic carbon sequestration, TECS- Total ecosystem biomass sequestration.  

Fig 22. Carbon sequestration rate due to a change in land-use systems of present study
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DISCUSSION 

Tree vegetation characteristics of the different land-use systems 

In the present land-uses, species richness was higher in the subtropical forest with ten 

(10) species than that of cardamom agroforestry with six (6) species only. Low species 

richness in the present cardamom agroforestry system is because of the preference of 

nitrogen-fixing tree species Alnus nepalensis over other tree species by the local’s 

agroforestry managers.  

The total tree density was higher in the subtropical forest (188.28 individual ha
-1

) than in 

the agroforestry system (124.90 individual ha
-1

). Higher tree density in the subtropical 

forest is due to the removal of the tree from the agroforestry systems for various 

purposes. Anthropogenic interventions and management practices significantly affect the 

tree density in different types of land-uses (Schall and Ammer 2013), leading to different 

tree densities. The tree density of the present subtropical forest is less than the tree 

density of Dipterocarpus forests 155.00-460.00 individual ha
-1 

(Rabha et al. 2014) and 

different tropical forests of Assam (Borah et al. 2013, 2015). The low tree density of the 

present forest is because of anthropogenic disturbance and the young age of the forest as 

this forest was converted from an agroforestry system about twenty-five (25) years ago. 

However, tree density of the cardamom agroforestry system was similar to that of poplar 

intercropping systems of Northwestern Jiangsu, China (Fang et al. 2010) but lower than 

that of poplar agroforestry system of Northwestern India (Rizvi et al. 2011) and coffee 

agroforestry of Guatemala (Schmitt-Harash et al. 2012).  

The tree basal area of the present subtropical forest was higher than the cardamom 

agroforestry system but comparable to the range reported from different tropical forests 
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of Assam 5.37-37.09 m
2 

ha
-1 

(Borah et al. 2013). The basal area of the present forest is 

slightly higher than that of  Sal subtropical submontane zone of Garhwal Himalaya 26.10 

m
2 

ha
-1 

(Tiwari et al.
 
2010), tropical dry deciduous forest of Aravally mountains of 

Rajasthan 26.26 m
2 

ha
-1 

(Kumar et al. 2010) and open forest of Mizoram 19.80 m
2 

ha
-1 

(Singh et al. 2018). However, the value of the basal area of the subtropical forest is lower 

than that of the evergreen rainforest of Eastern Himalayas 37.40 m
2 

ha
-1 

(Gogoi et al. 

2017), subtropical broad-leaved forest of Meghalaya 39.19-59.44 m
2 

ha
-1

 (Chaudhury and 

Upadhaya 2016) and subtropical evergreen broad-leaved forest of China 39.6-48.00 m
2 

ha
-1

 (Lin et al. 2012).  The total tree basal area of cardamom agroforestry (18.28  m
2 

ha
-1

)
 

was lower than the tea agroforestry of Assam (Kalita et al. 2016) and managed plantation 

and jhum fallow agroforestry of Tripura (Chaudhary et al. 2016). But, the present value is 

higher than the plantation system of Aravally mountains, Rajasthan 13.88 m
2 

ha
-1 

(Kumar 

et al. 2010), and different systems in the mid-hills of Indian Himalayas (6.11 m
2 

ha
-1

) 

(Yadav et al. 2017).  

The Shannon diversity, Simpson dominance and Species evenness indices in trees of the 

subtropical forest were comparatively higher than the cardamom agroforestry systems 

due to selective tree retention and removal of a closed tree in the agroforestry system. 

The Shannon diversity index of the present (1.24-1.65) forest is comparable with the 

different tropical forests of Assam 1.01-1.55 (Borah et al. 2013) but lower than the 

tropical evergreen forest of Assam 1.94-2.52 (Gogoi et al. 2017). The higher value of 

Simpson dominance and lower value of evenness index and species richness was 

recorded in the present study as compared to the finding of (Borah et al. 2013; Gogoi et 

al. 2017) in the different tropical forests. 
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Biomass and carbon stock potential in three different land-use systems 

Total vegetation carbon in the present study of three different land-use types ranged 

between 3.05-84.00 Mg C ha
-1

. The present value of carbon is comparable to other 

findings reported from different land-use systems all over the world i.e. 5.00-191.00 Mg 

C ha
-1

 in Himalayan Watershed, Sikkim (Sharma and Rai 2007), 0.04-134.34 Mg C ha
-1

 

in Gera, South Western Ethiopia (Mohammod and Bekela 2014), 3.34-52.88 Mg C ha
-1

 in 

Western Himalayas (Chisanga et al. 2018), 7.44-131.66 Mg C ha
-1

 in Mizoram, Northeast 

India (Singh et al. 2018) and 20.69-139.75 Mg C ha
-1

 in Eastern Ethiopia (Toru and 

Kibret 2019). Vegetative biomass carbon stock (VBCS) was highest in the subtropical 

forest (STF) followed by cardamom agroforestry (CAF) and lowest in the paddy cropland 

(WPC). Compared to WPC, higher vegetative carbon in STF and CAF is primarily due to 

the presence of more woody vegetation in the form of trees in two tree-based systems. In 

addition, lower biomass and carbon densities in agricultural land-use systems could be 

due to poor productivity and intensive management practices (Chisanga et al. 2018). The 

difference in the biomass and carbon density of each land-use system is due to the 

difference in the production of biomass. A high tree density and basal area in the forest 

systems enhances biomass storage (Pibumrung et al. 2008). Several studies also show a 

high carbon in the forests than other land-use systems of the world (Chen et al. 2005; 

Pibumrung et al. 2008; Kumar et al. 2010; Ahmad and Nizami 2015).  

The average tree biomass (Aboveground+ Belowground) value in the present subtropical 

forest was 156.66 Mg ha
-1

 which contributes 38% to the total ecosystem carbon.  Present 

data is consistent with the biomass value of tropical rain forests of  Thailand, 96.00-

276.00 Mg ha
-1

 (Terakunpisut et al. 2007), 32.47-261.80 Mg ha
-1 

in tropical forests of 
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Cachar district of Assam (Borah et al. 2013) and 49.00-178.40 Mg ha
-1 

in different forest 

type of Manipur (Sharma et al. 2020). However, the value is lower than other subtropical 

forests (180.00-261.00 Mg ha
-1

) of the world (Nizami et al. 2009; Thokchom and Yadava 

2013; Ali et al. 2014; Cao et al. 2014; Chaudhury and Upadhyaya 2016). The average 

aboveground biomass carbon stock (AGBC) in the present subtropical forest was 74.56 

Mg C ha
-1

 which comes within the range of 15.40-214.90 Mg C ha
-1

 reported from 

different subtropical forests of China (Sun and Guan 2014; Li et al. 2019) and 60.09-

121.43 Mg C ha
-1

in the different forests of Manipur (Thokchom and Yadava 2017).  The 

present carbon value is slightly higher than the value of tropical forest (67.64-73.21Mg C 

ha
-1

) of Assam (Borah et al. 2015). However, it is lower than subtropical broad-leaved 

forest (88.58-138.87 Mg C ha
-1

) of Meghalaya (Chaudhury and Upadhaya 2016), 

subtropical forests (90.53 Mg C ha
-1

) of Eastern China (Ali et al. 2014) and subtropical 

broad-leaved forest (133.60-140.40 Mg C ha
-1

) of Meghalaya (Gogoi et al. 2020). The 

lower carbon values in the present forest could be attributed to the relatively low biomass 

yield (Segura and Kanninen 2005).  

The average tree biomass carbon (aboveground + belowground) of cardamom 

agroforestry was 39.69 Mg C ha
-1

 contributing 22% to the total ecosystem carbon. The 

present value is comparable with the value reported from a traditional agroforestry (0.70-

54.00 Mg C ha
-1

) of Sahel, West African (Takimoto et al. 2008), polar based agroforestry 

systems (6.28-83.07 Mg C ha
-1

) of Haryana (Rizvi et al. 2011), farm forestry (1.91-62.05 

Mg C ha
-1

) and agroforestry systems (1.61-57.71Mg C ha
-1

) of Andhra Pradesh (Prasad et 

al. 2012). The present carbon value of the agroforestry system is slightly lower than the 

value of tea agroforestry (44.80-56.70 Mg C ha
-1

) of Assam (Kalita et al. 2016). However 
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it is higher from the carbon storage range of agroforestry systems (0.29-15.21 Mg C ha
-1

) 

reported by Nair et al. (2010), 25.03 Mg C ha
-1 

in cardamom agroforestry in Mamlay 

watershed (Sharma and Rai 2007), temperate agroforestry systems of China, 24.10-36.50 

Mg C ha
-1 

(Xie et al. 2017), and different production systems of Almora, Uttarakhand, 

1.17-25.30 Mg C ha
-1 

(Yadav et al. 2017).  Maximum carbon stock by Alnus nepalensis 

(27.01±1.04 Mg C ha
−1

) and minimum by Viburnum cordifolium (0.16±0.03 Mg C ha−1) 

in the present agroforestry corresponds to the highest tree density and basal area of Alnus 

and Viburnum sp. (Table-2). The rate of carbon fixation and capture of carbon by 

vegetation depends primarily on the geographical position, plant types, variety of species, 

and age of a tree (Liu et al. 2015). In the present study, maximum C storage correlates 

with high tree densities and basal areas of trees rather than the girth size of trees, which 

agrees with the report of Kalita et al. (2016) from tea agroforestry systems of Assam, but 

contrasting to that of a Dipterocarpus forest of Manipur (Devi and Yadava 2015), 

indicating the dependence of carbon densities on tree girth size.  

Carbon density in the tree-based systems (subtropical forest and agroforestry systems) of 

the present study showed a positive and significant relation (Fig.7) with tree density 

(p<0.10), basal area (p<0.05), and aboveground biomass (p<0.001) which is consistent 

with the findings of several researchers from different subtropical land-use systems of 

India (Borah et al. 2015; Chaudhary et al. 2016; Gogoi et al. 2017).  

Herbaceous biomass carbon of the present study contributed 5% in WPC, 2% in STF and 

1% CAF to the total ecosystem carbon. In wet paddy cropland the herbaceous biomass 

carbon was 5.38 Mg C ha
-1

 which is comparable with the values reported by 
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(Gnanavelrajah et al. 2008), 5.40 Mg C ha
-1  

from a rice field of the eastern coast of 

Thailand but higher than that of 1.10-1.40 Mg C ha
-1 

in wet irrigated rice system of 

Philippines (Witt et al. 2000); agricultural land-use systems of Himachal Pradesh, 3.34 

Mg C ha
-1 

(Chisanga et al. 2018) and  0.81-1.33 Mg C ha
-1 

in rice paddy of Thailand 

(Bridhikitti 2017). Present herbaceous biomass carbon in the STF (4.29 Mg C ha
-1

) and 

AGF (2.52 Mg C ha
-1

) is higher from Dipterocarpus forest of Manipur, 0.56-1.00 Mg C 

ha
-1

 -Devi and Yadava (2015) and three land-use systems (natural forest, managed 

plantation and jhum fallow) of Tripura, 0.17-1.22 Mg C ha
-1

 -Chaudhary et al. (2016).  

Litter biomass carbon  

The total average annual litter biomass carbon was slightly higher in the subtropical 

forest (3.57 Mg C ha
-1

) than cardamom agroforestry (3.05 Mg C ha
-1

) and contributed 2% 

each carbon value to the total ecosystems carbon. Litter biomass was absent in WPC due 

to the absence of trees and shrubs in this ecosystem and removal of plant parts for fodder 

after harvesting. High litter input in the STF than CAF is because of the presence of trees 

that enhances litter productivity. Litter biomass carbon is influenced by the vegetation, 

site status and type of land-use management practices (Takahashi et al. 2010). The 

present litter carbon is comparable with that of montane sub-tropical forests (2.20 - 22.60 

Mg C ha
-1

 -Vogt et al. 1986), subtropical forest and monoculture plantation of China, 

1.25- 4.35 Mg C ha
-1

 (Chen et al, 2005), subtropical board-leaved forest of China, 0.040 

6.50 Mg C ha
-1

 (Zeng et al. 2013) and coffee agroforestry system (3.30-4.80) of Costa 

Rica (Hager 2012). The present value however is lower than subtropical forest (10.70-

19.50 Mg C ha
-1

) of Northeast India reported by Arunachalam et al. (1998), in Oak forest 
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of Garhwal Himalaya, 7.30 Mg C ha
-1

 (Pant and Tiwari 1992), subtropical forest of 

Manipur, 10.90 Mg C ha
-1

 (Devi and Yadava 2010) and in the subtropical broad-leaved 

forest of Meghalaya, 6.66-10.44 Mg C ha
-1

 (Chaudhury and Upadhaya 2016). But, it is 

higher than the value of a subtropical forest (2.12-2.64 Mg C ha
-1

) of China (Sun and 

Guan 2014).  Peak detritus during the winter season and least during the summer season 

was observed in the present study which may be due to the plant's physiological response 

to the dry winter season. Similar observations were reported from earlier studies of in 

different ecosystems (Arunachalam et al. 1998; Yang et al. 2004; Kamei 2007; Devi and 

Yadava 2010).  

Soil Organic Carbon  

The total soil organic carbon stock (SOC) in the different soil layers of the present study 

ranged from 92.01 Mg C ha
-1

 in paddy cropland to 112.76 Mg C ha
-1

 in a subtropical 

forest. Comparing the three land-uses of the present study, the average SOC stock was 

highest in the STF (111.45 Mg C ha
-1

) followed by CAF (106.33 Mg C ha
-1

) and lowest 

in the WPC (92.37 Mg C ha
-1

). Higher SOC stock in the subtropical forest may be due to 

the higher litter input in the soil from the trees, thereby increasing soil organic carbon. 

Also, roots of the trees in forest and agroforestry are major determinants of soil organic 

matters in tree-based systems (Jha et al. 2012; Toru and Kibret 2019). A lower SOC 

value in the cropland systems may be due to intensive management practices (Melero et 

al. 2011), and tilling of soil and removal of aboveground parts of the crops and grains for 

domestic use and fodder in the WPC results to decrease of carbon from soil (Amanuel et 

al. 2018). Further, the waterlogged condition of rice farming reduces the microbial 

activity and decomposition of soil organic matter thereby retarding the input of soil 
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organic carbon.  The present result is inconsistent with the findings of several studies 

(Schmitt-Harsh et al. 2002; Fantaw et al. 2007; Kumar et al. 2010; Jha et al. 2012;  

Amanuel et al. 2018; Sahoo et al. 2019; Toru and Kibret 2019) that recorded higher SOC 

stocks of the forest than other land-use systems. However, Singh et al. (2018) reported 

higher SOC in agroforestry than forested land which is contradictory to present study. 

The value of SOC stock in the present three land-use systems was within the reported 

range of soil carbon stock of Amazonian rain forest (72.00-149.00 Mg C ha
-1 - 

Glaser et 

al. 2003), different agroforestry systems (30.00-300.00 Mg C ha
-1

 - Nair et al. 2010), and 

land-use systems namely natural forest, managed plantation and jhum fallows of Tripura, 

North-East India (85.34-121.87 Mg C ha
-1

 -Chaudhary et al. 2016). However, the present 

values were lower than that of different land-use types of Ethiopia (138.00-339.19-Toru 

and Kibret 2019) but higher from the values reported by (16.00-62.58 Mg C ha
-1

- Singh 

et al. 2018) (22.92-52.74 Mg C ha
-1 

- Sahoo et al. 2019) from different land-use systems 

and soils of Mizoram. Soil organic carbon and bulk density show an inverse trend across 

the soil depth which is because of high organic matter content in the upper soil layers. 

Many studies reported a similar trend where SOC values were higher in the upper layer 

than that of subsurface soil layers (Shrestha et al. 2004; Gruneberg et al. 2010; Sharma et 

al. 2014; Amanuel et al 2018; Toru and Kibret 2019).  

Total ecosystems carbon pools and carbon sequestration 

Total average ecosystem biomass carbon value in the three different sites was 193.88 Mg 

C ha
-1

 (STF), 151.59 Mg C ha-
1
 (CAF), 97.75 Mg C ha

-1
 (WPC), respectively (Table -

21). Soil contributed the highest carbon, followed by trees, herbs and least by detritus to 
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the total ecosystem carbon pool (Fig 18). The present value of total ecosystem carbon 

pools is comparable with the findings reported from different land-use systems of 

Tripura, 1.76-213.16 Mg C ha
-1

 (Chaudhary et al. 2016), Himachal Pradesh, 88.25-

166.36 Mg C ha
-1 

(Chisanga et al. 2018) and Mizoram, 41.43-168.59 Mg C ha
-1 

(Singh et 

al. 2018). 

The carbon sequestration of the present study was estimated to be 0.83-5.76 Mg C ha
-1

yr
-

1
 across the different study sites. The rate of carbon sequestration in the vegetation 

components varied between 0.10-3.14 Mg C ha
-1

 yr
-1

 across the study sites. STF has the 

highest sequestration rate followed by CAF and lowest by the WPC. The higher rate of 

sequestration in STF may be due to the presence of higher tree density in the forest 

ecosystem. WPC has the least carbon sequestration rate which is due to the annual 

removal of the crops and plant biomass for domestic use resulting in less C return to the 

soil. Previous other studies on carbon sequestration also reported less carbon store and 

sequestration in agricultural systems (Murty et al. 2002; Deng et al. 2016). In the tree-

based systems, vegetation sequestered a higher amount of carbon than soil whereas in the 

waterlogged cropland sequestration is higher in soil than vegetation. The present value of 

carbon sequestration in the three study sites (0.10-3.14 Mg C ha
-1

yr
-1

) is lower than the 

sequestration rate in the Chyandanda community forest,  5.02 Mg C ha
-1

yr
-1

 -Mandal et 

al. (2016) and Sal forest of Central Himalaya, 3.45 Mg C ha
-1

yr
-1

- Singh et al. (2019). 

Soil carbon sequestration rate in the present study sites varies from 0.73-2.61 Mg C ha
-

1
yr

-1
 with a maximum in the STF and a minimum in the WPC. The present value is higher 

than the sequestration rate of 0.24-0.69 Mg C ha
-1

yr
-1

 for a re-vegetated hilly Plateau of 

Loess, China (Wang et. al. 2012).  
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Changes in carbon stocks and sequestration in three different land-use systems 

Land-use change affected the biomass carbon stock in the present study (Fig 21). Carbon 

is lost when a forest is converted to any other agricultural land-use systems and the 

reverse process leads to an increase in carbon stock. A similar trend was also observed 

for carbon sequestration. Transformation of wet paddy cropland to a forest leads to the 

highest increase in carbon stock while the reverse will result in the loss in carbon. The 

present findings agree with that of Milne and Brown (1997) and Mohammod and Bekele 

(2014) where the transformation of the forest into agroforestry results in carbon loss. 

Several studies also reported an increase in biomass and carbon due to the introduction of 

trees in agricultural systems which conform to present study (Fang et al. 2010; Murthy et 

al. 2013; Goswami et al. 2014; Chisanga et al. 2018). 

CONCLUSION 

Tree-based land-use systems have a better potential for carbon stock and sequestration in 

vegetation than that of the other agricultural systems. The present study suggests that 

biomass carbon loss can be minimized by reducing anthropogenic activities such as the 

conversion of forests into agroforestry systems or other agricultural systems. The 

conversion of land-use systems has an impact on carbon stored in soil and vegetation due 

to changes in various environmental factors in the site. Progressive land-use change leads 

to loss of carbon while a retrogressive land-use change results in to increase in carbon 

stock and sequestration. 
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SOIL MICROBIAL BIOMASS CARBON 

INTRODUCTION 

Soil microorganisms perform a major function in understanding and regulating the 

carbon cycling of different ecosystems. Soil hosts an enormous number of microbes 

such as bacteria, fungi and other microfauna which act as an important biota to 

maintain soil health and quality. The soil microbes constitute a very small component 

in soil but play an important role in most terrestrial ecosystems since microbes are the 

driving force for nutrient transformations and thus have a major role in maintaining 

soil fertility and in functioning of an ecosystem (Inagaki and Miura 2002; Giesler et 

al. 2004). The microbial biomass carbon in soil (MBC) forms an active pool of soil 

nutrients and comprises 1-3% carbon to the total soil organic carbon (Dilly et al. 

2003). During the process of nutrient cycling, all organic materials are transformed by 

microorganisms to produce and deliver energy and new cell metabolites to support 

growth and development (Tracy and Frank 1998). For the formation of the organic 

pool, soil microbial biomass carbon acts as a key indicator of soil organic carbon by 

decomposing organic matter and controlling nutrient dynamics which affect the 

primary productivity in most biogeochemical processes in the terrestrial ecosystem 

(Gregorich et al. 2000; Kara and Bolat 2008). Not only this, the microbial biomass 

carbon is a labile fraction of soil organic matter and plays a significant role in 

maintaining soil fertility and the availability of plant nutrients (Amatya et al. 2002). 

Generally, plants serve as a carbon source for the microbial community while the 

microbes in return give nutrients to the plants for growth through nutrient 

mineralization, by decomposing soil organic matter and animal residues (Srivastava 

and Singh 1991). 
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The top upper layer of the soil comprises of abundant microorganism which actively 

takes part in nutrient conversion and decomposition of litter and production of humus. 

A decrease and increase in soil microbial biomass could result in mineralization and 

immobilization of nutrients (Me Grill et al. 1986). The MBC has been recognized as a 

very sensitive indicator of soil organic matter as microbial fraction changes quickly 

and these differences are noticeable before they occur in total soil organic matter 

(Gama-Rodrigues et al. 2008). The productivity and availability of nutrients in the 

ecosystem depend on the size and activity of the microbial biomass carbon 

(Chattopadhyay et al. 2012). The cycling of soil organic matter may be affected by the 

changes in soil microbial biomass and therefore, the microbial activity in the soil has 

a direct influence on the fertility and stability of ecosystems. To explain the 

interrelationships and controlling mechanisms of the input/output of carbon fluxes of 

nutrients and energy in the soil a solid measurement of the microbial biomass is 

therefore essential. 

The microbial population and biomass are influence by the environmental factors in 

an ecosystem such as soil type, climate and land-use management practices (Devi and 

Yadava 2006). Besides these, soil physicochemical properties such as soil pH, clay 

content, and soil organic carbon also influenced microbial biomass carbon in various 

land-use systems (Srivastava 1992; Kara and Bolat 2008). According to Singh and 

Gupta (2018), soil microbial biomass acts as a keystone biological driver to the 

ecosystem functioning as it depends on the flux of carbon and other chemical 

nutrients, mediated by the microbial interaction in the soil, plant and animal food web 

(Seneviratne 2015). Effect on soil ecosystem functioning due to human activities such 

as land-use change is necessary to protect and regenerate the ability of soil to deliver 

ecosystem services (Van Leeuwen et al. 2017). The change in climate and other 
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anthropogenic disturbances are critical drivers to regulate the microbial diversity in 

the ecosystems. Land-use types, geographical area, climate variability, soil properties 

and the dominant vegetation composition are the key drivers for controlling microbial 

biomass carbon dynamics in different land-use types (Wardle 1992; Singh and Gupta 

2018). Also, a change in plant species composition influences the microbial 

community due to a change in soil organic nutrient (Zhang et al. 2016), due to the 

sensitivity of microbes to differences in the litter composition and root turnover rates 

(Hooper and Vitousek 1998). Availability of different substrates induced better 

growth and function of soil microbes (Jagadamma et al. 2014), hence microbial 

biomass can be used as a means for evaluation of the quality of soil in different 

vegetation types (Groffman et al. 2001a) Nutrient regulations to climate change 

through the carbon cycle by soil microbes are crucially important in carbon-climate 

reaction (Bardgett et al. 2008). Therefore, the estimation of microbial biomass carbon 

and understanding the land-use influence to soil microbial diversity is very important 

for different land-use systems to predict long-term effects on change in land-use 

(Sharma et al. 2004). 

For the estimation of microbial biomass in the soil, various approaches are used. 

Some of the techniques used for the determination of microbial biomass are the 

fumigation-extraction method (Vance et al. 1987), fumigation-incubation method 

(Jenkinson and Powlson 1976), substrate-induced respiration method (Anderson and 

Domsch 1978), ATP extraction method (Tate and Jenkinson 1982), and  

Microcolorimetic method (Critter et al. 2002). For the estimation of microbial 

biomass carbon in the present study, the fumigation-extraction method was used since 

this method is reliable for soils of various land-uses with pH values above 3.7 (Wu et 

al. 1994) and waterlogged soil (Inubushi et al. 1991). 
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Sikkim Himalaya, located in the mountainous region of Eastern Himalaya 

experienced frequent land-use change. Natural forests of this region are often 

transformed into croplands and agroforestry systems to meet the livelihood 

requirement of the locals. This transformation results to change in various soil 

conditions leading to soil degradation and fertility loss.  Hence, understanding the 

change in soil fertility and quality becomes crucial for proper management of soil and 

identification of suitable farming systems in this region.  

Therefore, this chapter (V) discusses the variance in microbial biomass C across land-

use types and season, contribution of microbial C to soil organic carbon, a relation of 

microbial biomass C with abiotic variables and comparison of the microbial C values 

with the values of other different land-use types.  
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MATERIAL AND METHODS 

To estimate the soil microbial biomass carbon, random soil samples were collected 

from five plots of each of the land-use types in different seasons for two consecutive 

years. A total of 180 random soil samples from 90 soil pits from two different soil 

depths (0-15 and 15-30cm) were collected with a stainless steel soil corer (5 cm 

diameter) and mixed to form a composite sample for each depth. The distance 

between two random sampling points was at least 50m apart. Soils were transported to 

the laboratory in sealed polythene bags and roots, stones and organic residues were 

removed from the samples and each soil sample and stored at 4
0
C to determine soil 

microbial biomass (MBC). 

Microbial biomass carbon was estimated by the chloroform fumigation and extraction 

method (Vance et al. 1987). Each soil subsample for the determination of MBC was 

separated into two sections. The first section of the samples from each soil depth was 

fumigated with 30ml of alcohol-free chloroform by using a vacuum pump and 

incubated for 5 days and extracted with 0.5M potassium sulphate. The other halves of 

the soil samples were extracted with 0.5M potassium sulphate and used for the 

estimation of microbial biomass carbon. The microbial carbon content in the filtered 

extract of both fumigated and the unfumigated sample was analyzed for organic 

carbon using the titration method (Anderson and Ingram 1993). Soil microbial 

biomass carbon was calculated using the following expression: 

MBC = EC x 2.64 

                         EC is C fumigated – C unfumigated soil samples 
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Plate 11:  Estimation of soil microbial biomass carbon. 

 

Data and statistical analyses 

A three-way ANOVA was used to study the effects of land-use, season and soil depth on soil 

microbial biomass carbon and soil properties. Pearson’s multiple correlation analysis was 

performed to determine the correlation between soil parameters and microbial biomass in 

different land-use systems. Data of soil parameters from all the land-use types were also 

subjected to Principal component analysis (PCA) by using R commander. All data are an 

average of five replicates ±SE of the composite soil samples. 

 



SOIL MICROBIAL BIOMASS CARBON CHAPTER V 

 

106 SIKKIM UNIVERSITY 

 

RESULT  

Soil microbial biomass carbon (MBC) 

Soil microbial biomass carbon was highest in the subtropical forest (234.70±6.34 µg g
-1

 to 

746.25±17.22 µg g
-1

), followed by cardamom agroforestry (222.67±5.99 µg g
-1

 to 

604.75±13.45 µg g
-1

) and wet paddy cropland (186.54±7.88 µg g
-1

 to 458.23±17.33 µg g
-1

) 

across soil depth and years (Table-23). However, the value of MBC increases slightly in the 

second year as compared to the first year (Table-23). MBC decreased with an increase in soil 

depth in all the three land-use systems showing the highest concentration in the rainy season 

(962.55±24.91 µg g
-1

) and lowest in winter (625.97±16.83 µg g
-1

) (Fig 23 and 24).  Three-

way Analysis of variance (ANOVA) of soil microbial biomass carbon showed a significant 

difference between land-use types season and soil depth in all the study sites (p<0.001). Also, 

the interaction between land-use type and season significantly affected the MBC in all the 

study sites (Table-24).  
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Table 23. Seasonal and annual microbial biomass carbon (MBC) across soil depths (0-30cm) in the study site (Means ±SE). 

 

Land-use 

type 

Soil 

Depth 

2016-17 

MBC (µg g
-1

) 

2017-18 

MBC (µg g
-1

) 

 (cm) Summer Rainy Winter Mean Summer Rainy Winter Mean 

Subtropical 

Forest 

0-15 539.30±12.32 758.29±17.22 442.23±13.34 579.94±14.29 546.10±17.23 764.30±21.42 436.20±12.34 582.20±16.99 

15-30 318.96±09.21 403.22±08.78 234.70±06.34 318.96±08.11 324.98±07.87 421.27±06.67 270.81±05.32 339.02±06.62 

Total 858.26±21.53 1161.51±26.00 676.93±19.68 898.90±22.40 871.08±25.10 1185.57±28.09 707.01±17.66 921.22±23.61 

Cardamom 

Agroforestry 

0-15 461.08±11.65 604.75±13.45 417.90±09.89 494.57±11.66 471.20±10.43 592.41±08.21 427.70±07.87 497.10±08.83 

15-30 252.76±08.11 394.94±08.32 222.67±05.99 290.12±07.47 257.59±07.54 388.71±08.32 222.70±07.66 289.66±07.89 

Total 713.84±19.76 999.69±21.77 640.57±15.88 784.69±19.13 728.79±17.97 981.12±16.53 650.40±15.53 786.76±16.72 

Paddy 

Cropland 

0-15 399.80±13.32 458.23±17.33 356.91±8.76 404.98±13.13 400.10±12.32 435.55±15.34 344.87±6.78 393.51±11.48 

15-30 252.76±10.23 258.78±11.56 192.58±8.78 234.71±10.19 228.64±9.79 294.88±12.83 186.54±7.88 236.69±10.16 

Total 652.56±23.55 717.01±28.89 549.49±17.54 639.69±23.32 628.74±22.11 730.43±28.17 531.41±14.66 630.20±21.64 
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Fig 23. Seasonal Microbial Biomass Carbon (MBC) across soil depth 0-30 cm in the  three different land-use types (mean±SE).
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Table 24. Three-way ANOVA of soil microbial biomass carbon (MBC) in the three different land-uses showing variance due to 

season, soil depth and land-use. 

Source Type III Sum of 

Squares 

df Mean Square F P-value 

SEASON 198343.952 2 99171.976 19.463 .000*** 

LAND-USE 56975.493 2 28487.746 5.591 .008** 

DEPTH 673568.660 1 673568.660 132.192 .000*** 

SEASON * LAND-USE 94126.429 4 23531.607 4.618 .004** 

SEASON * DEPTH 25557.996 2 12778.998 2.508 .096
NS

 

LAND-USE * DEPTH 13099.670 2 6549.835 1.285 .289
NS

 

SEASON * LAND-USE * 

DEPTH 

34283.282 4 8570.821 1.682 .175
NS

 

 

*** Significant at p < 0.001; ** significant at p< 0.01; 
NS 

Not significant. 
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Fig 24. Variance of microbial biomass carbon (µg g
-1

) due to land-use type, season and soil 

depth. (mean±SE). 
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Correlation matrix and principal component analysis  

Pearson correlation analysis exhibited a strong positive significant relationship between 

microbial biomass carbon and edaphic and climatic variables (p<0.01) except for bulk 

density and soil pH (Table-25) where it is negatively significant (p<0.05). Principal 

component analysis (PCA) of microbial biomass C with different soil parameters in the 

land-use types explained 49.0% variability in the first component and 26.5% in the 

second component (Fig 25).   

 

Microbial biomass quotient (MBC/SOC) % 

Microbial biomass quotient ranged from 1.88-2.16 % across the soil depth and land-use 

types (Table-26). The highest value of microbial biomass quotient was in the cardamom 

agroforestry system followed by the wet paddy cropland while the least was in the 

subtropical forest. In the present study, the trend of  microbial biomass quotient was 

winter > summer > rainy and these values decreased across soil depths, and in the second 

year of the sampling period (Table-26). 
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 Table 25. Pearson correlation coefficient between soil microbial biomass and soil and climatic variables in the study sites. 

**Significant at p<0.01; *Significant at p<0.05; 
NS

 Non-Significant 

MBC: Microbial Biomass Carbon, M: Soil Moisture, BD: Bulk Density, SOC: Soil Organic Carbon Stock, N: Total Nitrogen, P: Available 

Phosphorous, ST: Soil Temperature, RH: Relative Humidity, R: Rainfall. 

 MBC M BD pH SOC N P ST RH R 

MBC 1          

M 0.495* 1         

BD -0.483* -0.693** 1        

pH -0.566* -0.508* 0.137
 NS

 1       

SOC 0.875** 0.157
NS

 -0.530*
 
 -0.508* 1      

N 0.851** 0.193
 NS

 0.422
 NS

 -0.625** 0.962** 1     

P 0.843** 0.244
 NS

 0.404
 NS

 -0.712** 0.892** 0.924** 1    

ST 0.754** 0.825** -0.483* 0.736** 0.479* 0.448 0.492* 1   

RH 0.804** 0.774** -0.369
 NS

 0.756** 0.499* 0.472* 0.533* 0.950** 1  

R 0.698** 0.451
 NS

 -0.058
 NS

 -0.007
NS

 0.430
 NS

 0.358
 NS

 0.474* 0.660** 0.840** 1 
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Table 26. Variation of soil microbial quotient (MBC/SOC)% across soil depth and seasons in the study sites.  

Land-use type Soil depth 1
st
 Year 2

nd
 Year 

(cm)  Summer  Rainy  Winter  Mean  Summer  Rainy  Winter  Mean  

Subtropical 

Forest  

0-15  0.76±0.11 0.60±0.16 0.90±0.07 0.75±0.11 0.80±0.12 0.58±0.12 0.95±0.09 0.78±0.11 

15-30  

Total 

1.07±0.07 

1.83±0.18  

1.01±0.12 

1.61±0.28  

1.49±0.08 

2.38±0.15  

1.19±0.09 

1.94±0.20  

1.10±0.05 

1.90±0.17  

0.94±0.10 

1.52±0.22  

1.26±0.05 

2.21±0.14  

1.10±0.07 

1.88±0.18 

Cardamom 

Agroforestry  

0-15 0.89±0.09 0.73±0.07 0.95±0.06 0.86±0.07 0.87±0.08 0.71±0.15 0.91±0.05 0.83±0.09 

15-30  

Total  

1.42 ±0.03 

2.31±0.12  

1.00±0.04 

1.73±0.11  

1.48±0.06 

2.44±0.12  

1.30±0.04 

2.16±0.11  

1.41±0.06 

2.28±0.14  

1.04±0.06 

1.75±0.21  

1.50±0.06 

2.41±0.11  

1.31±0.06 

2.15±0.15  

Paddy  

Cropland  

0-15  0.76±0.06 0.77±0.11 0.94±0.07 0.84±0.08 0.79±0.08 0.79±0.09 0.88±0.07 0.82±0.08 

15-30  

Total  

1.16±0.05 

1.92±0.11  

1.21±0.06 

1.97±0.17  

1.44±0.03 

2.37±0.10  

1.27±0.05 

2.10±0.13  

1.21±0.04 

2.01±0.12  

1.07±0.05 

1.86±0.14  

1.44±0.04 

2.32±0.11  

1.24±0.04 

2.06±0.12  
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MBC: Microbial biomass carbon, C: Carbon stock, N: Nitrogen, P: Phosphorous, ST: Soil temperature, 

M: Soil Moisture, BD: Bulk Density, St: Silt, Cy: Clay, Sd: Sand 

 

Fig 25. Principal component analysis (PCA) of different soil parameters in the three land-use 

types. 
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DISCUSSION 

Annual mean soil microbial biomass carbon (0-30 cm) of the present study was found to 

be highest in the subtropical forest (910.06 µg g
-1

) followed by cardamom agroforestry 

(785.57 µg g
-1

) and wet paddy cropland (634.94 µg g
-1

). The highest MBC in the 

subtropical forest (STF) coincides with diverse tree species leading to an increase in 

organic matter, fine roots and litter diversity that enhances microbial activities in the soil 

thereby promoting better soil health. Also, a higher soil organic carbon content in the 

forest soils results to a greater quantity of microbial biomass carbon. Previous other 

studies also reported higher MBC in forest soils than that of other ecosystems which 

agree with the present findings (Arunachalam et al. 1999; Wu et al. (2016a). A significant 

positive correlation between soil microbial biomass carbon and soil organic matter 

(Table-25) in the present study shows that soil MBC is highly influenced by soil organic 

matter content. Consistent relation of MBC and soil organic matter were reported by 

many researchers from different ecosystems of the world (Chen et al. 2006; Wang and 

Wang 2011; Chen et al. 2017; Bargali et al. 2018; Padalia et al. 2018; Lepcha and Devi 

2020). Absence of tree species resulted in less soil organic matter input in soil and 

intensive plowing and tillage of the soil disturbed the soil micro-fauna in wet paddy 

cropland which therefore recorded the least soil microbial biomass. Furthermore, the 

excessively high soil moisture content in the wet paddy cropland (WPC) due to 

waterlogged conditions limits the microbial activity and biomass in the soil ( Lepcha and 

Devi 2020). In the tree-based systems, STF has higher soil microbial biomass than CAF 

due to higher clay content in the soil of the forest that increases the moisture retention 

capacity of soil and microbial biomass. Jenkinson and Powlson (1976) reported that soil 
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with more clay content has high microbial biomass carbon. A slightly higher microbial 

biomass carbon in the cardamom agroforestry than that in wet paddy cropland is because 

of the presence of a litter layer in the former retaining soil moisture that promotes 

microbial activity. Afforested soils with higher litter inputs reported a higher MBC (Wu 

et al. 2016a) which is consistent with the result of the present study.  

Soil microbial biomass carbon exhibited strong seasonal variations in all the land-use 

systems showing a peak value during the wet rainy and lowest in the dry winter season 

(Fig 24). Highest MBC during the rainy season is due to the warm and wet climate that 

accelerates litter decomposition due to the peak microbial activities and decomposition 

during this season which enhances the immobilization of nutrients by the microbes 

(Upadhyay et al. 1989; Usman et al. 2000; Lepcha and Devi 2020). In addition, high 

relative humidity during the wet period accelerates fungal growth leading to an increase 

in microbial biomass carbon (Acea and Carballas 1990). Least MBC during the dry and 

cold winter seasons correlates with low temperatures and less soil moisture, leading to the 

death of microorganisms that release organic carbon (Lepcha and Devi 2020), and freeze-

thaw action can facilitate the decomposition of organic detritus and mineralization of 

carbon (Groffman et al. 2001b). Similar seasonal trends of MBC were observed in 

different ecosystems by several researchers (Devi and Yadava 2006; Iqbal et al. 2010; 

Otieno et al. 2010; Patel et al. 2010; Tan et al. 2013; Huang et al. 2016). However, 

present result is contrasting with finding reported by Singh et al. (1989) and Arunachalam 

and Arunachalam (2000) which show highest microbial biomass C in summer and winter 

respectively indicating that the microbial biomass C is strongly influenced by the species 

composition, location, elevation and pattern of rainfall of the site.  
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The depth of soil is another significant factor influencing MBC and in all land-use types, 

the upper soil layer has more MBC than the subsoil (Fig 24). The decrease of MBC with 

soil depth may be because of lower carbon and nitrogen content in the inner soil layer and 

more organic matter in the top humus soil that promotes microbial activity (Fall et al. 

2012; Lepcha and Devi 2020). Previous studies on MBC across soil depth in various 

land-use types also reported similar such findings (Blume et al. 2002; Wichern et al. 

2003; Fall et al. 2012).  

The present values of MBC in the three study sites (186.54 µg g
-1 

to 764.30 µg g
-1

) falls 

within the reported range of tropical soils of Costa Rica (Henrot and Robertson 1994), 

Arunachal Pradesh (Barbhuiya et al. 2004), subtropical soils of Manipur (Devi and 

Yadava 2006), different land-use systems of Turkey (Kara and Bolat 2008) and subalpine 

temperate forest of Taiwan (Ravindran and Yang 2015).  However, these values are 

lower than that of the subtropical forest of Meghalaya (Arunachalam and Arunachalam 

2000) but slightly higher than that of different agroforestry systems (Kaur et al. 2000), 

subtropical grassland and agroecosystems of Manipur (Singh and Yadava 2006), and 

different land-use system of Uttarakhand (Bargali et al. 2019). Comparison of soil 

microbial biomass carbon with previous work in different land-use systems is presented 

in (Table-27).  

 

 

 



SOIL MICROBIAL BIOMASS CARBON CHAPTER V 

 

118 SIKKIM UNIVERSITY 

 

Table -27. Comparison of soil microbial biomass carbon values in different land-use systems. 

Land-use type Place Soil Depth 

(cm) 

MBC 

(µg g
-1

) 

References 

Humid tropical 

forest 

Costa Rica 0-15 106.00–2073.00 Henrot and Robertson 

1994 

Subtropical humid 

forest 

Meghalaya, 

India 

0-20 203.62- 1087.70 Maithani et al.1996 

Different 

agroforestry systems 

Haryana, 

India 

0-30 76.10- 153.40 Kaur et al. 2000 

Major land-use 

systems 

Sikkim, India 0-15 219.00-864.00 Sharma et al. 2004 

Tropical wet forest Arunachal 

Pradesh, India 

0-30 

 

121.00-3232.00 Barbhuiya et al. 2004 

Tropical dry forests Uttar Pradesh, 

India 

0-15 289.16-749.83 Singh et al. 2010 

Traditional 

agroforestry 

Arunachal 

Pradesh, India 

0-30 

 

47.50-1167.00 Tangjang et al. 2010 

Tropical rice 

agroecosystems. 

Odisha, India 0-30 59.00-514.00 Haripal and Sahoo 

2014 

Different forest type Uttarkhand, 

India 

0-15 416.00-763.00 Bargali et al. 2018 

Different land-use 

systems 

Uttarakhand, 

India 

0-15 

 

16.00–397.00 Bargali et al. 2019 

Subtropical Forest Sikkim, India 0-30 234.70-764.30 Present study 

Cardamom 

Agroforestry 

Sikkim, India 0-30 222.69-604.75 Present study 

Paddy Cropland Sikkim, India 0-30 186.54-458.23 Present study 
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Principal Component Analysis (PCA) of different soil parameters and microbial biomass 

carbon in the three different land-uses of the present study (Fig 25) indicates 75.50 % of 

the overall variance. The PCA component F1 explained 49.00%, while the second 

component F2 explained 26.50% of the variation. PC1 revealed that the microbial activity 

in subtropical forest is positively influenced by macro-elements, soil moisture, and 

temperature while soil pH exhibited an inverse relation with it. PC2 indicates that soil 

properties such as texture (silt, clay, and sand) and bulk density show a strong influence 

on land-use. In wet paddy cropland, the most important factors are silt and clay content 

however sand and bulk density of soil play an important role in the cardamom 

agroforestry system. 

In the present study, the cardamom agroforestry system reported a higher microbial 

quotient which indicates more carbon immobilization by the microbes from the organic 

substrates. However, the least microbial quotient in the forest may be a result of carbon 

mineralization from the microbes to support vegetation. The microbial quotients were 

more in agricultural-based systems (cropland and agroforestry) than that of the forest. 

Further, the highest microbial quotient ratio in the agroforestry system among the 

agriculture-based systems probably suggests that the carbon immobilization capabilities 

of microbes increased in the agri-silviculture system than in monoculture. A previous 

study on the microbial quotient in different land-use also reported a higher value in 

agricultural soils than that of forest soils (Kara and Baykara 2014). The microbial 

quotient showed a strong significant variance with the season and soil depth. Winter 

season reported more immobilization of carbon and rainy season the least in all land-use 

type which may be due to the availability of more substrate in winter season. An increase 
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in the microbial quotient with soil depth denotes the presence of more active carbon pools 

in the subsurface soil. Some studies reported that subsurface soil layers act as a store of 

microbial inoculation (Yi et al. 2006; Wei et al. 2009). The microbial biomass quotient 

slightly decreases in the second year as compared to the first year indicating a decrease in 

microbial carbon immobilization and organic carbon in the soil which may be because of 

a change in rainfall pattern in the second year. The soil microbial quotient (MBC/SOC) 

of the present study 1.88-2.16% falls within the range of tropical forests, 1.50-5.30F% 

(Luizao et al. 1992) and temperate forest soils, 1.80-2.90% (Vance et al. 1987) and those 

of agricultural soils (2-6%) reported by Brookes et al. (1985).  

CONCLUSION  

The present study concluded that microbial activity is more in tree-based systems i.e. 

forest and agroforestry systems than single-crop agricultural systems. Microbial biomass 

carbon shows strong seasonality and is influenced by seasonal changes in soil parameters 

as well. However, vegetation type, quantity and quality of litter input on the forest floor 

and soil depth also exhibit significant influence on microbial biomass and activity too. 

Human disturbance such as intensive cultivation, plowing and tillage of the soil decreases 

microbial activity and soil fertility. Also, microbial C immobilization is more in the 

agricultural-based systems than that of the forest, and the agri-silvicultural farming 

method improves soil fertility and quality by increasing microbial soil C immobilization. 

Therefore, the adoption of the tree-based agricultural system is recommended for the 

mountainous regions especially to prevent soil erosion and maintain soil quality and 

fertility for the sustainability of the region. 
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SOIL CO2 EMISSION 

INTRODUCTION 

Anthropogenic activities such as land-use change, fire, burning of fossil fuels and 

industrialization have led to the rapid rise in atmospheric CO2 gas resulting to the 

global warming and climate change (Pachauri et al. 2014). There has been a rapid 

increase in the rate of greenhouse gases emissions such as carbon dioxide (CO2), 

nitrous oxide (N2O) and methane (CH4) which have led to increase in the earth’s 

temperature in the last few decades (Rahman 2013). Carbon dioxide gas one of the 

important greenhouse gases contributes about 60% to global warming and 

significantly affects the regional and global climate (Rastogi et al. 2002). The rate of 

atmospheric CO2 concentration has increased rapidly from 280 ppmv to 391 ppmv 

from early industrial revolution time to the present day (WMO 2012). CO2 emissions 

from fuel combustion in India have begun to increase since the industrial revolution 

and have reached their peak in the last two decades. It grew from 0.66 billion tonnes 

in 1970 to 1.84 billion tonnes in 2010, which is 2.8 times more than in the past year 

(IEA 2011). There are two major natural carbon sinks in the study of climate change 

and carbon cycling interaction, namely the ocean and terrestrial biosphere, which 

have consumed almost half of all human emissions of carbon dioxide (Tan et al. 

2013). Vegetation and soils of the terrestrial ecosystems are the main storage sinks of 

atmospheric CO2 (Franzluebbers and Doraiswamy 2007). 

Soil acts as an important source of atmospheric carbon dioxide (Rastogi et al. 2002) 

and sinks as well by storing about  80% of terrestrial carbon worldwide (Nielsen et al. 

2011). Soil also plays an important role in carbon and nutrient cycling and with the 

increased in global atmospheric greenhouse gases and climate change, it can also be a 
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net source or sink of CO2 in the nearby future (Thokchom and Yadava 2014). 

According to Lal (2008), soil contains 2700 Gt of carbon, which is more than the total 

amount of atmospheric carbon (780Gt) and biomass carbon (575Gt). Besides, its 

contribution to global warming, soil CO2 emission influences soil organic matter loss, 

fertility and productivity (Rastogi et al. 2002). 

Soil respiration is the key ecosystem process releasing carbon from soil as carbon 

dioxide by soil microorganisms, soil fauna and plant roots and through the 

decomposition of SOC matter (Rastogi et al. 2002; Millard et al. 2010). Soil 

microorganism contributes 99% while plant roots contribute 50% of the total soil 

respiration and the contribution of soil fauna is comparatively very less (Hanson et al. 

2000; Rastogi et al. 2002). In the terrestrial C cycle, soil respiration is regarded as the 

main mechanism for the release of carbon with an annual release of 98 Pg C per year 

into the atmosphere (Bilandžija et al. 2016; Zhao et al. 2017). Globally, soil CO2 

emission is the second highest carbon flux between the atmosphere and the terrestrial 

biosphere (Schlesinger and Andrews 2000).  The emission of CO2 from the soil is the 

main factor used for evaluation of biological activity in the soil of terrestrial 

ecosystem (Santruckova 1992) and the addition of organic matter influences the rate 

of decomposition and soil respiration. 

CO2 emission from the soil is very sensitive to biotic and abiotic variables of soil 

(Bain et al. 2005) and mainly depends upon soil temperature and moisture content 

(Carlyle and Than 1988; Raich and Tufekcioglu 2000; Qi and Xu 2001; Devi and 

Yadava 2008; Li et al. 2008; Yohannes et al. 2011; Zhou et al. 2013). Previous studies 

have shown that the rate of soil CO2 emission is strongly influenced by the amount of 

organic materials present on the soil, interaction among soil physicochemical & 

biological processes and environmental conditions like temperature, humidity, 
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rainfall, etc. (Agehara and Warncke 2005; Lee et al. 2006; Evans and Burke 2013). 

Seasons and vegetation types also influence the soil respiration rate in ecosystems 

(Raich and Tufekcioglu 2000). Further, different management practices, including 

land-use transformation (Zhao et al. 2006; Iqbal et al. 2010) influenced CO2 emission 

from the soil and deforestation contributes 12.5% of global CO2 emissions (IPCC 

2013). 

CO2 emission from the soil can be estimated by various techniques in different 

ecosystems. Some of these techniques are open flow infrared gas analyzer technique 

where ambient air flows through a chamber and the CO2 flux is determined from the 

difference in concentration between inlet and outlet air (Nakadai et al. 1993). The 

closed chamber technique where CO2 in a closed chamber is regularly sampled and 

the efflux is determined through the increase rate in the chamber CO2 concentration 

(Bekku et al. 1995). The dynamic closed chamber technique in which air circulates 

and returns to the chamber from the gas analyzer (Rochette et al. 1992) and alkali 

absorption methods in which carbon dioxide from the soil is absorbed in a closed 

chamber (Buyanovsky et al. 1986). In the present study alkali absorption method was 

used in the field for its convenience and capability in different ecosystems by several 

studies (Kucera and Kirkham 1971; Buyanovsky et al. 1986; Singh et al. 1988; 

Anderson and Ingram 1993; Devi and Yadava 2008).  

It has been observed that a high quantity of CO2 goes through the soil consistently, 

which is over ten times more of CO2 released from fossil-fuel combustion (Raich and 

Potter 1995). Hence, small changes in CO2 emission concentration may strongly 

influence the global carbon dynamics (Wei et al. 2014). Soil CO2 emission therefore 

can be used as an important parameter for the study of biological activity in the soil, 
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carbon cycling, and the energy flow in an ecosystem (Singh and Gupta 1977). 

Different land-use types have variances in climate, vegetation, geographical 

characteristics, slope, management practices, etc which therefore led to a different rate 

of emission. Therefore, measurement of soil respiration in different land-use types is 

important to understand the characteristics of soil respiration in the entire terrestrial 

ecosystem as well as to recognize the diverse biotic and abiotic factors that regulate 

soil CO2 outflows. 

Therefore, the present chapter (VI) on soil CO2 emission from different land-use 

systems of Sikkim Himalaya provides information on: 

i) Monthly and seasonal changes in the rate of soil CO2 emission from three 

different land-use systems 

ii) The relationship between soil CO2 emission with biotic and abiotic variables 

of the three different land-use types in the years 2016 and 2017. This 

information will help to understand the different CO2 emission capacity of 

different ecosystems in this region and help in identification of the system 

with minimum emission. 

 

 

 

 

 

 

 



SOIL CO2 EMISSION CHAPTER VI 

 

125 SIKKIM UNIVERSITY 

 

METHODS 

Monthly soil CO2 emission of a subtropical forest, cardamom agroforestry and paddy 

cropland were measured by using the alkali absorption method during the 2016 - 2017 

(Anderson and Ingram 1993). Thirty-six (36) open-ended cylinders with a diameter of 

13cm and a height of 25cm were inserted up to 15cm in the soil of each of the study 

sites as shown in (Photo-12). Three cylinders out of the thirty-six (one in each site) 

were used as a blank sample, and the entire vegetation and soil surface within these 

cylinders were sealed.  All the herbaceous plants and rocks inside the other cylinders 

were removed manually. Fifty (50 ml) of  0.25N NaOH solution was kept within each 

cylinder in small vials including the blank cylinder and sealed with anchor grip to 

make the whole setup airtight and left for 24 hours. After 24 hours, NaOH was titrated 

with a 0.25N HCL solution using phenolphthalein indicator until the pink colour 

disappeared. CO2 absorbed from the soil was calculated using the formula: 

CO2 mg = VxNx22 (Anderson and Ingram 1993) 

Where V is the volume of HCL, N is the normality of HCL 
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Photo 12: Determination of soil CO2 emission by alkali absorption method. 
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RESULT 

 

Subtropical forest 

The monthly rate of soil CO2 emission in the subtropical forest varied from 114.58-

259.13 mgCO2m
-2

hr
-1

in different months during 2016-17(Fig 26). Minimum 

soil respiration rate was during the month of February in both the years and thereafter 

it consistently increased upto August in 1
st
 year and July in 2

nd
 year and decreases 

again.  Seasonally, the rate of CO2 emission was highest in the rainy season followed 

by summer and winter season (Table-28), and contributed 43.97%, 29.51%, and 

26.52% respectively to the total soil CO2 emission of this system. The analysis of 

variance in subtropical forest indicated a significant variation in different sampling 

months of summer (P<0.01), rainy (P<0.001), winter (P<0.01) and annually 

(P<0.001) (Table-29). 

 

Fig 26. Monthly soil CO2 emission in the subtropical forest (Mean ± SE) 
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Table 28: Seasonal variation in the rate of soil respiration (mg CO2 m
-2

h
-1

) in different 

land-use types. 

 

2016 2017 

Seasons Subtropical 

Forest 

 

Cardamom 

Agroforestry 

 

Paddy 

Cropland 

 

Subtropical 

Forest 

 

Cardamom 

Agroforestry 

 

Paddy 

Cropland 

 

Summer  135.46±6.07 134.82±6.13 111.56±5.83 141.49±5.93 133.18±6.20 111.72±5.80 

Rainy 199.47±7.72 170.99±6.94 151.72±5.56 213.30±6.44 172.71±6.36 151.64±5.86 

Winter 125.92±6.08 122.88±5.88 106.72±4.50 122.77±5.03 117.16±5.23 104.71±4.55 

 

Table 29: ANOVA (One-way) of CO2 emission in different months of seasons in 

subtropical forest. 

Seasons  Source of Variation  SS  df  MS  F  P-value  F crit  

Summer  

Between Months  1297.569  2  648.78  

19.1734 0.002477**  5.14325  

Within Months  203.025  6  33.837  

Rainy  

Between Months  12941.85  4  3235.463  

171.620  3.62E-09***  3.47805 

Within Months  188.523  10  18.852  

Winter  

Between Months  877.102  3  292.367  

3.3501 0.00617** 4.06618  

Within Months  698.159  8  87.269  

Annual  

Between Months  57402.06  11  5218.369  

114.930  5.52E-18***  2.21630  

Within Months  1089.709  24  45.4045  

**Significant at P-value< 0.01, ***Significant at P-value< 0.001 
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Cardamom Agroforestry 

In the cardamom agroforestry, the soil CO2 emission rate ranged from 118.54 

mgCO2m
-2

hr
-1  

to 219.29 mg CO2m
-2

hr
-1

in different months of the 

sampling period (Fig 27). The highest soil CO2 emission rate was recorded in 

August in both the years and the lowest was in January in the first year and December 

in the second year respectively. The rate of CO2 emission trend was observed as: 

rainy>summer>winter season (Table-28). Seasonally, summer rainy and winter 

contributed (31.46%), (40.36%) and (28.18%) respectively to the total soil CO2 

emission in the agroforestry ecosystem. One-way  analysis of variance (ANOVA) of 

the different values of soil CO2 emission rate in cardamom agroforestry indicated a 

significant variation in different sampling months of summer (P<0.01), rainy 

(P<0.001), winter (P<0.01) and annually (P<0.001) (Table-30). 

 

Fig 27. Monthly soil CO2 emission in the cardamom agroforestry (Mean ± SE) 

 

0

50

100

150

200

250

Jan Feb March April May June July Aug Sept Oct Nov Dec

C
O

2
 E

m
is

si
o
n

 (
m

g
 C

O
2
 m

-2
h

-1
) 

Months 

Cardamom Agroforestry 

2016 2017



SOIL CO2 EMISSION CHAPTER VI 

 

130 SIKKIM UNIVERSITY 

 

Table 30: ANOVA (One-way) of soil CO2 emission in different sampling months of the 

seasons in cardamom agroforestry. 

Seasons  Source of Variation  SS  df  MS  F  P-value  F crit  

Summer  

Between Months  1048.966  2  524.483  

16.6923  0.003536**  5.14325  

Within Months  188.523  6  31.420  

Rainy  

Between Months  6498.065  4  1624.516  

24.7365  3.61E-05***  3.4780  

Within Months  656.726  10  65.6726  

Winter  

Between Months  1631.198  3  543.7325  

14.9976  0.001198**  4.06618  

Within Months  290.0367  8  36.25459  

Annual  

Between Months  25457.89  11  2314.353  

48.9255  1.04E-13***  2.21630  

Within Months  1135.287  24  47.30361  

**Significant at P-value< 0.01, ***Significant at P-value< 0.001  

 

Paddy Cropland 

Monthly soil CO2 emission rate in paddy cropland varied from 89.31 mgCO2m
-

2
hr

-1  
to178.04 mgCO2m

-2
hr

-1  
in different months throughout the sampling 

period (Fig 28) with maximum emission in the August and September in the first 

and second year respectively.  The minimum rate of CO2 emission was observed in 

the month of January in both the years. Rainy season exhibited the highest rate of CO2 

emission followed by summer season and winter season (Table-28) and contributing 

41.10%, 30.28%, and 28.65% respectively to the total soil CO2 emission in the paddy 

cropland. The analysis of variance in cropland indicates significant seasonal, (summer 

rainy and winter (P<0.01), and annual variations (P<0.001) (Table-31). 
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Fig 28.  Monthly soil CO2 emission in the wet paddy cropland (Mean ± SE) 

 

Table 31: One-way ANOVA for soil CO2 emission in different sampling months of 

seasons in wet paddy cropland. 

Seasons  
Source of 

Variation  
SS  df  MS  F  P-value  F crit  

Summer  

Between Months  520.6535  2  260.3268  

15.19034  0.004486**  5.14325 

Within Months  102.8259  6  17.1376  

Rainy  

Between Months  2625.661  4  656.4152  

4.241633  0.029073*  3.47805  

Within Months  1547.553  10  154.7553  

Winter  

Between Months  4315.332  3  1438.444  

19.9092  0.000456***  4.06618  

Within Months  578.0017  8  72.25022  

Annual  

Between Months  23122.400  11  2102.036  

17.34441  7.93E-09***  2.21630  

Within Months  2908.654  24  121.193 

**Significant at P-value< 0.01, ***Significant at P-value< 0.001 
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Table-32:   ANOVA (Two-way) for Soil CO2 emission exhibiting the influence of land-

use types and seasons. 

 

Source F P-value F crit 

Land-use 27.36497 3.21E-07*** 3.354131 

Seasons 7.349842 0.002829** 3.354131 

Land-use x Seasons 0.874378 0.492125
NS

 2.727765 

**Significant at P-value< 0.05, ***Significant at P-value< 0.001 

 

Relationship between soil CO2 emission and abiotic variables 

CO2 emission in soil was significantly affected by land-use types and season in all the 

study sites (p<0.05) (Table-32). The rate of soil CO2 emission was positively 

significant with all the abiotic variables (soil and air temperature, soil moisture, soil 

organic carbon, total nitrogen, available phosphorous, soil microbial carbon, relative 

humidity and annual rainfall) except for soil PH and bulk density. Linear regression 

equations between soil carbon dioxide emission with biotic and abiotic variables are 

presented below: 

Y=0.143X1+7.99                  (R
2
=0.36)    (1) 

Y=0.004X2+5.91                 (R
2
=0.24)    (2) 

            Y=-1E-05X3+0.67               (R
2
=3E-05)               (3) 

Y=0.010X4+2.20                 (R
2
=0.69)    (4) 

Y=0.000X5+0.14                 (R
2
=0.60)    (5) 



SOIL CO2 EMISSION CHAPTER VI 

 

133 SIKKIM UNIVERSITY 

 

Y=0.000X6-0.01                  (R
2
=0.59)          (6) 

Y=0.099X7-1.60                  (R
2
=0.63)          (7) 

            Y=0.099X8-1.60                 (R
2
=0.61)           (8) 

            Y=0.022X9+26.28              (R
2
=0.57)                     (9) 

            Y=4.976X10+463.40           (R
2
=0.58)                    (10) 

            Y=5.337X11+44.34             (R
2
=0.68)                    (11) 

Where Y=Soil CO2 emission, X1=Soil moisture, X2=Soil pH, X3=Bulk density, X4= 

Soil organic carbon, X5= Total nitrogen, X6= Available phosphorous, X7= Soil 

temperature, X8= Air temperature, X9= Relative humidity, X10= Rainfall, X11= Soil 

microbial carbon. 
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Fig 29. Relationship between soil CO2 emission and soil properties and other climatic factors of three land-use systems 
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DISCUSSION 

The rate of CO2 emission significantly varies in the different land-use types and is 

comparatively higher in the subtropical forest (STF) (114.58-259.13 mgCO2m
-2

hr
-

1
) than that of cardamom agroforestry (AGF) (118.54-219.29 mgCO2m

-2
hr

-1
), and 

wet paddy cropland (WPC) (89.31-178.04 mgCO2m
-2

hr
-1

). The higher rate of CO2 

emission in the subtropical forest site is due to high litter input in soil from the 

different plant species favoring the growth of microbes, which ultimately increased 

the release of CO2 from the soil. Furthermore, forest has high amount of vegetation 

than the other ecosystems and it has been reported that land-use with vegetation cover 

emitted more CO2 than bare land with higher soil organic carbon and total nitrogen 

content (Shi et al. 2014). Also, presence of belowground roots contributed to 

heterotrophic soil respiration by the microorganism (Kuzyakov and Chen 2001). 

Moreover, vegetation cover can change soil temperature and humidity conditions, and 

thus can influence on the rate of soil respiration (Raich and Tufekcioglu 2000). The 

lowest soil respiration rate in the paddy cropland of the present study coincides with 

the waterlogged soil condition during the growing period of rice in this system which 

inhibits the growth of microorganisms due to oxygen depletion thereby lowering the 

microbial CO2 emission from soil (Liu et al. 2013b; MacCarthy et al. 2018).  

 Low rate of CO2 emission in AGF than that of STF could be due to the removal of 

herbaceous plants and less tree density, resulting in low organic matter and microbial 

activity. Many studies reported enhancement of CO2 release from the soil due to 

higher substrate and microbial activity (Wang et al. 2003; Zhou et al. 2013; Jiang et 

al. 2017), vegetation types (Raich and Tufekcioglu 2000; Law et al. 2001; Grand et al. 

2016), litterfall (Bond-Lamberty et al. 2004; Yan et al. 2006), and root biomass (Han 

et al. 2017; Zhu et al. 2019). The present values of CO2 emission are comparable to 
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the values reported by several studies in different land-use systems of world (Tewary 

et al. 1982; Devi and Yadava 2008; Devi and Singh 2016; Jeong et al. 2018; 

MacCarthy et al. 2018) but less than that reported by Laishram et al. (2002) in mixed 

oak forest of Manipur and tropical rainforest soils (Schwedenmann et al. 2003) 

(Table-33).  

Table 33. Comparison of soil CO2 emission rate in different land-use systems of 

the world. 

Land-use type Place CO2 emission rate 

(mgCO2m
-2

hr
-1

) 

References 

Tropical grassland Haryana, India 44.00–448.00 Gupta and Singh 1981 

Tropical forest Haryana, India 90.00-1120.00 Rajvanshi and Gupta 1986 

Mixed oak-conifer forest Uttarakhand, 

India 

101.30-270.00 Tewary et al.1982 

Tropical forest Brazil 216.00–510.00 Fernandes et al. 2002 

Mixed oak forest Manipur, India 410.80-604.00 Laishram et al. 2002 

Pecan-cotton alley 

cropping system 

USA 177.00 -776.00 Lee and Jose 2003 

Tropical rainforest Costa Rica 430.00–675.00 Schwedermann et al. 2003 

Forest stand Irish midlands, 

Ireland 

24.00-220-00 Siaz et al. 2006 

Subtropical paddy 

ecosystem 

China 178.50-259.90 Ren et al. 2007 

Subtropical mixed oak 

forest 

Manipur, India 138.49-250.94 Devi and Yadava 2009 

Dry dipteroocarp  forest Thailand 200.00–700.00 Hanpattanakit et al. 2009 

Natural forest China 93.30- 514.60 Zhou et al. 2010 

Different land-use types Arunachal 

Pradesh, India 

135.54-296.54 Bhuyan et al. 2014 

Different Ecosystems Manipur, 2014 124.33- 586.03 Thokchom and Yadava 

2014 

Subtropical mixed oak 

forest 

Manipur, India 169.24-373.20 Devi and Singh 2016 
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Temperate deciduous 

forest 

Korea 173.80- 383.80 Eom et al. 2018 

Temperate deciduous 

forest and alpine pasture 

Korea 21.10-693.70 Jeong et al. 2018 

Different Land-use system Ghana 33.70-256.70 MacCarthy et al. 2018 

Different Land-use system Mizoram, India 224.00-375.00 Manpoong and Tripathi 

2019 

Subtropical Forest Sikkim, India 114.58-259.13 Present study 

Cardamom Agroforestry Sikkim, India 118.54-219.29 Present study 

Paddy Cropland Sikkim, India 89.31-178.04 Present study 

The trend of CO2 emission rate in the present study sites exhibited a clear significant 

seasonal pattern in all three different land-uses with a maximum during the rainy 

season and minimum during the winter season. Higher CO2 emission during the wet 

rainy season and least in the dry winter seasons in all the study sites coincides with 

favorable environmental conditions such as  high soil moisture, relative humidity, soil 

and air temperature that accelerates the microbial activity in soil and decomposition of 

organic matter leading to more CO2 emission from the soil. Other studies also 

reported high soil respiration rates during the wet season when plant growth and 

microbial activity is maximum (Laishram et al. 2002; Dechaine et al. 2005; Li et al. 

2006). Also, transition from dry to the wet season, along with rapid increase in 

temperature and soil moisture enhanced soil CO2 emission rates (Wu et al. 2016b). 

Contrastingly, dry winter season retards the microbial activity and decomposition due 

to unfavorable environmental factors leading to low soil respiration in soil (Devi and 

Yadava 2008). Thus, a low microbial respiration and root respiration during the dry 

winter season decrease the rate of soil CO2 emission (Verchot et al. 2000). Similar 

seasonal trend of soil respiration are reported from different ecosystems which 
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conforms with present study (Laishram et al. 2002; Saraswathi et al. 2008; Devi and 

Yadava 2009; Chen et al. 2013; Thokchom and Yadava 2014; Jeong et al. 2018).   

Biotic and abiotic factors of the study sites also influenced the rate of CO2 emission 

from soil (Fig 29). The correlation equations between the rate of soil CO2 emission 

with the environmental factors in the present study (Fig 29) indicates strong influence 

of soil respiration by the climate, substrate availability and microbial activity of the 

study sites. Several other studies from different ecosystems also reported positive 

significant relation of CO2 emission with these parameters (Qi et al 2002; Lee and 

Jose 2003; Thokchom and Yadava 2014, Zhang et al. 2015) which is in conformity 

with our findings.  Soil temperature (R
2
=0.63, p<0.001) and soil organic carbon 

(R
2
=0.69, p<0.001) appear to be the main driving factors for the rate of soil CO2 

emission in the present study (Fig 29). Present finding is supported by several other 

studies from different ecosystems where soil temperature (Lee and Jose 2003; Mo et 

al. 2005; Devi and Yadava 2008; Shi et al. 2012; Chen et al. 2013, Song et al. 2013; 

Wu et al. 2016b; Jiang et al. 2017) and soil organic carbon (Liu et al. 2011; Yang et 

al, 2011; Li et al. 2013b; Zhou et al. 2013, Fan et al. 2015) are reported to be 

influential factors. However, several other studies also reported soil moisture as more 

influential factors (Lee et al. 2006; Devi and Yadava 2008; Deng et al. 2010; Wang et 

al. 2010; Arora and Chaudhry 2017; Meena et al. 2020) which is contrasting to the 

present study.  

Microbial biomass C in soil shows a strong correlation with CO2 emission (R
2
= 0.68, 

p<0.001) in the present study which confirms that microbes have a significant 

contribution in CO2 flux from the soil as microbes release more nutrients from soil 

organic matter, which further increases soil respiration (Lee and Jose 2003; Devi and 
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Yadava 2008; Iqbal et al. 2010; Arora and Chaudhary 2017; Manpoong and Tripathi 

2019).  Besides the above mentioned factors, other studies have shown positive 

influenced of soil CO2 emission due to the amount of total nitrogen (R
2
=0.60, 

p<0.001) (Fan et al. 2015; Zhu et al. 2019), available phosphorous (R
2
=0.59, p<0.001) 

(Fan et al. 2015), relative humidity (R
2
=0.57, p<0.001) and rainfall (R

2
=0.58, 

p<0.001) but (Devi and Yadava 2009; Devi and Singh 2016) which is consistent with 

the present study. Least effect of soil pH and bulk density among the abiotic variables 

to soil CO2 emission in the present study is supported by the findings of Arora and 

Chaudhary (2017). 

Conclusion 

The STF has the highest rate of soil CO2 emission followed by AGF and lowest in the 

WPC. Waterlogged soil condition in rice cultivation leads to least carbon emission 

from paddy cropland. However, croplands other than paddy may have higher soil CO2 

emission. The concentration of soil CO2 emission is significantly affected by various 

abiotic parameters such as soil and air temperature, rainfall, relative humidity, soil 

moisture, SOC, TN, AP and soil microbial biomass. Overall, soil respiration 

variations in the present study were primarily controlled by soil temperature and soil 

organic carbon. The findings of the present investigation have shown that forests have 

higher emission than agroforestry and adoption of agroforestry systems will reduce 

carbon emission from soil. 
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GENERAL DISCUSSION AND CONCLUSIONS 

The present research work entitled “Study on carbon dynamics of three different 

ecosystems i.e forest, agroforestry and cropland ecosystems of Sikkim Himalayas was 

taken up with the following objectives: i) to study the carbon stock in soil and 

vegetation (including the litter and microbial pools in the three ecosystems of Sikkim 

Himalayas ii) to estimate the rate of soil CO2 emission in the three major land-use 

systems iii) comparison of the rate of carbon sequestration and to establish a 

relationship between the rate of carbon sequestration with abiotic and biotic variables 

in the three ecosystems.  

The present study was carried out in three different subtropical landuse types, namely 

subtropical forest (STF) (27
0
31.550'N & 88

0
29.722'E), cardamom agroforestry (AGF) 

(27
0
31.311′N & 88

0
24.490′E) and wet paddy cropland (WPC) (270

0
31.445'N & 

88
0
30.380'E) located at Dzongu, North Sikkim, India with elevation ranging from 

1200-1700 m asl. All the study sites are situated in sloped area, but  the paddy 

cropland has terraced beds on the sloped surface. The study sites experienced 

monsoonal climate with three distinct seasons, namely summer (March-May), rainy 

(June-Oct) and winter seasons (Nov-Feb) and  have a mean air temperature ranging 

from 7-22
0
C, relative humidity 31-95% and an average annual rainfall of 2663 mm.  

A total of 332 trees (≥ 30.00 cm cbh) and herbs from the STF and AGF during the 

study period belonging to 12 families were registered in this current study. A total of 

10 species from forests and 7 species from agroforestry systems were recorded. In the 

STF, the tree densities and basal area were higher (188.28 individual ha
-1

; 33.52 m
2 

ha
-1

) than that of the AGF (124.90 individual ha
-1

; 18.28m
2
ha

-1
). 
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Alnus nepalensis forms the dominant tree species in tree-based landuse systems of 

STF (IVI 128.55) and AGF (IVI 175.74), as this tree species is favor by farmers as a 

shade-providing tree due to its multipurpose uses and nitrogen fixing potential. 

However, few other trees such as Ficus hookeri, Schima wallichii, Machilus edulis, 

Lyonia ovalifolia, Macaranga pustulata, Juglans regia, Spondias axillaris were alos 

reported from the study sites. 

Soils of study sites has gneissic rocks as its parent material and has sandy loam 

texture in subtropical forest and cardamom agroforestry while in the wet paddy 

cropland it is clayey loam. The physical and chemical properties of the soil showed 

variations between land- use because of the differences in plant species composition, 

microclimatic conditions of the study sites and management practices adopted by each 

of the land use. Such a result was also reported by several studies from different land 

use types of the world where a change in soil properties occurred due to land-use 

change (Pabst et al. 2013; Ravindran and Yang 2015; Reza et al. 2018). The soil 

parameters also vary across the various seasons, but didn’t show consistent pattern of 

seasonal change over land use but it vary significantly with the soil depth and show a 

decreasing trend across soil depth except for the clay content and bulk density in all 

the study sites. This is due to the shift in climatic variables and plant growth pattern 

due to alteration of plants physiological events such as  phenology as season changes. 

Soil nutrients in the forest and agroforestry systems were more in the tree based sural 

systems than that of purely conventional agricultural systems which is due to the 

return of nutrients in soil by the litter from tree species and presence of nitrogen 

fixing tree species in the former two sites. Such a finding was reported by (Rothe et al 

2002; Huang and Song 2010; Soleimani et al 2019). Changes in bioclimatic variables 
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rapidly changes the physical and chemical properties of soil  in Himalayas has been 

reported by (Baumler 2015). 

Biomass and carbon stock from present study show that carbon stock both in 

vegetation, soil and litter were more in the forests and cardamom agroforestry than 

agricultural systems which clearly shows that trees are better carbon stores than other 

plants and presence of trees increases the soil carbon too. Also rate of carbon 

sequestration is more in those systems where trees are more than non tree based 

ecosystems or agricultural lands. Previous other studies on carbon sequestration also 

reported less carbon store and sequestration in agricultural systems (Murty et al. 2002; 

Deng et al. 2016). Transformation of forests to agriculture based systems lead to loss 

of carbon but the reverse process lead to increase in carbon sequestration. Other 

studies also reported carbon loss due to transformation of the forest into agroforestry 

(Milne and Brown 1997; Mohammod and Bekele 2014). However, adoption of tree 

based agricultural systems such as agroforestry can minimize the loss in carbon to 

some extent and bring sustainability. Increase in biomass and carbon due to the 

introduction of trees in agricultural systems  has been reported by several studies 

which conform with our study (Fang et al. 2010; Murthy et al. 2013; Goswami et al. 

2014; Chisanga et al. 2018). The same trend was also observed for carbon 

sequestration. 

Soil microbial biomass carbon was significantly affected by land-use types (p<0.001) 

and season(p<0.001) in all the study sites. Forest reported highest soil microbial 

biomass than cardamom agroforestry and wet paddy cropland. This is due to the less 

disturbance and more organic matter on the forest floor which increases microbial 

activity and biomass. Intensive agriculture in paddy cropland along with less organic 
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matter and water logged soil conditions decreases soil MBC. Afforested soils with 

higher litter inputs reported a higher MBC (Wu et al. 2016a). Also presence of more 

nitrogen in the forest and agroforestry due to Alnus sp. increases microbial C in these 

two sites (Sharma et al. 2019). Soil depth also influenced MBC in all the three land-

use systems due to differences in soil and biotic parameters such as bulk density and 

litter input in the different soil layers. Previous studies on MBC across soil depth in 

various land-use types also reported similar such findings(Blume et al. 2002; Wichern 

et al. 2003; Fall et al. 2012). Furthermore, all the land use exhibit highest 

concentration in the rainy season and lowest in winter and an increase in MBC was 

recorded in the second year as compared to the first year. The warm and wet climate 

during the rainy season accelerates litter decomposition due to the peak microbial 

activities and decomposition during this season which enhances the immobilization of 

nutrients by the microbes (Upadhyay et al. 1989; Usman et al. 2000; Lepcha and Devi 

2020). In addition, high relative humidity during the wet period accelerates fungal 

growth leading to an increase in microbial biomass carbon (Acea and Carballas 1990). 

Least MBC during the dry and cold winter seasons correlates with low temperatures 

and less soil moisture, leading to the death of microorganisms that release organic 

carbon (Lepcha and Devi 2020), and freeze-thaw action can facilitate the 

decomposition of organic detritus and mineralization of carbon (Groffman et al. 

2001).Similar seasonal trends of MBC were observed in different ecosystems by 

several researchers (Devi and Yadava 2006; Iqbal et al. 2010; Otieno et al. 2010; Patel 

et al. 2010;Tan et al. 2013;Huang et al. 2016). 

In the present study, the cardamom agroforestry system reported a higher microbial 

quotient which indicates more carbon immobilization by the microbes from the 

organic substrates. However, the least microbial quotient in the forest may be a result 
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of carbon mineralization from the microbes to support vegetation. The microbial 

quotients were more in agricultural-based systems (cropland and agroforestry) than 

that of the forest. Further, the highest microbial quotient ratio in the agroforestry 

system among the agriculture-based systems probably suggests that the carbon 

immobilization capabilities of microbes increased in the agri-silviculture system than 

in monoculture. Therefore, the adoption of the tree-based agricultural system is 

recommended for the mountainous regions especially to prevent soil erosion and 

maintain soil quality and fertility for the sustainability of the regionPrevious other 

study on the microbial quotient in different land-use also reported a higher value in 

agricultural soils than that of forest soils (Kara and Baykara 2014). The microbial 

quotient showed a strong significant variance with the season and soil depth. Winter 

season reported more immobilization of carbon and rainy season the least in all land-

use type which may be due to the availability of more substrate in winter season. An 

increase in the microbial quotient with soil depth denotes the presence of more active 

carbon pools in the subsurface soil. Some studies reported that subsurface soil layers 

act as a store of microbial inoculation (Yi et al. 2006; Wei et al. 2009). 

Soil respiration was highest for the subtropical forest due to high litter input in the 

forest than that of other systems which increases microbial activity and respiration. 

The lowest soil respiration rate in the paddy cropland of the present study coincides 

with the waterlogged soil condition during the growing period of rice in this system 

which inhibits the growth of microorganisms due to oxygen depletion thereby 

lowering the microbial CO2 emission from soil (Liu et al. 2013b; MacCarthy et al. 

2018). Removal of herbaceous plants and less tree density, results in low organic 

matter and microbial activity and CO2 emission in AGF than that of STF.  Many 

studies reported enhancement of CO2 release from the soil due to higher substrate and 
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microbial activity (Wang et al. 2003; Zhou et al. 2013; Jiang et al. 2017), vegetation 

types (Raich and Tufekcioglu 2000; Law et al. 2001; Grand et al. 2016), 

litterfall(Bond-Lamberty et al. 2004; Yan et al. 2006), and root biomass (Han et al. 

2017; Zhu et al. 2019). CO2 emission in soil was significantly affected by landuse 

types (p<0.05) and season (p<0.05) in all the study sites. Soil CO2 emission showed a 

strong positive significant relationship with soil properties and climate data of three 

different land-use systems (p<0.05) except for soil pH where it is negatively 

significant (p<0.05). However, soil respiration in the present study were more 

influenced by soil temperature and soil organic carbon. 
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APPENDIX 

APPENDIX I: Rainfall in millimeters (R/F) in study sites (2009-2018). 

RAIN FALL 

(mm) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

January 0.6 0.0 31.8 96.4 9.6 0.0 22.0 81.8 7.7 15.2 

February 1.6 7.1 72.4 39.5 62.8 29.8 34.0 34.9 9.0 66.4 

March 16.8 26.2 79.7 208.3 120.8 163.0 180.6 306.8 112.3 216.2 

April 31.2 77.4 150.3 365.3 200.5 194.4 239.4 226.7 266.1 221.0 

May 131.5 424.9 190.8 139.7 615.5 417.0 498.4 383.7 315.7 397.3 

June 76.5 582.8 393.8 599.2 313.6 651.6 796.4 548.0 318.3 584.2 

July 192.2 531.6 442.8 595.9 530.2 605.1 393.6 487.3 485.7 688.2 

August 313.0 599.1 397.2 316.2 301.8 629.8 664.7 301.6 400.6 510.8 

September 125.9 329.1 261.5 785.4 310.3 297.5 320.2 638.1 274.5 751.9 

October 111.3 106.7 126.8 302.4 226.7 36.7 102.8 139.8 83.3 203.5 

November 6.1 111.8 68.8 0.0 82.4 25.2 59.0 0.0 6.5 68.9 

December 3.9 11.2 12.4 17.5 10.4 13.6 37.5 0.0 0.0 15.1 

AVERAGE 1010.6 2807.9 2228.3 3465.8 2784.6 3063.7 3348.6 3148.7 2279.7 3738.7 

  

APPENDIX II: Air temperature (℃)in study sites (2009-2018). 

TEMPERATURE 

(℃) 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

January 6.5 6.5 5.0 4.0 5.0 6.0 7.0 7.0 8.0 9.0 

February 8.0 7.5 6.5 6.5 7.5 7.0 9.5 10.5 11.0 10.0 

March 10.0 11.0 10.0 9.5 11.0 9.5 12.0 14.0 11.5 12.0 

April 13.5 14.0 12.5 12.5 13.0 14.0 15.0 16.5 16.0 14.0 

May 14.0 15.0 15.5 15.5 15.5 16.0 18.0 17.0 18.0 16.0 

June 16.5 16.5 17.5 17.5 18.5 18.5 19.5 19.5 19.5 19.0 

July 17.0 16.5 17.5 18.5 18.5 18.5 20.0 19.0 19.5 19.0 

August 16.5 18.0 17.0 18.5 17.0 18.0 18.5 20.5 19.5 19.5 

September 16.5 16.5 15.0 17.0 16.5 16.5 17.0 19.0 18.5 18.0 

October 13.0 13.5 13.0 12.5 14.5 13.0 14.5 17.0 15.5 13.0 

November 10.0 9.5 9.0 9.0 11.0 10.0 12.0 13.5 12.5 10.5 

December 6.5 7.0 6.5 7.0 8.0 7.5 9.0 11.0 12.0 7.5 

AVERAGE 12.3 12.6 12.1 12.3 13.0 12.9 14.3 15.4 15.1 14.0 



APPENDIX III: Rel. Frequency, Rel. Density, Rel. Basal Area and IVI of tree species of subtropical 

forest. 

SL NO. SPECIES NAME REL. 

FREQUENCY 

REL. 

DENSITY 

REL. BASAL 

AREA 

IVI 

1 Alnus nepalensis 32.26 52.13 44.16 128.55 

2 Macaranga pustulata 6.45 4.79 0.66 11.90 

3 Juglans regia 9.69 4.25 6.40 20.34 

4 Lyonia ovalifolia 16.13 13.30 5.28 34.71 

5 Schima wallichi 3.23 4.79 7.14 15.15 

6 Machilus edulis 9.68 9.04 33.06 51.78 

7 Symplocos theifolia 6.45 6.38 1.07 13.90 

8 Spondias axillaris 3.23 1.06 1.11 5.40 

9 Ficus racemosa 9.68 2.66 0.27 12.60 

10 Castanopsis indica 3.23 1.60 0.86 5.68 

 Total 100 100 100 300.00 

 

APPENDIX IV: Frequency, Rel. Density, Rel. Basal Area and IVI of tree species of cardamom 

agroforestry. 

SL NO. SPECIES NAME REL. 

FREQUENCY 

REL. 

DENSITY 

REL. BASAL 

AREA 

IVI 

1 Alnus nepalensis 33.33 64.52 77.89 175.74 

2 Macaranga pustulata 13.33 4.84 4.44 22.61 

3 Juglans regia 6.67 3.23 6.38 16.27 

4 Toona ciliate 13.33 3.23 3.17 19.72 

5 Spondias axillaris 6.67 1.61 2.12 10.40 

6 Viburnum cordifolium 6.67 1.61 0.37 8.65 

7 Ficus hookeriana 13.33 14.52 4.36 32.21 

8 Ficus racemosa 6.67 6.45 1.27 14.39 

 Total 100 100 100 300.00 

 

 



APPENDIX V: Change in magnitude of soil carbon stock, vegetation biomass carbon stock and 

total ecosystem carbon stock through land use changes (2016-18). 

Land use changes 

types 

SOCS Changes VBCS Changes 
TECS 

Changes 
0-15 

cm 

15-30 

cm 

30-45 

cm 

0-45 

cm 
AGBC BGBC Total 

2016 

STF to CAF -0.85 -2.28 -1.79 -4.91 -27.45 -7.14 -34.59 -41.93 

STF to WPC -6.83 -6.53 -4.79 -18.15 -54.10 -13.65 -67.75 -93.67 

CAF to STF 0.85 2.28 1.79 4.91 27.45 7.14 34.59 41.93 

CAF to WPC -5.98 -4.25 -3 -13.24 -26.65 -6.51 -33.14 -51.74 

WPC to STF 6.83 6.53 4.79 18.15 54.10 13.65 67.75 93.67 

WPC to CAF 5.98 4.25 3 13.24 26.65 6.51 33.16 51.74 

2018 

STF to CAF -3.31 -0.55 -1.47 -5.33 .27.91 -7.25 -35.16 -42.65 

STF to WPC -6.81 -6.35 -6.86 -20.02 -56.34 -14.29 -70.63 -98.59 

CAF to STF 3.31 0.55 1.47 5.33 27.91 7.25 35.16 42.65 

CAF to WPC -3.5 -5.8 -5.39 -14.69 -28.43 -7.04 -35.47 -55.94 

WPC to STF 6.81 6.35 6.86 20.02 56.34 14.29 70.63 98.59 

WPC to CAF 3.5 5.8 5.39 14.69 28.43 7.04 35.47 55.94 

 

APPENDIX VI: Change in magnitude of soil carbon sequestration, vegetation biomass carbon 

sequestration and total ecosystem carbon stock through land use changes (2016-2018). 

STOCK SEQUESTRATION 2016-2018 (TECS) 

Land use changes 

types 

SOCS Sequestration  

(0-45CM) 

VBCS 

Sequestration 

TECS  

Sequestration 

STF to CAF -0.3 -0.42 -0.72 

STF to WPC -3.04 -1.88 -4.92 

CAF to STF 0.3 0.42 0.72 

CAF to WPC -2.74 -1.46 -4.2 

WPC to STF 3.04 1.88 4.92 

WPC to CAF 2.74 1.46 4.2 
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Abstract
The pattern of carbon cycling dynamics in a 20 year old traditional cardamom agroforestry system located at Sikkim Himalaya 
was studied for two years to understand the dynamics of different carbon pools and carbon emission patterns in the system. 
Total biomass (aboveground + belowground) and carbon in trees were 81.91 ± 9.04 Mg ha−1 and 38.47 ± 4.25 Mg C  ha−1, 
respectively and contributed 27% of the total ecosystem carbon. Herbs and detritus carbon were 2.34 ± 0.24 Mg C  ha−1 and 
3.64 ± 0.20 Mg C  ha−1 respectively while cumulative soil organic carbon (SOC) stock ranged from 89.90 ± 2.16 (January) 
to 117.91 ± 3.12 Mg C  ha−1(August) in the 0–45 cm soil layer. Seasonal microbial biomass carbon (MBC) stock varied from 
501.34 to 857.77 µg g−1 while annual  CO2 emission (SR) ranged from 112.11–219.29 mg  CO2  m−2 h−1. SOC, MBC and SR 
exhibited strong seasonality with a peak value in rainy and least in the winter season. Carbon density of trees exhibited a 
positive and significant relation with tree density (P < 0.05), basal area (P < 0.01) and aboveground biomass (P < 0.01). All 
the abiotic variables with the exception of bulk density and soil pH showed strong positive and significant relationship with 
SOC, MBC and SR. Total carbon sequestration of 11.91 Mg C  ha−1  year−1 and release of 3.46 Mg C  ha−1year−1 resulting to 
a net ecosystem carbon balance of 8.45 Mg C  ha−1  year−1 by a traditional agroforestry system suggests that besides provision 
of livelihood opportunities it can be used as an adaptation strategy in agricultural systems for mitigation of climate change.

Keywords Aboveground biomass · Carbon stock · CO2 emission · Climate change · Microbial biomass · Carbon balance · 
Soil organic carbon

Introduction

Agroforestry are land use systems where woody perenni-
als like trees, shrubs, palms and bamboos are incorporated 
along with agricultural crops and livestock (Nair 1993; 
Negash and Kanninen 2015). It is an old practice of farm-
ing system adopted by farmers all throughout the world but 
recently came to limelight due to policies adopted by World 
Bank and Food and agriculture organization (FAO) and 
its multiple benefits including provision of food security, 
reduction in poverty, ecological benefits and many more 
(Nair 1993). The developing world especially of Asia and 
Africa is facing certain challenges such as food and water 

scarcity, population pressure, poverty, deforestation, fertility 
loss, land degradation and climate change (Kay et al. 2019). 
Among the challenges, the risk of changing climate to yield, 
adaptability and suitability of crop and effort for sustainable 
crop production is a major concern for the farmers. In spite 
of adoption of different strategies for sustainable crop pro-
duction and other greening techniques to reduce ecological 
damage, the agricultural sector is one of the major causes of 
pressure on natural resources and environment (EEA 2017). 
To address such issues certain policies are adopted by dif-
ferent countries including the Nitrate Directive, 1991 and 
Water Framework Directive, 2000 adopted by European 
commission and National Agroforestry policy, 2014 adopted 
by India. Also, recently the COP21 Paris Agreement (UNF-
CCC 2015) the Effort Sharing 2021–2030 (REGULATION 
(EU) 2018/842) includes agricultural practices, aiming to 
reduce greenhouse gas (GHG) emissions or balance with 
an equal amount of GHG sequestration (Kay et al. 2019). 
Appropriate agroforestry system helps in the maintenance 
of organic matter and physical characteristics reduce soil 
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erosion, augment nitrogen build up through nitrogen fix-
ing trees elevating efficient nutrient cycling (Patiram et al. 
2003). Several works highlighted agroforestry practice as 
one of the agricultural practices that can adapt and miti-
gate climate change (Aertsens et al. 2013; Hart et al. 2017); 
sequester carbon in biomass and soil (Kim et al. 2016); 
increase soil organic matter and water availability (Murphy 
2015); protect crops, pastures and livestock against harsh 
environmental events (Sànchez and McCollin 2015). Keep-
ing in view this background we intend to study the carbon 
sink and source function of one of the largest agroforestry 
systems of Eastern Himalayas i.e. a cardamom agroforestry 
system. Cardamom agroforestry system of Sikkim, a moun-
tainous state of India located in the Eastern Himalayas, a 
biodiversity hotspot of world and other Himalayan regions 
are transformed from natural forests by the locals in order 
to sustain their livelihood (Rai et al. 1994) are very close to 
a natural forest and provide ecosystem services similar to a 
natural forest (Sharma et al. 2007). Previous studies on car-
damom agroforestry reported from the Eastern Himalayan 
region mainly focused on the ecological services (Sharma 
et al. 2007), carbon sequestration and soil and water conser-
vation (Sharma et al. 2008), management diversity (Sharma 
et al. 2009). However, the carbon cycling pattern of this 
important agroforestry of the Eastern Himalayas remained 
poorly understood. Therefore, this study estimates (i) car-
bon storage in vegetation, litter, soil and microbes, (ii)  CO2 
release from soil to the atmosphere, and (iii) carbon seques-
tration and balance in a traditional cardamom agroforestry 
system of Sikkim Himalayas.

Material and methods

Study area

The study site i.e. traditional cardamom agroforestry sys-
tem was located at Dzongu, North Sikkim, India situated at 
27°31.311′ E and 88°24.490ʹ N at an altitude ranging from 
1350 to 1619 m above mean sea level (Fig. 1). Approximate 
area of the study site is 15.5 hectares and this agroforestry 
system was transformed from a rice field about 20 years ago. 
The climate of the area is monsoonal with three distinct sea-
sons namely summer, rainy and winter seasons. Main shad-
ing tree in the study area is Alnus nepalensis, however, few 
other tree species such as Schima wallichii, Macaranga pus-
tulata, and herbaceous species such as Ageratum conyzoides, 
Drymaria cordata, Oxalis corniculata, Diplazium esculen-
tum, Spilanthes calva, Galinsoga parviflora, Persicaria 
runcinata, Pilea macrophyla, Pouzolzia hirta, Cynodon sp., 
Eupatorium sp., Setaria sp., Carex sp., Sonchus sp., Achy-
anthes sp., Persicaria sp., Cypesus sp., Athyrium sp. were 
also present. During the study period, average temperature 

ranged from 10 to 24 °C; relative humidity varied from 31 
to 95% and annual rainfall was 2663 mm (Meteorological 
Station, Gangtok). Soil was loamy with a pH ranging from 
4.2 to 5.8 in the study site.

Soil sampling for physicochemical characteristics

For the analyses of physicochemical characteristics of soil, 
seasonal soil samples collected from ten different loca-
tions across three soil depths, i.e. 0–15 cm, 15–30 cm, and 
30–45 cm by using a soil corer of 5.2 cm diameter for two 
consecutive years (2016 and 2017). Five replicates of each 
soil sample from each soil depth were used for analysis. Soil 
samples were brought into the laboratory in sealed polythene 
bags, coarse material, gravel and live roots were sorted out 
manually and each soil sample was separated into two parts. 
The first half of fresh soil samples were used for the analysis 
of soil moisture by the gravimetric method (80 °C for 48 h). 
Soil temperature was determined by using a soil thermom-
eter and bulk density was determined by the oven-drying 
of known volume of fresh soil (80 °C) using the formula 
of Ravindranath and Ostwald (2008). The remaining part 
of soil sample was air-dried, crushed and passed through 
a sieve (2 mm) and the sieved soil samples are used for 
analyses of soil pH using an auto digital pH meter (1:5 soil 
distilled water suspension), texture by hydrometer method 
(Allen et al. 1974) and total nitrogen and available phospho-
rous in soil were determined by using Kjeltec 8500 (FOSS) 
and ammonium molybdate stannous chloride method (Devi 
and Yadava 2006) respectively (Table 1).

Aboveground biomass carbon estimation 
and sequestration

The study site was demarcated into five plots and inside 
each plot two random quadrats of 31.6 m × 31.6 m were 
earmarked. Aboveground biomass of trees for two consecu-
tive years (2016 and 2017) was estimated allometrically to 
estimate biomass carbon and sequestration of carbon in the 
study site. All individual trees ≥ 10 cm diameter at breast 
height (DBH) 1.3 m within the plots were enumerated and 
numbered. Specific gravity of wood for each tree species 
was computed by oven drying the wood samples collected 
by using an increment borer at a height of 1.3 m above the 
ground. Volume equations of FSI (FSI 1996) were used to 
calculate the tree volume of each tree species which is used 
to compute the aboveground biomass (IPCC 2006; Ravin-
dranath and Ostwald 2008).

where BEF is the biomass expansion factor.

Aboveground Biomass

= Volume of tree × Specific gravity × BEF,
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Quantification of belowground biomass (BGB) of trees 
was done using standard root to shoot ratio of 0.26 (Ravin-
dranath and Ostwald 2008).

Total biomass was calculated by adding aboveground bio-
mass and belowground biomass and carbon stock in trees 
was computed using the following formula (Ravidranath and 
Ostwald 2008):

where AGB is aboveground biomass, C is a carbon (Mg 
 ha−1), 0.47 is the IPCC default carbon fraction.

The annual carbon sequestration of trees was estimated 
from the difference of annual carbon stock.

C = Total AGB × 0.47,

Fig. 1  Map showing study site of cardamom agroforestry of Sikkim Himalayas
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where  BC1 = Biomass carbon of the first year and  BC2 = Bio-
mass carbon of the second year.

To estimate herbaceous biomass, all the herbs from 10 
quadrats of 1 m × 1 m size located inside each of the above-
described plots were harvested during the rainy seasons of 
2016 and 2017. All herbaceous plants, including cardamom, 
were brought to the laboratory, washed and weighed and 
oven-dried (80 °C) to achieve a constant weight and weighed 
to estimate biomass. Carbon in the herbs was computed 
using the default carbon fractions of IPCC (2006).

Detritus biomass

Monthly litter collected from ten quadrats (1 m × 1 m size) 
during 2016 and 2017 were brought to laboratory, washed 
and dried in an oven at 80 °C till weight becomes constant 
and weighed. Annual detritus carbon was computed from 
the average annual litterfall using carbon default value 0.47 
(IPCC 2006).

Soil organic carbon stock and sequestration

Thirty soil samples were collected from ten different soil 
profiles to estimate soil carbon stock and sequestration in 
soil (SOC) from three soil depths, i.e. 0–15 cm, 15–30 cm, 
and 30–45 cm on monthly interval of 2016 and 2017 by 
using a soil corer (5.2 cm diameter). Samples were crushed 
and passed through a sieve (2 mm) to separate out coarse 
material and gravel and live roots were sorted out manually. 
The sieved soil samples were colorimetrically analyzed for 
organic carbon content (Anderson and Ingram 1993). SOC 

C Sequestration = BC2 − BC1,

for each soil depth was estimated using the formula provided 
by Ravindranath and Ostwald (2008).

Microbial biomass carbon (MBC)

Microbial biomass carbon in soil was analyzed season-
ally from sixty fresh soil samples collected from the study 
site from ten different pits across two different soil depths 
(0–15 cm, 15–30 cm). Samples were immediately brought 
to the laboratory in sealed polythene bags, removed rocks 
and other debris including roots and stones. Half of the soil 
samples from each soil depth (0–15 cm and 15–30 cm) were 
fumigated with 30 ml of alcohol-free chloroform by using a 
vacuum pump and incubated for 5 days and extracted with 
0.5 M potassium sulphate. The other half of the soil samples 
were extracted with 0.5 M potassium sulphate, incubated for 
5 days and used for the estimation of microbial carbon fol-
lowing the procedure of Anderson and Ingram (1993). The 
microbial biomass carbon was calculated using the formula 
(Haripal and Sahoo 2014):

EC is C fumigated–C unfumigated soil samples.

Soil  CO2 emission

Emission of  CO2 from soil was measured by the alkali 
absorption method (Anderson and Ingram 1993). Six open-
ended cylinders with 13 cm diameter 25 cm height were 
inserted up to 15 cm in the soil. All the green plants and 
stones inside the cylinder were removed. One cylinder was 
used as a blank sample out of the six cylinders and the entire 
vegetation and soil surface were sealed. Fifty (50 ml) of 
0.25 N NaOH solution was kept in each cylinder includ-
ing the blank cylinder and sealed to make the whole setup 
airtight by using anchor grip, kept for 24 h and thereafter 
titrated with 0.25 N HCL solution using phenolphthalein 
indicator.  CO2 absorbed from the soil was calculated using 
the formula (Anderson and Ingram 1993):

where V is the volume of HCL, N is the normality of HCL.

Data analysis

Regression analysis between carbon density of trees and 
other biotic variables like tree density, basal area, and bio-
mass stock was performed. The relation between biotic (soil 

SOC
(

Mg ha−1
)

= bulk density
(

g cm−3
)

× soil depth interval (cm) × SOC (%).

MBC = EC × 2.64,

CO2mg = V × N × 22,

Table 1  Soil properties of cardamom agroforestry system

Soil parameter Cardamom 
agroforestry 
system

Soil properties
 Soil pH 5.00 ± 0.43
 Moisture content (%) 37.00 ± 5.62
 Soil temperature (oC) 15.60 ± 3.41
 Bulk density (g  cm−3) 0.79 ± 0.31
 Soil texture
  Clay (%) 23.00 ± 5.32
  Sand (%) 30.00 ± 2.78
  Silt (%) 47.00 ± 3.01

 Organic carbon (%) 3.35 ± 0.21
 Total nitrogen (%) 0.37 ± 0.01
 Available phosphorous (%) 0.01 ± 0.01
 C:N Ratio 9.05
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organic carbon, microbial biomass carbon and soil respira-
tion) and abiotic variables in the study site was studied using 
Pearson’s multiple correlation analysis using SPSS software 
(version 21.0).

Result and discussion

Biomass carbon and sequestration

Highest tree density for Alnus nepalensis (80.13 tree  ha−1) 
and lowest for Rhus semmilata and Viburnum sp. (2.00 
trees  ha−1 each) is because of the preference and retention 
of nitrogen fixing Alnus tree to maintain soil fertility and 
productivity (Sharma et al 1994) by the farmers over other 
tree species (Table 2). Total tree density (124.19 trees  ha−1) 
of the present cardamom agroforestry system was compa-
rable to poplar agroforestry systems of China (Fang et al. 
2010). However, lower tree densities in poplar agroforestry 
of Northwestern India (Rizvi et al. 2011) and coffee agrofor-
estry of Guatemala (Schmitt-Harsh et al. 2012) indicates that 
cardamom agroforestry systems of Eastern Himalayas pro-
mote and encourage higher tree growth and is very closely 
similar to a natural forest (Sharma et al. 2007). Lower Basal 
area of trees in the present study (18.28  m2 ha−1) as compare 

to tea agroforestry of Assam (Kalita et al. 2016) and man-
aged plantation and jhum fallow agroforestry of Tripura 
(Chaudhary et al. 2016) may be due to young age of the 
trees in the agroforestry system.

Total biomass (aboveground + belowground) and carbon 
in trees were 81.91 ± 9.04 Mg ha−1 and 38.47 ± 4.25 Mg C 
 ha−1, respectively (Table 2) which contributed 27% of the 
total ecosystem carbon (Fig. 2). Present value of biomass 
and carbon is comparable to those of other agroforestry sys-
tems in the world (Takimoto et al. 2008; Rizvi et al. 2011; 
Prasad et al. 2012; Kalita et al. 2016), however, it is higher 
from the values reported from other agroforestry systems 
in India and China (Nair et al. 2010; Xie et al. 2017; Yadav 
et al. 2017). Among the tree species maximum carbon stock 
(27.01 ± 1.04 Mg C  ha−1) was contributed by Alnus nepalen-
sis and minimum by Viburnum cordifolium (0.16 ± 0.03 Mg 
C  ha−1) corresponds to highest tree density and basal area of 
Alnus and lowest of Viburnum sp. (Table 2). Carbon storage 
in the trees of different girth sizes did not have a specific pat-
tern but high C storage coincides with high tree densities and 
basal areas rather than the girth size of trees (Table 2). Our 
finding agrees with the report of Kalita et al. (2016) from a 
tea agroforestry system of Assam but contrasting to that of 
a Dipterocarpus forest of Manipur (Devi and Yadava 2016) 
where tree carbon densities increased with an increase in 
girth size that may be related to the difference in the carbon 

Table 2  Tree density, aboveground biomass, belowground biomass, total biomass stock and carbon stock in trees of cardamom agroforestry sys-
tem

Species Tree density (tree 
 ha−1)

Basal Area  (m2 
 ha−1)

Biomass (Mg  ha−1) Carbon (Mg C  ha−1)

Alnus nepalensis D. Don 80.13 13.1 57.47 ± 2.21 27.01 ± 1.04
Ficus racemosa Willd 26.04 0.85 10.27 ± 1.22 4.83 ± 0.57
Juglans regia L 4.01 1.02 5.05 ± 0.89 2.37 ± 0.42
Toona ciliata M.Roem 4.01 0.95 4.36 ± 0.76 2.04 ± 0.34
Macaranga pustulata King ex Hook.f 6.01 1.22 4.01 ± 0.66 1.88 ± 0.31
Spondias axillaris Roxb 2 0.69 0.39 ± 0.11 0.18 ± 0.05
Viburnum cordifolium Wall. Ex DC 2 0.45 0.35 ± 0.08 0.16 ± 0.03
Total 124.2 18.28 81.91 ± 5.89 38.47 ± 2.77
Herbs – – 4.69 ± 0.48 2.34 ± 0.22
Detritus – – 7.28 ± 0.49 3.64 ± 0.20

Diameter class(cm) Biomass (Mg  ha−1) Tree DBH (m) Carbon (Mg C  ha−1)

AGB BGB Total

30–60 9.78 ± 0.20 2.54 ± 0.05 12.32 ± 0.25 5.76 ± 0.08 5.80 ± 0.12 P < 0.01
r2 = 0.9060–90 2.67 ± 0.29 0.68 ± 0.08 3.35 ± 0.37 2.78 ± 0.11 1.58 ± 0.17

90–120 8.77 ± 0.34 2.28 ± 0.09 11.05 ± 0.44 9.59 ± 0.08 5.19 ± 0.20
120–150 19.68 ± 0.47 5.12 ± 0.12 24.80 ± 0.59 26.51 ± 0.10 11.66 ± 0.28
150–180 19.27 ± 0.85 5.01 ± 0.22 24.28 ± 1.07 20.9 ± 0.07 11.41 ± 0.51
 < 180 4.85 ± 0.26 1.26 ± 0.07 6.11 ± 0.33 6.45 ± 0.30 2.87 ± 0.16
Total 65.02 ± 2.41 16.89 ± 0.63 81.91 ± 3.04 71.99 ± 0.74 38.51 ± 1.44
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capture pattern of different species. Also, carbon capture 
rate in vegetation is influenced by geographical area, plant 
species, species diversity, and age of a tree (Liu et al. 2015). 
Linear regression models between carbon density and tree 
density  (r2 = 0.63, P < 0.05), basal area  (r2 = 0.79, P < 0.01) 
and aboveground biomass  (r2 = 1.00, P < 0.01) indicates 
strong influence of these parameters to carbon density 
(Fig. 3). Our findings are in agreement with those of differ-
ent subtropical ecosystems of Northeast India (Borah et al. 
2015; Chaudhary et al. 2016). 

Herbaceous and detritus biomass

Herbaceous biomass and carbon including the contribu-
tion of cardamom crops was 4.69 ± 0.48  Mg  ha−1 and 
2.34 ± 0.24 Mg C  ha−1 respectively in the study site (Table 2) 
and contributed 2.00% to the total ecosystem carbon (Fig. 2), 
which is higher from different ecosystems (natural forests, 
managed plantation and jhum fallow) of North east India 
(Chaudhary et al. 2016; Devi and Yadava 2016). Annual 
detritus carbon (3.64 ± 0.20 Mg C  ha−1) contributed 2.0% 
to the total ecosystem carbon in agroforestry (Fig. 2) with a 
peak detritus during the winter season and least during the 
summer season which agrees with other studies from other 
agroforestry systems (Hager 2012; Ramesh et al. 2015) of 
the world.

Soil organic carbon stock (SOC) and sequestration

The cumulative monthly soil organic carbon stock in 
0-45 cm soil depth varied significantly between the months 
89.90 ± 2.16 (January) to 117.91 ± 3.12 Mg C  ha−1(August) 
showing highest values in the rainy months and lowest dur-
ing the winter months (Fig. 4). The highest SOC stock in the 
month of August (117.91 ± 3.12 Mg C  ha−1) during the rainy 

season coincides with higher soil moisture and temperature 
that probably accelerated the rate of litter decomposition by 
the microbes as revealed from the highest microbial biomass 
carbon during this season (857.77 µg g−1). Limitation of 
moisture along with low air and soil temperatures in the dry 
winter months result to less microbial activities and SOC. 
Several studies in different systems also reported similar 
trend of SOC (Upadhyay and Singh 1989; Devi and Yadava 
2006; Bargali et al. 2018). The present range of SOC stock 
is within the reported range of Nair et al. (2010) (30–300 Mg 
C  ha−1) for agroforestry systems. Annual sequestration of 
6.04 Mg C  ha−1 calculated from the difference of soil carbon 
stocks of two consecutive years (100.61 Mg C  ha−1 in the 
first year and 106.65 Mg C  ha−1 in the second year) agrees 
with the values reported from different land-use systems 
namely natural forest, managed plantation and jhum fallows 
of Tripura, North-East India (Chaudhary et al. 2016), and 
three agro-climatic zones of Chiapas agroforestry, Mexico 
(Sata-Pinto et al. 2010). The bulk density increases with 
soil depth while SOC decreases due to more organic matter 
content in the upper soil layer than that of sub surface lay-
ers. Similar findings were reported by many studies (Job-
bágy and Jackson 2000; Dar and Somaiah 2015; Singh et al. 
2018; Soleimani et al. 2019). SOC exhibited strong positive 
relation with all the abiotic and biotic variables with the 
exception of soil pH and bulk density where the relation is 
insignificant and negative (Table 3). Such relationships were 
reported from different land-use system of India (Shrestha 
et al. 2004; Ramesh et al. 2015; Chaudhary et al. 2016). 

Soil microbial biomass carbon (MBC)

Soil microbial biomass carbon in the present study varied 
from 501.34 to 857.77 µg g−1 (0.736 Mg C  ha−1) across 
different seasons (Table 4) and contributed 0.53% carbon to 

Fig. 2  Contribution of different 
carbon pools to the total ecosys-
tem carbon
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total ecosystem carbon. Microbial biomass carbon decreased 
with soil depth (Table 4) due to the presence of more organic 
matter in the top humus soil that promotes microbial activ-
ity. Maximum MBC during the rainy season and minimum 
during the winter season may be attributed to availability of 
substrate carbon from the last fall and favorable congenial 
environment for the microbes during the warm rainy season 
while a low temperature during the dry winter season retards 
the activity of the microbes. MBC increased with moderate 
warming (Liu et al. 2011) provided water or moisture is not 
a limitation (Allison and Treseder 2008; Xu et al. 2013). 

The present value of MBC is comparable to various sys-
tems of Northeast India i.e. traditional agroforestry system 
− 47.50 to 1167.00 µg g−1, (Tangjang et al. 2010), subtropi-
cal humid forest of Meghalaya − 203.74 to 1087.70 µg g−1 
(Maithani et al. 1996), and mixed oak forest of Manipur 
− 71.10 to 1412.60 µg g−1, (Devi and Yadava 2006) however, 
the present value is higher than that of various ecosystems of 
Northern India i.e. rice-berseem cropping, tree plantations 
and agroforestry systems − 90.56 to 168.00 µg g−1, (Kaur 
et al. 2000). A positive and significant relationship between 
microbial biomass carbon and soil organic carbon, soil 

Fig. 3  Regression models 
between carbon density and tree 
density, basal area, and biomass 
stock in study site
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respiration, soil moisture, total nitrogen, available phospho-
rous, soil and air temperature, relative humidity and rainfall, 
indicates that soil microbial activity is a collective function 
of biotic and abiotic variables of the site (Table 3). Many 

studies from different ecosystems of the India also reported 
similar results (Devi and Yadava 2006; Haripal and Sahoo 
2014; Bargali et al. 2018) However, the inverse significant 
relation of microbial biomass carbon with soil pH may be 

Fig. 4  Monthly soil organic 
carbon (SOC) concentration in 
different soil layers (mean ± SE)
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Table 3  Pearson correlation matrix between the abiotic variables and MBC, SOC and SR

SOC soil organic carbon, SR soil respiration, MBC microbial biomass carbon, M moisture, BD bulk density, N nitrogen, P phosphorus, ST soil 
temperature, AT air temperature, RH relative humidity, RF rainfall
* Significance at P value < 0.05
**Significant at P value < 0.01

SOC MBC SR M BD pH TN AP ST AT RH RF

SOC 1
MBC 0.96** 1
SR 0.96** 0.99** 1
M 0.91** .88** 0.89** 1
BD − 0.43 − 0.47* − 0.42 − 0.73** 1
pH − 0.28 − 0.30 − 0.27 − 0.61** 0.90** 1
TN 0.84** 0.90** 0.90** 0.86** − 0.41 − 0.33 1
AP 0.66** 0.71** 0.77** 0.69** − 0.44 − 0.38 0.073** 1
ST 0.89** 0.87** 0.88** 0.98** − 0.77** − 0.67** 0.82** 0.75** 1
AT .88** 0.87** 0.88** 0.98** − 0.78** − 0.67** 0.83** 0.76** 0.99** 1
RH 0.97** 0.99** 0.99** 0.93** − 0.51* − 0.36 0.90** 0.78** 0.93** 0.93** 1
RF 0.83** 0.89** 0.89** 0.62* 0.01 0.18 0.78** 0.60* 0.58* 0.58* 0.84** 1

Table 4  Average seasonal 
and annual microbial biomass 
carbon (MBC) across soil 
depths (0–30 cm)

Season Soil depth (0–15) (µg  g−1) Soil depth (15–30 cm) 
(µg  g−1)

Soil depth (0–30 cm)
Total (µg  g−1)

Summer 376.96 ± 17.30 226.17 ± 23.50 603.13 ± 35.14
Rainy 533.19 ± 24.45 324.35 ± 14.90 857.77 ± 24.54
Winter 302.75 ± 12.90 198.59 ± 09.90 501.34 ± 17.65
Annual 404.30 ± 117.62 249.68 ± 66.11 653.98 ± 183.47
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due to the less intensive land management practice adopted 
in the present acidic soil agroforestry system that helps in 
increasing the microbial efficiency through channeling of 
substrates into biomass synthesis. In low pH soils (< 6.2) 
intensive land use practices leads to acid related alleviation 
of microbial growth and organic matter degradation, leading 
to large losses of carbon through microbial decomposition 
(Malik et al. 2018).

Soil  CO2 emission (SR)

Monthly soil  CO2 emission ranged from 112.11 to 219.29 mg 
 CO2  m−2 h−1 (values are average of two years) and the annual 
emission rate was 145.11 mg  CO2  m−2 h−1 ~ 12.71 Mg  CO2 
 ha−1 year−1 (Fig. 5). Highest  CO2 emission rate during rainy 
season coincides with high soil moisture, relative humidity, 
soil and air temperature that triggers the microbial activ-
ity and decomposition of organic matter leading to more 
 CO2 evolution from the soil. In contrast winter season due 
to unfavorable climatic conditions such as low temperature 
and moisture in the soil retards the microbial respiration and 
decomposition rate. Several studies from different ecosys-
tems also exhibited a high rate of soil  CO2 emission during 
the wet period (Saraswathi et al. 2008; Devi and Yadava 
2009; Thokchom and Yadava 2014; Jeong et al. 2018) which 
agrees with our findings. Pearson correlation matrix revealed 
positive significant relation between soil  CO2 emission rate 
and soil organic carbon (P < 0.01), microbial biomass carbon 
(P < 0.01), soil moisture (P < 0.01), total nitrogen (P < 0.01), 
available phosphorous (P < 0.01) and soil and air tempera-
ture (P < 0.01) (Table 3) which agrees with the findings of 

several other studies (Qi et al. 2002; Lee and Jose 2003; 
Thokchom and Yadava 2014; Zhang et al. 2015).

Carbon cycling and balance in agroforestry system

Total vegetation carbon including (trees, herbs + carda-
mom crop) in the present agroforestry system can sequester 
5.46 Mg  CO2  ha−1  year−1 from the atmosphere (calculated 
from the annual carbon sequestered by vegetation i.e.1.49 Mg 
C  ha−1  year−1) while 3.64 Mg C  ha−1  year−1 has been input 
to the soil through litter biomass. Annual soil organic car-
bon sequestration was 6.04 Mg C  ha−1  year−1 (calculated 
from the difference between the SOC of the first and sec-
ond year) of which 0.74 Mg C  ha−1  year−1 was microbial 
contribution. Annual release of carbon  (CO2) from the soil 
through microbial and root respiration, decomposition of lit-
ters was 12.71 Mg  CO2  ha−1  year−1 ~ 3.46 Mg C  ha−1  year−1 
which is lower from different landuse systems of Northeast 
India namely grassland (25.50 Mg  CO2  ha−1  year−1), bam-
boo (24.63 Mg  CO2  ha−1  year−1) and forest (37.59 Mg  CO2 
 ha−1  year−1) reported by Thokchom and Yadava (2014). A 
low  CO2 emission in the present agroforestry sytem can be 
explained due to slightly low pH of soil as acidic soil lowers 
soil emissions (Oertel et al. 2016) and long term N addition in 
soil (Bowden et al. 2004) due to use of nitrogen fixing Alnus 
species as main shading tree. The carbon balance in the soil 
(0.18 Mg C  ha−1  year−1) indicates accumulation of organic 
carbon through the litter and microbes which is contrasting 
to that of three land-use systems namely grassland (3.26 Mg 
C  ha−1  year−1), bamboo (3.30 Mg C  ha−1  year−1) and Dip-
terocarpus forest (7.19 Mg C  ha−1  year−1) of Manipur, North-
east India where soil carbon loss is reported (Thokchom and 

Fig. 5  Monthly rates of soil 
 CO2 emission from the carda-
mom agroforestry system dur-
ing 2016 and 2017. (mean ± SE)
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Yadava 2014). Higher N availability decreases total microbial 
biomass and loss of  CO2 from soil (Rousk et al. 2011). Previ-
ous studies on different traditional agroforestry systems of 
Sikkim Himalayas concluded of highest N in Alnus-carda-
mom agroforestry systems (Sharma et al. 2016). Fontaine 
et al. (2004) reported that carbon is lost from the soil when 
microbes are nutrient-limited, therefore nutrient availability 
in the soil and microbial competition are the main factors 
controlling SOC decomposition. Also, litters of different 
quality ultimately create a difference in microbial communi-
ties resulting in different SOC decomposition. A traditional 
cardamom agroforestry system can sequester 11.91 Mg C 
 ha−1  year−1 in different pools and release 12.71 Mg  CO2  ha−1 
 year−1 ~ 3.46 Mg C  ha−1  year−1 through soil respiration or 
soil  CO2 flux with a net annual ecosystem balance of 8.45 Mg 
C  ha−1  year−1 and reveals that traditional agroforestry sys-
tems of Sikkim Himalayas besides providing livelihood secu-
rity to the people acts as an effective carbon sink.

Conclusion

The present study revealed that cardamom based traditional 
agroforestry system of Himalayas act as a potential carbon 
sink both in vegetation and soil due to its high tree density 
and non intensive farming practice. Non intensive agrofor-
estry practices in this region can be used as an agricultural 
adaptation to mitigate climate change in this region because 
of its less soil  CO2 emission and high ecosystem carbon 
balance besides the provision of livelihood benefits to the 
locals.
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Abstract

Background: Soil microbial biomass, an important nutrient pool for ecosystem nutrient cycling is affected by
several factors including climate, edaphic, and land-use change. Himalayan soils are young and unstable and prone
to erosion and degradation due to its topography, bioclimatic conditions and anthropogenic activities such as
frequent land-use change. Through this study, we tried to assess how soil parameters and microbial biomass
carbon (MBC) of Eastern Himalayan soils originated from gneissic rock change with land-use type, soil depth and
season. Chloroform fumigation extraction method was employed to determine MBC from different land-use types.

Results: Soil physical and chemical properties varied significantly with season, land-use and soil depth (p < 0.001).
The maximum values of soil properties were observed in the rainy season followed by summer and winter season
in all the study sites. Annual mean microbial biomass carbon was highest in the forest (455.03 μg g− 1) followed by
cardamom agroforestry (392.86 μg g− 1) and paddy cropland (317.47 μg g− 1). Microbial biomass carbon exhibited
strong significant seasonal difference (p < 0.001) in all the land-use types with a peak value in the rainy season
(forest-592.78 μg g− 1; agroforestry- 499.84 μg g− 1 and cropland- 365.21 μg g− 1) and lowest in the winter season
(forest − 338.46 μg g− 1; agroforestry – 320.28 μg g− 1 and cropland − 265.70 μg g− 1). The value of microbial biomass
carbon decreased significantly with soil depth (p < 0.001) but showed an insignificant increase in the second year
which corresponds to a change in rainfall pattern. Besides, land-use type, season and soil depth, soil properties also
strongly influenced microbial biomass carbon (p < 0.001). Microbial quotient was highest in the agroforestry system
(2.16%) and least in the subtropical forest (1.91%).

Conclusions: Our results indicate that land-use, soil depth and season significantly influenced soil properties and
microbial biomass carbon. The physical and chemical properties of soil and MBC exhibit strong seasonality while
the type of land-use influenced the microbial activity and biomass of different soil layers in the study sites. Higher
soil organic carbon content in cardamom agroforestry and forest in the present study indicates that restoration of
the litter layer through retrogressive land-use change accelerates microbial C immobilization which further helps in
the maintenance of soil fertility and soil organic carbon sequestration.

Keywords: Soil properties, Inceptisols, Cardamom agroforestry, Paddy cropland, Subtropical forest, Soil organic
carbon
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Introduction
Carbon cycle plays a vital role in shaping the earth’s at-
mosphere and climate systems. Soil microorganisms per-
form a major function in the soil carbon cycle of
different ecosystems and regulating the ecosystem cyc-
ling. For the formation of the organic pool, soil micro-
bial biomass carbon acts as a key indicator of soil
organic carbon by decomposing organic matter and con-
trolling nutrient dynamics which affect the primary
productivity of the terrestrial ecosystem (Kara and Bolat
2008). During the last few decades, rapid global land-use
change through the transformation of forest to cropland
expanded fivefold (~ 3 to ~ 15 million km2 during
1700–2007) (Ramankutty et al. 2018). The Southeast
Asian region also experienced 11.3% of the total forest
cover loss, i.e., 29.3 × 1010 m2 during the period 2000 to
2014 (Zeng et al. 2018). Kanade and John (2018) also re-
ported a decline in primary forest cover and increase in
secondary forest and agriculture in Sikkim Himalaya by
30% and 16% of primary forest at an altitudinal range of
800–2200m and 2200–2800 m, respectively.
Research on the effect of land-use change on soil eco-

system functioning due to human activities is necessary
to study the soil processes in different land-use systems
and to protect and regenerate the ability of soil to deliver
ecosystem services (Van Leeuwen et al. 2017). Ecosystem
functioning depends on the flux of carbon and other
chemical nutrients, mediated by the microbial inter-
action in the soil, plant, and animal food web (Senevir-
atne 2015). Soil microbial biomass acts as a keystone
biological driver to the ecosystem functioning (Singh
and Gupta 2018). The unpredictable rise of climate and
anthropogenic disturbances affects the microbial diver-
sity in the ecosystems (Singh and Gupta 2018). Land-use
types along with its geographical area, climate variability,
soil properties, and the dominant vegetation compos-
ition are the key drivers in controlling microbial biomass
carbon dynamics in different land-use types (Wardle
1992; Singh and Gupta 2018). Microbes are very sensi-
tive to land-use change due to the differences in the
litter composition and root turnover rates (Hooper and
Vitousek 1998). The substrate quality of an ecosystem
therefore plays a substantial role in the availability of mi-
crobes as it regulates the rate of microbial decompos-
ition of freshly added and native soil organic carbon
(SOC) (Jagadamma et al. 2014). Microbial biomass car-
bon in the soil contributed around 1–3% carbon to the
total soil organic carbon (Dilly et al. 2003). Nutrient reg-
ulations to climate change through the carbon cycle by
soil microbes are crucially important in carbon-climate
reaction (Bardgett et al. 2008) due to the export of dis-
solved carbon through hydrological leaching and CO2

efflux by organic matter decomposition (Jenkinson et al.
1991; Davidson and Janssens 2006).

There is an increased interest for researchers for deter-
mining soil microbial biomass in ecosystem functioning
(Azam et al. 2003) due to its ability to change soil quality
following a land-use change (Bini et al. 2013). Study on
soil microbial biomass carbon in the different land-use
systems has been carried out globally by several re-
searchers (Fang et al. 2014; Van Leeuwen et al. 2017;
Bargali et al. 2018; Padalia et al. 2018; Singh et al. 2018;
Soleimani et al. 2019). However, previous studies on mi-
crobial biomass carbon from Eastern Himalaya are lim-
ited only to forest (Maithani et al. 1996; Arunachalam
et al. 1999; Devi and Yadava 2006) or more focussed on
the jhum lands (Arunachalam and Pandey 2003; Ralte
et al. 2005) and topsoil only (Sharma et al. 2004). But
Eastern Himalaya, a biodiversity hotspot of the world, is
a fragile region due to frequent land-use transformation/
change through deforestation, land degradation, and dis-
ruption of the hydrological cycle (Tiwari 2008). Also, be-
cause of the high variation in the landscape of the
Himalayas, the bioclimatic conditions change rapidly
within a very short distance resulting in different soil
properties and types (Baumler 2015). Microbial activities
are significantly affected by the climate and human man-
agement (Rosenzweig et al. 2016), and the microbial car-
bon use efficiency varies across soil types due to several
factors such as substrate quality and quantity, edaphic
factors, stoichiometric constraint, and soil biodiversity
(Lee and Schmidt 2014; Sinsabaugh et al. 2016). We
hypothesize that land-use change alters the soil fertility
and microbial biomass carbon that affects the soil or-
ganic carbon across soil depth. Hence, this study exam-
ined (i) the variance in soil characteristics and microbial
biomass carbon in three different land-use types and (ii)
the effect of season, land-use type, and soil depth on soil
microbial biomass carbon.

Materials and methods
Study area and climate
Three different subtropical land-use types located at
Dzongu, North Sikkim, India, namely a subtropical for-
est (NF) (27° 31.550′ N and 88° 29.722′ E) at an altitude
ranging from 1400 to 1700m asl, a cardamom agrofor-
estry system (AGF) (27° 31.311′ N and 88° 24.490′ E)
position at an altitudinal range of 1350–1619m asl, and
paddy cropland (PC) (27° 31.445′ N and 88° 30.380′ E)
situated at an elevation of 1200–1400m asl, were chosen
for the study (Fig. 1). The cardamom agroforestry system
was converted from paddy cropland about 20 years ago.
All the study sites are located in a sloped position
(Table 1), but the paddy cropland has terraced beds on
the surface. No tilling and chemical fertilizers have been
added in any of the sites except for the paddy cropland
where tilling has been carried out for the cultivation of
paddy. Herbs from AGF were removed manually twice a

Lepcha and Devi Ecological Processes            (2020) 9:65 Page 2 of 14



year for the cultivation of large cardamom. Alnus nepalen-
sis forms the dominant tree species both in the subtropical
forest and cardamom agroforestry as it is favored by the
farmers as a shade-providing tree due to its multiple uses.
However, few other trees such as Ficus hookeri, Schima
wallichii, Machilus edulis, Lyonia ovalifolia, Macaranga
pustulata, Juglans regia, and Spondias axillaris were also
present in both the study sites. Tree densities were higher
in the forest than in the cardamom agroforestry. In the
cardamom agroforestry system, only large cardamom
(Ammomum subulatum) was planted along with trees on
the sloped surface. Herbs are however present in the for-
est. All the study sites experienced a monsoonal climate
with three distinct seasons, namely summer (March to
May), rainy (June to October), and winter (November to
February) seasons. However, summer is mild while winter
is cold, and the rainy season is extremely wet. March and
October are transitional months between winter and sum-
mer and rainy and winter, respectively. All the study sites
have a mean air temperature that varied from 7 to 22 °C,
relative humidity 31–95%, and an average annual rainfall
of 2663mm (2007–2016) (Meteorological Station Gang-
tok, Sikkim). Meteorological data of the study sites during
the study period are shown in Fig. 2.

Geology
Geologically, the present study sites were located in the
Lesser Himalayan Zone or sub-Himalayan region. This
region has gneissic rocks derived from the Daling series
(Saha 2013; Singh 2013). The National Bureau of Soil
Survey and Land Use Planning (NBSSLUP) classified
soils of Sikkim as inceptisols (42.83%), entisols (42.52%),
and mollisols (14.64%). All the study sites have gneissic
rock origin. Subtropical forest and cardamom agroforestry

have loamy soils while paddy cropland has clayey loam
soil.

Soil sampling and analyses
Random soil samples were collected from five quadrats
of 10 × 10 m established within each of the three land-
use types in different seasons (i.e., summer, rainy, and
winter) for two consecutive years. However, the distance
between two quadrats in each of the study sites was at
least 50 m apart. Soil samples were collected every alter-
nate month, i.e., six times a year. A total of 60 soil sam-
ples from 15 soil pits from two different soil depths, viz.,
0–15 and 15–30 cm, were taken from each of the land-
use types by using a stainless steel soil corer (5 cm diam-
eter) and mixed to form a composite sample for each
depth. Roots, stones, and organic residues were removed
from the samples, and each soil sample was divided into
two parts. Half of each of the soil samples was stored at
4 °C to determine soil microbial biomass carbon (MBC),
and the remaining half was air-dried for the determin-
ation of soil physical and chemical properties.
Soil moisture was analyzed by the gravimetric method

and bulk density by oven drying of a known volume of
fresh soil (80 °C). Air-dried soil samples were analyzed
for texture by the hydrometer method (Allen et al.
1974), and pH was measured using an auto digital pH
meter (1:5 soil distilled water suspension). Soil
temperature was measured by using a soil thermometer.
Soil organic carbon (SOC) was estimated by the colori-
metric method (Anderson and Ingram 1993), and SOC
stock was calculated following the procedure of Ravin-
dranath and Ostwald (2008). The total nitrogen and
available phosphorous in soil were determined by using
the Kjeltec 8500 (FOSS) and ammonium molybdate

Fig. 1 Picture of the three different study sites along with altitude and slope
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stannous chloride method (Sparling et al. 1985),
respectively.
Microbial biomass carbon was estimated by the

chloroform fumigation and extraction method (Ander-
son and Ingram 1993) and calculated using the following
formula (Vance et al. 1987):
MBC = EC × 2.64
where EC is the difference between C fumigated and

unfumigated soil samples.

Data and statistical analyses
The statistical analyses were carried out using SPSS
18.0. Tukey’s honestly significant difference (HSD)
test was used to compare the means of soil parame-
ters, microbial biomass, and microbial quotients of
different land-use types. The influence of land use
and season, soil depth, and land use on the soil prop-
erties and microbial biomass carbon was studied by
using the two-way ANOVA. Pearson’s multiple correl-
ation analysis was carried out to determine the rela-
tionship between soil parameters and microbial
biomass in different land-use types. Soil parameter
data from different land-use types were subjected to
principal component analysis (PCA) by using R com-
mander. All data are an average of five replicates ±
SE of the composite soil samples.

Results
Soil properties
The physical and chemical properties of soil in three
different land-use types are presented in Table 1. The
physical and chemical properties of soil indicate the
significant differences among land-use types and sea-
sons (Table 2). However, no significant interaction

between land use and season was observed for all the
soil parameters except for microbial biomass carbon
(MBC). The highest sand percentage was recorded in
AGF, i.e., cardamom agroforestry (46.82%), followed
by NF, i.e., subtropical forest (42.52%), and lowest in
the PC, i.e., paddy cropland (38.56%). PC reported
more silt and clay content (31.96% and 29.49%) than
NF (30.82% and 26.67%) and AGF (30.11% and
23.08%) systems, respectively. Soil moisture content
ranged from 22.00 to 33.67% in the NF, 24.33 to
35.00% in AGF, and 25.83 to 39.17% in PC with a
maximum value in the rainy season and minimum in
winter season in all the sites. Soil parameters vary
across the different seasons; however, there is no con-
sistent trend of seasonal variation across the land-use
types (Table 2 of supplementary file). The physical
and chemical properties of soil in the study sites dif-
fer significantly with soil depth (Table 2) and exhibit
a decreasing trend across soil depth except for clay
content and bulk density (Table 1). The bulk density
varied from 0.62 to 0.81 g cm−1 in different land-use
types and increased with soil depth. The maximum
bulk density was recorded in NF (0.78 g cm−3) and
lowest in the PC (0.70 g cm−3) while the soil
temperature ranged from 7 °C (winter) to 21 °C
(summer) across the sites.
Soil pH decreased with soil depth and ranged from 5.0 to

5.6 across the sites and soil depth (0–30 cm) with a max-
imum in the NF and minimum in PC (Table 1). The high-
est SOC, TN, AP, and SOC stock were in the NF (4.34%,
0.32%, 0.05%, and 40.99Mg C ha−1, respectively) followed
by AGF (4.09%, 0.30%, 0.04%, and 40.41Mg C ha−1, re-
spectively) and lowest in the PC (3.16%, 0.22%, 0.02%, and
34.16Mg C ha−1, respectively) in the upper soil layer.

Fig. 2 Meteorological data of the study sites during the study period (2016–2017)
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However, silt content slightly increases in the subsurface
soil layer of NF and AGF (Table 1). In the present study,
SOC exhibits a negative significant relationship with bulk
density and pH (p < 0.05) (Table 3). In the NF and AGF,
the C/N ratio of soil increased with soil depth; however, it
decreased slightly in the case of PC.

Soil microbial biomass carbon
Land-use types, season, and their interaction significantly
influenced soil microbial biomass carbon in all the study
sites (Table 2). Mean MBC varied from 592.78 ± 14.04 μg
g−1 to 265.70 ± 7.33 μg g−1 in 0–30-cm soil layer across
the seasons and land-use types (Table 4). An increase in
soil depth showed a decreasing trend in MBC in all the
three land-use systems while the highest concentration of
MBC was in the rainy season and lowest in winter (Fig. 3).
The microbial biomass carbon exhibited a significant dif-
ference (p < 0.001) with soil depth in all the land-use types
(Table 2) however, it showed an insignificant increase in
the second year. Soil of the NF (455.03 μg g−1) had the
highest mean value of soil microbial biomass carbon,
followed by AGF (392.86 μg g−1) and lowest in PC
(317.47 μg g−1).

Microbial biomass quotient (MBC/SOC) %
Microbial biomass quotient ranged from 1.57 to 2.43%
across the soil depth and land-use types (Table 5). The
highest value of microbial biomass quotient was in the
AGF followed by PC while the least was in NF. In the
present study, the seasonal trend of microbial quotient
was winter > summer > rainy season showing a slight
decrease in the second year as well as with soil depth.

Correlation matrix and principal component analysis
The correlation matrix between the soil microbial bio-
mass carbon with climatic and soil variables of three dif-
ferent land-use systems (Table 3) showed a strong
significant positive relationship with all the parameters
(p < 0.01) except for bulk density and soil pH where it is
negatively significant (p < 0.05). SOC exhibited a positive
significant relation with total N, available P, soil
temperature, relative humidity, and microbial biomass
carbon but showed negative significance with soil pH
and bulk density (p < 0.05). The principal component
analysis (PCA) of soil parameters in the different land-
use types explained 49.0% variability in the first compo-
nent and 26.5% in the second component (Fig. 4).

Table 3 Pearson correlation coefficient between soil microbial biomass and soil characteristics

MBC M BD pH SOC N P ST RH RF

MBC 1

M 0.495* 1

BD − 0.483* − 0.693** 1

pH − 0.566* − 0.508* 0.137NS 1

SOC 0.875** 0.157NS − 0.530* − 0.508* 1

N 0.851** 0.193NS 0.422NS − 0.625** 0.962** 1

P 0.843** 0.244NS 0.404NS − 0.712** 0.892** 0.924** 1

ST 0.754** 0.825** − 0.483* 0.736** 0.479* 0.448 0.492* 1

RH 0.804** 0.774** − 0.369NS 0.756** 0.499* 0.472* 0.533* 0.950** 1

RF 0.698** 0.451NS − 0.058NS − 0.007NS 0.430NS 0.358NS 0.474* 0.660** 0.840** 1

MBC microbial biomass carbon, M moisture, BD bulk density, pH soil pH, SOC soil organic carbon, N nitrogen, P phosphorus, ST soil temperature, RH relative
humidity, RF rainfall
*Significant at 0.05, **significance at p < 0.01, ***significant at p < 0.001, NSnon-significant

Table 2 Two-way ANOVAs showing significant differences in soil characteristics

Source Moisture (%) BD (g cm−3) pH TN (%) P (%) SOC (Mg C ha−1) MBC (μg g−1)

Land use and season

Land use 5.78** 95.27*** 51.87*** 11.99*** 11.45*** 134.44*** 29.19***

Season 64.24*** 54.08*** 107.84*** 6.95** 26.09*** 219.62*** 19.46***

Land use × season 0.75NS 2.51NS 1.59NS 0.44NS 1.31NS 2.42NS 3.02**

Soil depth and land use

Soil depth 87.36*** 47.88*** 47.11*** 64.29*** 74.05*** 32.42*** 40.52***

Land use 19.50*** 61.83*** 55.05*** 80.32*** 63.64*** 22.57*** 13.18***

Soil depth × land use 0.97 NS 3.04** 1.20 NS 3.08** 3.74** 1.68 NS 1.59 NS

Values represent F values. **p(F) < 0.01; ***p(F) < 0.001
BD bulk density, TN total nitrogen, P available phosphorous, SOC soil organic carbon stock, MBC microbial biomass carbon
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Discussion
The results of the present study revealed that the soil
physical (soil moisture, bulk density, and pH) and chem-
ical (C, N, and P) properties and microbial biomass car-
bon differ significantly in the three different land-use
types with the highest in NF followed by AGF and PC
except for soil moisture which exhibits a reverse trend.

This is a result of the integrative response of topography
and management practices adopted by each of the study
sites. Adoption of terraced beds in sloped land of PC to
conserve soil moisture, silt, and clay and removal of
herbs from the sloped AGF to reduce competition with
cardamom crop enhances soil erosion during heavy tor-
rential rains resulting in a difference in the microclimate

Table 5 Soil microbial quotient (MBC/SOC) % in different land-use types of Eastern Himalayas. Means ± SE sharing the same letter
are not statistically different by HSD test at 5% level of confidence

Land-use type Soil depth (cm) Summer Rainy Winter Mean

Subtropical forest 0–15 0.78 ± 0.12a 0.59 ± 0.14a 0.93 ± 0.08ab 0.77 ± 0.11a

15–30 1.09 ± 0.06a 0.98 ± 0.11a 1.38 ± 0.07b 1.15 ± 0.08ac

Mean 1.87 ± 0.18a 1.57 ± 0.25a 2.30 ± 0.15ab 1.91 ± 0.19a

Cardamom agroforestry 0–15 0.88 ± 0.09a 0.72 ± 0.11a 0.93 ± 0.06a 0.85 ± 0.08a

15–30 1.42 ± 0.05a 1.02 ± 0.05b 1.49 ± 0.06ac 1.31 ± 0.05ad

Mean 2.30 ± 0.13a 1.74 ± 0.16b 2.43 ± 0.12ac 2.16 ± 0.13ad

Paddy cropland 0–15 0.78 ± 0.07a 0.78 ± 0.10a 0.91 ± 0.07a 0.83 ± 0.08a

15–30 1.19 ± 0.05a 1.14 ± 0.06a 1.44 ± 0.04c 1.26 ± 0.05ad

Mean 1.97 ± 0.12a 1.92 ± 0.16a 2.35 ± 0.11c 2.08 ± 0.13a

HSD (α = 5%) = 4.53

HSD Tukey’s HSD test at 5% level of significance

Fig. 3 Variance of microbial biomass carbon (μg g−1) due to land-use type, season, and soil depth (average value of 2 years ± SE)
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of the two sites which ultimately leads to an alteration of
soil properties. Also, vegetation composition and
amount of organic matter are different in the study sites
which ultimately affect the microbial activity of soil. Sev-
eral studies reported the influence of land use and
change in soil management practices (George et al.
2013; Gonnety et al. 2013; Malik et al. 2018), topog-
raphy, space and time, vegetation cover, climate, weath-
ering processes, and microbial activities (Paudel and Sah
2003) on physico-chemical properties of soil. Bulk dens-
ity (BD) of the present study (0.62–0.83 g cm−3) is within
the range reported by Baumler and Zech (1994) (0.6–
1.8 g cm−3), and it increases with a decrease in soil depth
in all the land-use types. Our results agree with the re-
port of several other studies from different land-use
types of the world (Zhang et al. 2014; Francaviglia et al.
2017). Higher soil bulk density in the inner soil layers is
due to less organic matter and weight of the overlying hori-
zons (Grüneberg et al. 2014). The difference in BD of the
different systems could be due to the difference in the par-
ticle size distribution of soils in the study sites, and a similar
finding was reported by Dumig et al. (2006). A slight de-
crease in soil pH with soil depth in the present study coin-
cides with abundant rainfall in the study sites which might
lead to leaching of calcium and magnesium ions in the

lower soil layers thereby leading to a decrease in pH of soil.
Zhao et al. (2018) also reported a reduction in pH of subsoil
due to leaching of calcium and magnesium ions in high
rainfall areas which is in conformity with our report.
Waterlogged soil condition due to paddy cultivation leads
to more acidic soil in the cropland while the presence of
low acidic soil in subtropical forest relates to the slope and
topography of the forest which could not retain water or
moisture for a long time leading to an increase in pH of
soil. Several studies reported that soil pH is affected
by slope, topography, terrain features, and topo-
graphic wetness index in the agricultural landscape
and mountains (Chen et al. 1997) which agrees with
our findings.
Our study indicated a difference in the sand, silt and

clay content with land-use type, and soil depth (Table 2)
which agrees with the report of Yusek and Yuksek
(2011). However, contrasting results were reported from
different land-use types (forest, grassland, cropland, and
bare land) of Turkey (Evrendilek et al. 2004; Korkonc
2014) wherein no significant differences in the soil tex-
ture were observed with the change in land-use types
and soil depth. Sand particles were highest in the AGF
followed by NF and lowest in PC while clay and silt par-
ticles show a reverse trend with a maximum in PC and

Fig. 4 Principal component analysis (PCA) of soil parameters in the three land-use types
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minimum in AGF. The reason for this reverse trend cor-
responds to the sloped position of the former two sites
which enhances soil erosion in contrast to PC which has
terraced beds on sloped land. Slightly higher sand in
AGF than in NF could be due to the removal of herb-
aceous layers making the soil susceptible to erosion. The
role of soil particle size distribution on vegetation, soil
texture quality, and erosion has been reported by
Aderonke and Gbadegesin (2013) which complies with
our findings.
Soil moisture was higher in the PC (37.61%) than in

NF and AGF soils (29.80% and 34.16%, respectively) be-
cause of higher clay content in the former. Such a rela-
tionship was established by many studies (English et al.
2005; Kara and Baykara 2014), but a reverse trend was
reported by Amanuel et al. (2018).
Soil organic carbon (SOC) decreased with soil depth

in all land-use types with maximum content in topsoil
due to the availability of more organic matter from trees.
The presence of trees continuously adds litter in the
upper layer and increases root turnover (Kimmins 2004)
which further enhanced SOC due to positive priming
(Wu et al. 1993). Such a finding was reported by Solei-
mani et al. (2019) which conforms with our report. Also,
annual carbon input in agricultural land through plant
residue, a source of labile carbon, is lower than that of
the natural forest leading to a low soil organic C
(Hooker and Stalk 2008). Low SOC in the agricultural
lands of the present study agrees with the reports of sev-
eral studies (Huang and Song 2010; Reza et al. 2018).
Higher total N in soils of the subtropical forest (NF) and
AGF is related to the presence of the Alnus nepalensis
nitrogen-fixing tree species, as a dominant tree in both
the systems. Rothe et al. (2002) reported that the pres-
ence of N-fixing species increases soil total nitrogen
content. A decrease in available phosphorus with soil
depth in all the systems coincides with a low soil pH
and that enhances P immobilization (Chase and Singh
2014). Soils of the present study indicate phosphorus
limitation which could be due to the acidic nature of
these soils. Transformation of the forest to cropland
results in a reduction in the soil nutrients while the
reverse process, i.e., PC → AGF or to a forest (NF),
increased the nutrient content and soil organic carbon
stock (PC → AGF ~ 5.25 Mg C ha−1 and AGF → NF
~ 1.43Mg C ha−1) and lowers the acidity of the soil.
The microbial biomass carbon in soil of the present

study ranged from 186.54 to 764.30 μg g−1 across the
season, soil depth, and land use (Table 4), and this is
within the reported range of tropical soils (106–2073 μg
g−1) by Henrot and Robertson (1994). The highest MBC
in the forest is due to the production of litter and deep
root systems of the tree allowing more microbial activ-
ities than other agricultural land-use systems

(Arunachalam et al. 1999). Low MBC in the agricultural
systems is because of the different agricultural practices,
resource availability, and plant composition (Van Leeu-
wen et al. 2017). A similar trend was reported by several
studies in various ecosystems (Bardgett 2005; Soleimani
et al. 2019). Furthermore, high moisture in the soil of
paddy cropland (PC) due to waterlogging limits the mi-
crobial activity in the soil. A slightly higher MBC in the
cardamom agroforestry (AGF) than that in PC is because
of the presence of a litter layer in the former retaining
soil moisture that promotes microbial activity. Wu et al.
(2016) also reported a higher MBC in afforested soils
with higher litter inputs which agree with our findings.
A significant positive correlation between soil organic
matter and soil microbial biomass (Table 3) in our study
supports the findings of Chen et al. (2006) that soil
MBC is highly influenced by soil organic matter present
in different ecosystems. Such a result was supported by
many researchers (Wang and Wang 2011; Chen et al.
2017; Padalia et al. 2018). Further, high soil N in the nat-
ural forest and cardamom agroforestry system is due to
the presence of Alnus nepalensis which might result in a
higher microbial biomass C in these sites. Wardle (1992)
concluded that soil N showed more influence than C in
organic C microbial immobilization in most of the
systems which is consistent with our findings.
Distinct seasonal variations in soil MBC showing a

peak value during the rainy (wet) season and a trough in
the winter (dry) season (Fig. 3) in all the land-use types
of the present study agree with the findings of previous
studies from various tropical ecosystems (Devi and
Yadava 2006; Iqbal et al. 2010; Patel et al. 2010).
Seasonal variation of soil MBC is an indicator of
immobilization and mineralization of soil carbon, and an
increase in soil microbial biomass indicates
immobilization, while a decrease denotes mineralization
of nutrients (Yang et al. 2010). Warm and wet weathers
during the rainy season accelerate litter decomposition
as microbial activities and decomposition are at peak
during this season thereby increasing the immobilization
of nutrients by the microbes (Usman et al. 2000; Devi
and Yadava 2010). Also, high relative humidity during
the wet period accelerates the growth of fungi which fur-
ther increases microbial biomass carbon (Acea and
Carballas 1990). Least MBC during the dry and cold
winter seasons coincides with a low temperature and less
moisture in the soil leading to the death of microorgan-
isms that release organic carbon, and freeze-thaw action
can facilitate the decomposition of organic detritus and
mineralization of carbon (Groffman et al. 2001). How-
ever, dry tropical deciduous forest (Singh et al. 1989)
and humid subtropical forest of India (Arunachalam and
Arunachalam 2000) show the highest microbial biomass
C in summer and winter, respectively, indicating that
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the microbial biomass C is highly influenced by the
species composition, location, elevation, and pattern of
rainfall of the site.
Besides land-use type and season, another important

factor controlling MBC is soil depth. MBC was more in
the upper soil layer and less in the subsoil (Fig. 3) in all
the land-use types. This pattern is because of lower car-
bon and nitrogen content in the lower subsoil and more
organic matter in the top humus soil that promotes mi-
crobial activity. Previous studies on MBC across soil
depth in various land-use types also reported similar
findings (Fierer et al. 2003; Fall et al. 2012; Soleimani
et al. 2019). In the present study, soil microbial biomass
carbon was studied to a depth of 30 cm only, and due to
this limitation of soil depth, the presence of the consid-
erable amount of microbial biomass C in the deeper soil
layers, i.e., 40–60 cm soil layer as reported by Soleimani
et al. (2019), cannot be explored and further study is
needed in this context from this region.
Principal component analysis (PCA) on soil physical

and chemical properties of the three different land-
use types of the present study (Fig. 4) shows 75.5% of
the total variation along with the two principal compo-
nents. PCA component F1 explained 49.0%, while the sec-
ond component F2 explained 26.5% of variation. Change
in the land-use type influenced the characterization cap-
acity of soil parameters significantly. PC1 revealed that the
microbial activity in NF is positively influenced by macro-
elements, soil moisture, and temperature while soil pH ex-
hibited an inverse relation with it. PC2 indicates that soil
properties such as texture (silt, clay, and sand) and bulk
density show strong influence with land use. However,
sand and bulk density of soil play an important role in the
cardamom agroforestry system, but silt and clay content
show an inverse relation with sand.
Soil microbial quotient (MBC/SOC) of the present

study agrees with the value of tropical forests, 1.5–5.3%
(Luizao et al. 1992), and temperate forest soils, 1.8–2.9%
(Vance et al. 1987), and those of agricultural soils (2–
6%) reported by Brookes et al. (1985) (Table 5). The
higher microbial quotient of the present subtropical for-
est than that of a humid subtropical forest of Northeast
India, 0.7–1.77% (Maithani et al. 1996), indicates a higher
microbial C immobilization. The microbial quotient varied
significantly with the season and soil depth, and more
immobilization of carbon in the winter season and least
during the rainy season in all the land-use types is due to
the availability of more substrate in winter. An increase in
the microbial quotient with soil depth denotes the pres-
ence of more active carbon pools in the subsurface soil.
Some studies reported that subsurface soil layers act as a
store of microbial inoculation (Yi et al. 2006; Wei et al.
2009). A slight decrease in the microbial biomass quotient
in the second year indicates a decrease in microbial

immobilization of carbon and ultimately organic carbon
in the soil which may be related to the change in environ-
mental factors especially rainfall patterns in the second
year (Fig. 2).
A higher microbial quotient in the cardamom agro-

forestry (AGF) indicates more carbon immobilization
by the microbes from the organic substrates while the
least microbial quotient in the forest (NF) may be a
result of carbon mineralization from the microbes to
support vegetation. Further, the exhibition of the
highest microbial quotient ratio by the cardamom
agroforestry system probably suggests better carbon
immobilization capabilities of microbes in the agri-
silviculture system than in the forest and cropland.
Waid (1999) also reported that microbial diversity is
affected by the type of vegetation, quantity, and
chemical composition. Kara and Baykara (2014) stated
that the MBC/SOC ratio is determined by the amount
of labile organic matter and not by the size of the
microbial biomass carbon, and their findings agree
with our study. A previous study on the microbial
quotient in different land-use types also reported a
higher value of microbial quotient in agricultural soils
than that of forest soils (Kara and Baykara 2014).
Sparling et al. (1992) also suggested the percentage of
organic C present as microbial biomass C as an indi-
cator of changes in the quality of soil organic matter.

Conclusion
The results of the present study revealed that land use,
season, and soil depth significantly influence the physical
and chemical properties of soil and microbial biomass
carbon. Organic matter or litter layer in tree-based sys-
tems increased SOC thereby helping in the restoration
of better soil health and fertility. Microbial biomass car-
bon and soil parameters showed strong seasonality, and
land-use type and soil depth strongly influenced the top-
soil of all the study sites. Forest had the highest micro-
bial biomass C and least microbial quotient while the
reverse trend exhibited by the cardamom agroforestry
system suggests better C immobilization in the agrofor-
estry system. Low SOC and MBC in paddy cropland
confirmed that the lack of organic matter inputs and in-
tensive land management practices such as plowing and
tillage of the soil decreased soil fertility and microbial
activity. Hence, a tree-based agricultural system pro-
motes microbial activity and soil fertility through the
immobilization of nutrients by microbes.
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