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Abstract

The solar wind turbulence and coronal heating have been an open problem in solar physics in spite of

having proposed many theoretical models to explain it. Dispersive Alfvén wave (DAW) is one of the

main candidate which is responsible for inhomogeneous heating of solar wind and coronal plasmas. In

this thesis, we explore some of the magnetohydrodynamic and kinetic properties of nonlinear Alfvén

waves in the context of solar wind, solar corona and the magnetospheric turbulence as well as the heating

of the plasma particles. It studies about the formation of coherent, filamentary Alfvénic structures,

their decay processes, their role in particle heating and acceleration, and their relevance for creating the

power-law spectra of turbulence observed in solar wind and corona. The dynamical equations satisfied

by DAWs follow the form of modified nonlinear Schrödinger equation. The equations were numerically

solved by pseudo-spectral method of simulation by taking Fast Fourier Transform and forward difference

method with predictor corrector scheme. By assuming an energy inputs in the form of pump waves

in the kinetic range or electron inertial range, the author studies numerically the evolution of these

waves that lead to filamentary nonlinear structures, or to creation of spatio-temporal turbulence. The

magnetic filaments of DAWs with high intensity are generated as the waves propagate along the direction

of magnetic field. The transverse modulation of Alfvén waves resulting in coherent structures formation

has a significant effect on the evolution of the turbulent magnetic spectra and density fluctuations.

The perpendicular characteristic scale of the magnetic coherent structurs is of the order of ion Larmor

radius for the kinetic Alfvén waves (KAWs) and it is of the order of electron skin depth for the inertial

Alfvén waves (IAWs). The applications of the dynamical models and numerical simulations of KAWs at

1AU solar wind parameters and coronal loops, and IAWs at the coronal holes are also discussed. The

dynamical motions are dependent on the type of plasma inhomogeneity represented by four different

kinds of initial conditions in our numerical simulation. The perturbation present in the magnetic field

gets the energy from the pump DAWs. As the waves propagate, magnetic coherent structures are

generated when there is a balance between the wave diffraction and nonlinearity effects resulting from

plasma inhomogeneity profile. The collapse of the DAW wave packets takes place when this balance is



x

no more, thereby leading to the transfer of energy from the waves to the particles in the plasma such

as electrons and ions. This transfer of energy at perpendicular wavevector is more for uniform initial

pump KAWs rather than those for non-uniform initial pump waves of Gaussian wavefronts. The transfer

of energy at kinetic small scales when the wavenumber is less than ion gyroradius and comparable to

electron inertial length causes solar wind turbulence and heating of the plasma. In our study, the power

spectral index follows Kolmogorov scale of −5/3 in the inertial range followed by deeper index varying

from -2.5 to -8 in the kinetic dissipation range. The scaling anisotropy of turbulent power spectra in the

kinetic scales of plasma particles can importantly influence the plasma heating and turbulent energy

transfer processes. For the heating of plasma particles via the wave-particle interactions, in general,

the electric power spectra of the turbulent waves are more important than the magnetic power spectra.

For the fluctuating electric/magnetic fields, the distribution function of the charged particles satisfies

the Fokker-Plank equation. By solving this distribution function in steady state condition, we show

that the extension of the distribution thermal tail depends on the wavenumber spectral indices of the

electric/magnetic field power spectra. Therefore, charged particles at the end of the distribution function

thermal tail have higher velocity and thereby energizing the solar coronal or auroral plasmas. Since the

formation of magnetic filaments and it’s collapse are considered as one of the faster way to transport

energy, our present study may provide some clues to understand the phenomena of energy distribution

via dissipation in the solar wind, solar corona and other relevant plasma environments.
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Chapter 1

Introduction

1.1 Background of the Thesis

One of the major issue in astrophysical plasma is the solar coronal heating problem, where

photosphere near the Sun is having temperature of around 5780K only and the solar

corona located far away from the Sun having temperature of around 2 × 106K. Recently,

the analysis of various spacecraft observations such as Solar and Heliospheric Observatory

(SOHO), Transition Region and Coronal Explorer (TRACE), Hinode and Solar Dynamics

Observatory (SDO) have showed that the solar atmosphere is inhomogeneous in magnetic

field and plasma density. Therefore, the magnetic fine structures known as magnetic

filaments which are the manifestation of field aligned plasma density or temperature

gradients play a very significant role in the coronal heating.

Generally, the solar corona can be divided into two regions: coronal holes (open

regions) and coronal loops (closed regions). The solar wind emanating from the Sun

with streams of plasma particles, originates from the coronal holes which are cooler

and less dense. The solar wind permeates throughout the space carrying the associated

magnetic field lines and energetic charged particles. Alfvén, 1942 for the first time,

presented the role of Alfvén waves (AWs) and solar magnetic field lines to understand

solar coronal heating problem. Since then, many physical phenomena to understand the
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coronal heating problem have been proposed. Among these, two prominent theories are:

heating by waves (Narain and Ulmschneider, 1996; Hood et al. 1997; Goossens, 1994;

Priest et al. 2000; Poedts and Goossens, 1989; Ruderman, 1999) and heating by flares or

magnetic reconnections (Jain et al. 2005; Hood et al. 2009; Sturrock et al. 1999; Cassak

and Shay, 2012). The importance of AWs in the heating of solar plasma, particularly

in solar corona, were also reported from many spacecraft data analysis and theoretical

studies (Parker, 1979; De Pontieu et al. 2007; Okamoto et al. 2007; Cirtain et al. 2007).

Pure AWs can not sufficiently dissipate to heat the plasma to reach up to the coronal

temperature because of the large transverse scale length (Wu & Chen 2013). When

the transverse wavelengths of the AWs are comparable to the main kinetic length scales

of the plasma, λe or ρi or ρs (whichever is longer); where λe is the electron inertial

length, ρi is the ion gyroradious and ρs is the ion acoustic gyroradius; the AWs become

dispersive and are known as dispersive AWs (DAWs). The DAWs can be classified into

two categories: the inertial Alfvén waves (IAWs) when λe > ρi or ρs and the kinetic

Alfvén waves (KAWs) when ρs or ρi > λe. Many studies supported that the dispersive

properties of DAWs are mainly responsible for heating the inhomogeneous plasmas such

as solar wind and corona (De Azvedo et al. 1994; Voitenko, 1995; Voitenko, 1996; Elfimov

et al. 1996; Asgari-Targhi and Van Ballegooijen, 2012; Morton, 2015; Testa et al. 2014).

The objective of this thesis is to numerically study the propagation of DAWs in

an inhomogenous solar plasma having field aligned plasma density fluctuations due to

ponderomotive force and Joule heating. The dynamical equations satisfied by the magnetic

field envelopes are coupled with the field aligned plasma density perturbations. These

equations are of the form of nonlinear Schrödinger equation (NLSE). The nonlinearities

in the field envelope equations will generate the localization of the wave packets as

envelope solitons. As the waves propagate, the magnetic field coherent structures collapse

and the dissipation of energies from large scales to small scales via low wavenumbers

to higher wavenumbers takes place. In this thesis, the dynamical equations satisfied
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by the DAWs were solved numerically using pseudo-spectral method of simulation.

The plasma parameters required for the numerical simulations were taken from the

spacecraft data relevent to solar corona and solar wind. The pictorial representations of

the simulation results are presented as field intensity profiles, spectral contour plots of

the magnetic field intensities, phase space plots and spectra of magnetic/electric field

fluctuations. From these we can investigate the formation of the coherent magnetic field

structures, the cascade of energies at different wavenumbers and the effect of initial

plasma inhomogeneities. Transverse collapse of the field aligned magnetic coherent

structures or magnetic filaments are considered as one of the efficient mechanism to

cascade energies from large scales to small scales (Champeaux et al. 1998; Lavender et

al., (2001)). Hence, the study of DAW dynamics leading to the formation of magnetic

coherent structures (filaments) and their collapse will help to understand the turbulent

power spectra and particle acceleration in many regions of solar and magnetospheric

plasmas such as, solar winds, coronal holes, cusp region and the Earth’s magnetosphere.

1.2 Models to Study Plasma

A plasma is a quasineutral gas of charged and neutral particles which exhibits collective

behavior (Chen, 2006). The meaning of ‘quasi-neutrality’ in a plasma is that the overall

charge densities of ions and electrons cancel each other in the equilibrium state. From

the outside, it appears to be electrically neutral. If ne and ni are the electron and ion

number densities, then the quasi-neutrality condition for a plasma consisting of only

singly charged ions, is ni ≈ ne. In the case of plasma consisting of multiple charged ions,

this condition becomes

ne ≈
∑

z

z.nz, (1.1)
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where z is the charge number of a positive ion and nz is the density of z-times charged

ions. In a plasma, electrons and ions can interact in two ways: the short range atomic

forces (during collision) and the long-range electromagnetic forces due to currents and

charge. The existence of long range electromagnetic forces implies that plasma can show

collective behabior, such as oscillations, instabilities etc.

Plasma is formed wherever temperature is high enough or radiation is strong enough

to ionize the atoms. Plasma can be divided into two categories: natural and laboratory

plasmas. More than 99% of matters in the universe is in the plasma state. It includes

the Sun, the stars and the interstellar medium. Plasma physics is responsible for the

formation of the radiation belt at the Earth’s magnetosphere, acceleration of the high

speed solar wind that flows outward from the Sun and the stars, eruption of the sunspots

and solar flares, generation of radio emission from the Sun and some astrophysical objects,

coronal high temperature, heating and the acceleration of cosmic rays and hard/soft

X-rays. Near the Earth’s atmosphere, the ionosphere extending from around 50 km to

1000 km altitudes serves the vast protection from the harmful solar radiations to life

on the Earth. Because of low temperature and high pressure, plasma cannot be formed

naturally near the Earth except under some unusual conditions. The most common

plasma phenomenon encountered near the Earth is lightning. The lighting takes place

when the atmospheric gas is ionized and heated to a high temperature by the electrical

currents present in the discharge. Since the electron and ion recombination rates are

high in lightening plasma, it exists for very small fraction of a second. Another common

example of natural plasma is the aurora formation occurred at high latitude regions of

the Earth atmosphere, mostly within the Arctic and the Antarctic circles. When aurora

is formed in the Arctic circle, they are known as aurora borealis (the northern lights)

and in the Antarctic circle they are called aurora australis (the southern lights). It is
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generated by energetic ions and electrons from solar winds enter the Earth’s atmosphere

and interact with gases at altitudes of around 80 to 400 km.

The laboratory plasmas for basic science and technological applications are found in

high and low pressure electric discharges. Although the concept of plasma was introduced

in 1928 by I. Langmuir and L. Tonks in connection with the partially ionised gas generated

by the electrically connected low pressure inert gas, the early arc discharge plasmas

between two carbon electrodes in air at atmospheric pressure were produced in 1803

by Petrov in Russia and Humphrey Davy in Britain (Conde, (2018)). The laboratory

plasmas have wide range of applications, such as metal welding, thermal cutting, coating

of materials, fluorescent lamps, plasma-screen televisions and material plasma processing.

The design and operation of controlled thermonuclear fusion experiment to produce huge

amounts of energy remains as a scientific and technological challenge till now.

The dynamics of plasma particles are governed by the interactions among the plasma

particles and the internal fields produced by the particles themselves and the applied

external fields. The internal electric fields will be generated as the particles move resulting

the local concentration of positive and negative charges. It can also generate electric

currents and thereby generating magnetic fields also. The laws of classical physics can

be adequately applied to describe the dynamics of the charged particles. In general the

momenta of the charged particles are high and the densities are low. Therefore, the

de Broglie wavelengths of the charged particles are much smaller than the interparticle

distances. So quantum mechanics does not play significant role in these conditions.

Quantum mechanics starts becoming important only at very high densities and very

low temperatures, for example degenarate electron gas available in dwarf and neutron

stars. In order to understand the macroscopic properties of the plasma, the individual

motions of each particles can be neglected as the plasma has a collective behaviour. The

hierarchy of plasma phenomena is shown in figure (1.1). Theoretically, plasma can be

studied by the following methods:
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Fig. 1.1 Hierarchy of plasma phenomena
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1.2.1 Single Particle Motion (Particle Orbit Theory):

In case of very low density plasma, the interactions among the charge particles are not

significant. Therefore, to understand the plasma properties, we can study the dynamics

of individual charge particles in the given field. In general, the equation of motion is

governed by the Lorentz force as

m
dv⃗

dt
= q(E⃗ + v⃗ × B⃗) (1.2)

For non-uniform fields, it can be expanded by Taylor’s series around the guiding centre

and the series can be truncated after retaining the low order terms. This approximation

is known as particle orbit theory. This approach can be applied at low density plasmas,

such as Van Allen radiation belts, cosmic rays, solar corona, particle accelerators, cathode

ray tubes and other low density laboratory plasmas. With the help of fast computers,

we can follow the nonlinear motions of individual charged particles via simulation.

1.2.2 Kinetic Theory

Single particle approach does not consider the collective motions of the charged particles.

Generally, non zero electric fields arise in a plasma self consistently. Therefore, in studying

the plasma dynamics, one must consider the collective motions of many plasma particles.

The kinetic theory is a statistical approach where the state of the plasma is described by

a velocity distribution function fα(r, v, t) which gives the phase space density of particles

of the species at a point in phase space (r, v) at time t

fα(r, v, t) =
∑

β

δ(x − xβ(t))δ(v − vβ(t)), (1.3)

where the independent variables x and v are position and velocity, and (xβ(t), vβ(t))

describes the trajectory of the β-th particles in the phase space. The single particle

moving along a trajectory x(t) can be represented by the following delta function
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δ(x − xβ(t)) = δ[x − x(t)]δ[y − y(t)]δ[z − z(t)]. (1.4)

Similarly, we can write the velocity space distribution function for the particle moving

along the trajectory v(t) as

δ(v − vβ(t)) = δ[v − vx(t)]δ[v − vy(t)]δ[v − vz(t)]. (1.5)

The charge and current densities are given by moments of the distribution function as

ρq =
∑

α

∫
qαfα(r, v, t)dv (1.6)

and

j =
∑

α

∫
qαvfα(r, v, t)dv. (1.7)

The evolution of the distribution function is described by the kinetic equation known

as collisional Boltzmann-Vlasov equation

∂f

∂t
+ v⃗.

∂f

∂r⃗
+ q

m
(E⃗ + v⃗ × B⃗).∂f

∂v⃗
=
(

∂f

∂t

)
c
, (1.8)

where ∂/∂r⃗ and ∂/∂v⃗ are the gradients in configuration and velocity space respectively.

The right hand side of equation (1.8) describes the evolution of the distribution function

due to collision.

1.2.3 Fluid Theory

When the collisions between the plasma particles are very frequent, each species of the

plasma particles follow a local equilibrium distribution function. Under this condition,

each species can be treated as a fluid described by local density, velocity and temperature.

The fluid approach describes the bulk properties of the plasma, so the unique trajectories



1.2 Models to Study Plasma 9

of all the particles as considered in single particle motion are not considered here. Instead

of solving the Boltzmann-Vlasov equation for distribution function and integrating to

get the quantities of interest, we can perform direct integration over Boltzmann-Vlasov

equation and solve for the quantities of interest. This process is called taking the

moments of the Boltzmann-Vlasov equation. The resulting equations are the basis of

fluid theory. Zeroth moment of the Boltzmann-Vlasov equation gives the conservation

of mass (continuity equation), first moment gives the conservation of momentum (force

momentum balance equation) and second moment gives the conservation of energy

(energy transport equation). The fluid model can be either single fluid model known as

Magnetohydrodynamic (MHD) model or multi-fluid model.

1.2.3.1 Two Fluid Model

The fully ionized plasmas are treated more precisely by two-fluid model. Considering the

plasma of two species (ions and electrons) in a fully ionized, isotropic and collisionless

condition, the relevant equations are given as:

The continuity equation is

∂nj

∂t
+ ∇.(nj v⃗j) = 0, (1.9)

where j = i or e for ions and electrons respectively.

The momentum force balance equation is

mjnj

[
∂v⃗j

∂t
+ (v⃗j.∇)v⃗j

]
= −∇pj + qjnj(E⃗ + v⃗j × B⃗). (1.10)

The Maxwell’s equations are:

ϵ0∇.E⃗ = ρq, (1.11)
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∇ × E⃗ = −∂B⃗

∂t
, (1.12)

∇.B⃗ = 0, (1.13)

and

1
µ0

∇ × B⃗ = J⃗ + ϵ0
∂E⃗

∂t
. (1.14)

The equation of state is

pj = Cjn
γj

j , (1.15)

where γ = (cp/cv) is the ratio of specific heats.

The charge density ρq is given by

ρq = niqi + neqe. (1.16)

The current density J⃗ is given by

J⃗ = niqiv⃗i + neqev⃗e. (1.17)

1.2.3.2 One Fluid Model (MHD Model)

Under certain assumptions, plasma can be treated as a single fluid. The approach is

called magnetohydrodynamics (MHD) where it does not differentiate between ions and

electrons. This method is appropriate to apply in slowly varying conditions i.e. having

relatively low frequencies (ω << ωp and ω << ωc, where ωp and ωc are plasma and

cyclotron frequencies respectively). This model can be applied in a highly ionised plasma

with ions and electrons act in unison because of either strong external applied magnetic
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field or frequent collisions among the particles. The MHD model can be applied to highly

conducting plasma fluids, for example, interstellar medium, coronal loops, tokamaks etc.

In this model, the multi-fluid equations are combined to give the set of equations for a

single fluid. Firstly, we define the mass density and mass velocity as

ρm = nimi + neme, (1.18)

and

v⃗ = 1
ρm

(niv⃗imi + nev⃗eme). (1.19)

The simplified MHD equations for an isotropic plasma after neglecting the electron

inertia (for a slowly varying plasma) and the Hall effect that arises because of current

flow in a magnetic field can be written as

∂ρm

∂t
+ ρm∇.v⃗ = 0, (1.20)

ρm
∂v⃗

∂t
= −∇p + J⃗ × B⃗, (1.21)

and

J⃗ = σ(E⃗ + v⃗ × B⃗) (1.22)

These equations must be solved along with the reduced Maxwell’s equations and

equation of state as given below:

∇.E⃗ = 0, (1.23)

∇ × E⃗ = −∂B⃗

∂t
, (1.24)
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∇.B⃗ = 0, (1.25)

∇ × B⃗ = µ0J⃗ (1.26)

and

pρ−γ
m = constant. (1.27)

Here, we have taken charge density ρq = 0 by assuming that there is no accumulation

of space charge.

1.3 Alfvén Waves

In steady-state, the above MHD equations reduce to

∇p = J⃗ × B⃗, (1.28)

∇ × B⃗ = µ0J⃗ (1.29)

and

∇.B⃗ = 0. (1.30)

Eliminating J⃗ we get

∇p = 1
µ0

(∇ × B⃗) × B⃗. (1.31)

The right hand side term of equation (1.31) can be written as
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Fig. 1.2 The magnetic stress can be decomposed into two parts: (i) an isotropic magnetic pressure
B2/2µ0 and (ii) a magnetic tension B2/µ0 along the field lines (Bittencourt, (2004)).

(∇ × B⃗) × B⃗ = (B⃗.∇)B⃗ − 1
2∇(B2) = ∇.(B⃗B⃗) − ∇.

(1
21B2

)
, (1.32)

where 1 is a unit dyad. Now we define the magnetic stress dyad as

τ (m) = 1
µ0

(B⃗B⃗ − 1
21B2). (1.33)

In matrix form, it can be written as
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τ (m) = 1
µ0


(B2

x − B2/2) BxBy BxBz

ByBx (B2
y − B2/2) ByBz

BzBx BzBy (B2
z − B2/2).

 (1.34)

.

Now equation (1.31) can be rewritten as

∇p = ∇.τ (m) (1.35)

or

∇.(1p − τ (m)) = 0. (1.36)

The stress tensor is positive if it is tensile, and negative if it is compressive. The

negative stress tensor can be defined as the magnetic pressure dyad and it plays the same

role as the fluid pressure dyad.

If we consider B⃗ = Bẑ, the off-diagonal elements of the magnetic stress dyad vanish.

τ (m) =


−B2/2µ0 0 0

0 −B2/2µ0 0

0 0 B2/2µ0

 (1.37)

Thus, the principal stresses act like a tension B2/µ0 along the direction of the magnetic

field, and a pressure B2/2µ0 perpendicular to the direction of the magnetic field. We

can also write the stress dyad as

τ (m) =


0 0 0

0 0 0

0 0 B2/µ0

+


−B2/2µ0 0 0

0 −B2/2µ0 0

0 0 −B2/2µ0

 . (1.38)
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In this representation, the magnetic stress can be decomposed into two parts: (i) an

isotropic magnetic pressure PB = B2/2µ0 and (ii) a magnetic tension TB = B2/µ0 along

the magnetic field lines. The magnetic pressure B2/2µ0 can always be combined with

the kinetic fluid pressure. The magnetic tension B2/µ0 can be thought of as elastic cords

acting in the fluid. Therefore, in a perfectly conducting fluid the plasma particles behave

as if they are tied to the magnetic field lines. The theory of stretched string suggested

that this tension may lead to a transverse wave propagating along the field lines, with

speed vA =
√

TB/ρm = B0/
√

µ0ρm , where ρm is the mass density of the conducting

fluid. This wave is known as Alfvén wave which is a low frequency wave that exists in a

conducting magnetized plasma.

Let us consider a system of uniform magnetic fields permeating to a perfectly con-

ducting fluid, which are uniformly flowing initially to the magnetic field lines (figure

1.3(a)-1.3(e)). The fluid flow will distort the magnetic field lines, so magnetic field

lines become curved as shown in figure 1.3(b). The curved magnetic field lines produce

a Lorentz force on the conducting fluid that opposes the next curvature as explained

by Lenz’s Law. According to the Newton’s second law, the Lorentz force changes the

momentum of conducting fluid, which pushes it to minimize the magnetic field line

distortion and restore the system in its equilibrium state.

Theoretically, Alfvén wave was first predicted by Hannes Alfvén (Alfvén, (1942)) in a

perfectly conducting fluid. This prediction is of great importance because it gives a new

option to understand the energy transportation in a conducting medium. Alfvén waves

(AWs) were first experimentally demonstrated over seven years later in liquid mercury by

Lundquist, (1949) and in sodium by Lehnert, (1954). Herlofson, (1950) investigated

AWs and found it to be dispersive in nature. Wilcox et al., (1960) verified the speed of

AWs and reflection of the wave from conducting and insulating end-plates in laboratory

plasma experiment. Before the discovery of AWs only sound or acoustic waves were there

due to the compressibility of the fluid. AWs are prominent due to their ubiquity in space
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Fig. 1.3 Mechanism for forming Alfvén wave: (a) fluid velocity perpendicular to the uniform magnetic
field (b) distorted magnetic lines giving rise to a Lorentz force that retards and eventually reverses the
fluid velocity (c) field lines return to undisturbed position (d) reversed distortion and (e) repeats the
cycle
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and they can be easily excited via a variety of plasma instabilities (Hoshino & Goldstein,

(1989)). AWs were observed at the solar wind (Belcher & Davis, (1971)), the Earth’s

magnetosphere (Voigt, (2002)), the solar photosphere (Nakariakov et al., (1999)) and

the interplanetary plasma (Tsurutani & Ho, (1999)).

There are two distinct types of Alfvén waves, known as torsional and compressional

Alfvén waves. The torsional wave is also known as the shear Alfvén wave (SAW). The

torsional waves do not propagate at frequencies above the ion cyclotron frequency, so

these waves are not appropriate in cold plasma. When the wave frequency reaches near

the ion cyclotron frequency, it is usually called the ion cyclotron wave. The compressional

waves (produced by the combined effects of plasma thermal and magnetic pressures)

are also known as magnetoacoustic or magnetosonic waves. Above the ion cyclotron

frequency the compressional waves are known as whistler waves, while at frequencies

near the electron cyclotron frequencies, they are known as the electron cyclotron waves.

In this thesis, we consider only torsional/ shear Alfvén waves.

The shear Alfvén wave characteristics depend on the length of the ion gyroradius (ρs)

or the electron skin depth (λe) of the plasma. When the transverse wavelengths of AWs

are comparable to the main kinetic length scales of the plasma, such as λe or ρi or ρs

(whichever is longer) where λe is the electron inertial length, ρi is the ion gyroradious and

ρs is the ion acoustic gyroradius, the AWs become dispersive and known as dispersive

AWs (DAWs) (Kletzing, (1994)). The DAWs can be classified into two categories: the

inertial Alfvén waves (IAWs) when λe > ρi or ρs and the kinetic Alfvén waves (KAWs)

when ρs or ρi > λe. The dispersive properties of AWs are determined by a dimensionless

plasma parameter defined as β = 8πn0Te/B2
0 = (me/mi)(2v2

T e/v2
A), where v2

T e = Te/me

is the square of electron thermal speed. For low-β plasma (β << me/mi), which is the

case of IAWs, the wave speed is greater than the electron thermal speed vA >> vT e.

For intermediate-β plasma (me/mi << β << 1), which is the case of KAWs, the wave

speed is less than the electron thermal speed vA << vT e. The IAWs are applicable in
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cold plasmas (e.g., the Earth’s auroral region) whereas the KAWs are applicable in hot

plasmas (e.g., solar corona and solar wind) (Vincena et al., (2004)). In the kinetic limit,

the electrons have enough speed to respond adiabatically to the changes in the wave field.

Many studies have supported that the dispersive properties of DAWs can explain the

plasma particle heating in solar wind and corona (De Azvedo et al. 1994; Voitenko, 1995;

Voitenko, 1996; Elfimov et al. 1996; Asgari-Targhi and Van Ballegooijen, 2012; Morton,

2015; Testa et al. 2014).

The dispersion relation for the DAWs can be defined by the determinant of the 2 × 2

matrix as derived by Lysak & Lotko, (1996):

det


c2

v2
A

1−Γ0(µi)
µi

− n2
∥ n∥n⊥

n∥n⊥
Γ0(µe)
k2

∥λ2
e

(1 + χZ(χ)) − n2
⊥

 = 0. (1.39)

By assumung c2/v2
A >> 1 and k2

∥λ2
e << 1, we can drop the unit terms in the diagonal

elements. The other notations are n∥ = k∥c/ω, n⊥ = k⊥c/ω, µi = k2
⊥ρ2

i , µe = k2
⊥ρ2

e,

χ = ω/k∥ae, ae = (2Te/me)1/2 (average electron thermal speed) and Γ0 is the modified

Bessel function Γ0(µ) = exp−µ I0(µ) and Z is the usual plasma dispersion function.

The solution of equation (1.39) can be written as (Lysak & Lotko, (1996))

(
ω

k∥vA

)2

= µi

1 − Γ0(µi)
+ k2

⊥ρ2
s

Γ0(µe)[1 + χZ(χ)] , (1.40)

where ρ2
s(= c2

s/Ω2
i = Te/miΩ2

i ) is the ion acoustic gyroradius, Ωi is the ion gyrofrequency

and cs is the ion acoustic speed.

For small ion gyroradius, Γ0(µi) ≈ 1 − µi + (3/4)µ2
i , then we have

µi

1 − Γ0(µi)
≈ 1 + 3

4µi. (1.41)

By using χ << 1 for hot electrons and Γ0(µe) ≈ 1 for small electron gyroradius, as

valid in the case of KAWs, equation (1.40) can be written as
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(
ω

k∥vA

)2

≈ 1 + k2
⊥

(
ρ2

s + 3
4ρ2

i

)
. (1.42)

This can be recasted as

(
ω

k∥vA

)2

≈ 1 + k2
⊥ρs

(3
4 + Te

Ti

)
. (1.43)

Here, the term containing 3/4 is from the expansion of Bessel functions and the term

containing Te/Ti is because of electron pressure effect.

For cold plasma where β << me/mi, electron inertia rather than the finite ion

gyroradius or electron pressure is the dominant effect. Therefore, for IAWs, neglecting

the electron gyroradious, we get

1 + χZ(χ) ≈ − 1
2χ2 = −

k∥ve

ω

2
, (1.44)

where ve = Te/me = a2
e/2. Thus, equation (1.40) can written as

(
ω

k∥vA

)2

= µi

1 − Γ0(µi)
−
(

ω

k∥ve

)2
k2

⊥c2

ω2
e

, (1.45)

i.e.

(
ω

k∥vA

)2

= µi

1 − Γ0(µi)
1

1 + k2
⊥

(
c2

ω2
pe

) . (1.46)

By reducing the ion gyroradious to zero, as valid for IAWs, the first factor in equation

(1.46) becomes unity.

(
ω

k∥vA

)2

= 1
1 + k2

⊥

(
c

ωpe

)2 . (1.47)

ω2

k2
∥v2

A

= 1
1 + k2

⊥λ2
e

. (1.48)
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For k2
⊥λ2

e << 1, the IAW dispersion relation reduces to MHD Alfvén wave dispersion

relation (v2
A = ω2/k2

∥ = B2
0/4πρm). At k2

⊥λ2
e >> 1 limit, the IAW loses its electromagnetic

characteristic (Okuda & Dawson, (1973)).

Comparing equations (1.46) and (1.48), we find that the parallel phase velocity of

the wave increases because of the effect of electron pressure and ion gyro radius while it

decreases because of the effect of electron inertia.

1.4 Sun and Solar Wind: Plasmas in the Heliosphere

Plasma in the interplanetary space originates from the Sun and due to its high pressure,

it escapes out as solar wind interacting with the magnetic fields of many planets. The

solar wind extends far beyond the orbit of the outermost planet, Pluto, inflatting a cavity

in the surrounding interstellar medium called the heliosphere. The solar wind is laced

with the solar magnetic field caused by the currents flowing near the surface of the Sun.

So the solar magnetic field is frozen-in into the solar wind. Heliospheric research can give

us about the behabior of the solar wind near the Earth, interaction of the heliosphere

with the interstellar medium, origin and evolution of solar wind and the interstellar

cosmic rays.

1.4.1 The Sun

For an astrophysicist, the Sun is a typical G2 main-sequence star of luminosity V and

brightness of absolute magnitude 4.8. It has surface temperature of about 5,780 K, radius

of about 696, 000km (about 109 times that of the Earth) and mass of about 2 × 1030kg.

The mean distance from the Sun to the Earth is approximately 149.6 × 106km (known

as 1 Astronomical Unit (1AU)). A large and violent eruptions take place on the Sun

due to surface and coronal activities like sunspots, coronal mass ejections (CMEs), solar

X-ray flares, faculae, prominences and coronal holes.
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Fig. 1.4 Shows the internal structures of the sun as clipped from SOHO (Solar and Heliospheric
Observatory) by ESA and NASA.
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The Sun is oblate spheroid in shape and consists mostly hot hydrogens in plasma

state. The hot hydrogen plasma is tenuous and gaseous near the Sun’s surface, which gets

denser down toward the Sun’s core. Equatorial zones of the Sun rotate more rapidly than

high latitude regions, causing differential rotation. Near the equator, the Sun rotates

once in about every 25 days and it is about 36 days near the poles. Since the Sun is the

nearest star to us, we can study not only its electromagnetic radiations but also solar

emissions of different kinds of plasmas and energetic particles. The Sun is a magnetic

variable star that fluctuates on time scales ranging from a fraction of a second to billions

of years. Many forms of solar activities driven by the solar magnetic fields, such as solar

flares, coronal mass ejections, high speed solar winds and solar energetic particles take

place on the Sun.

The internal structure of the Sun is divided into three different regions: core, radiative

and convective zones. Nuclear fusion which is the source of the Sun’s thermal energy,

takes place in the core region located at a radious of 0.3 times the radius of the Sun. The

temperature of the core is about 15MK and the pressure is estimated at 265 billion bar.

At the center of the core the density of the Sun is about 150gm/cm3 (approximately

10 times the density of gold and 150 times of water). The fusion energy is transported

outward from the core to the radiative and convection zones by the process of radiation

and convection respectively. The top layer of the convection zone is the photosphere

where light (photon) is emitted. This visible photosphere has temperature of around

5780K and density of about 10−9gm/cm3.

1.4.2 Solar Corona

Above the photosphere, the solar atmosphere is divided into three regions: (1) the

choromosphere (2) the transition region and (3) the corona. The corona can not be

seen usually by naked eyes because it is hidden by the bright light of the Sun’s surface.

However, it can be seen in visible light during a total solar eclipse as a structured,
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irregular ring of rays around the solar disk. The solar corona extends many thousands

of kilometers from the chromosphere with temperature of around 1.6MK and it emits

X-rays (soft and hard) and ultra-violet radiations. Information about the source of the

radiation is carried by each wavelength of the light emitted. Therefore, soft x-ray detectors

provide a new tool to understand the physics of the solar atmosphere. At the solar

photosphere, the temperature is about 5780K. Instead of decreasing the temperature

as one moves farther away from the heat source, the temperature of the solar corona

is found approximately 1.6MK. This extreme hot temperature of the corona needs an

efficient heating mechanism. Several mechanisms have been proposed to account for this,

but there has not been a fully agreed consensus theory till now (Schmelz, (2003)). The

solar magnetic field plays a very important role in heating of the solar corona. Although,

majority of the solar coronal plasma is confined by the solar magnetic field in the form

of closed loops and twisted arcade-like structures, some coronal plasma expands into the

interplanetary space as a supersonic outflow known as the solar wind.

1.4.3 Solar Wind

The solar wind results from the expansion of the outermost solar atmosphere from

the solar corona, forming a supersonic flow of ionized plasma and magnetic field that

permeates into the interplanetary medium. In the solar corona, plasma is continually

heated to reach the condition that it can not be hold by the Sun’s gravity. For the first

time, the existence of solar wind was predicted by Parker in 1958 and later confirmed and

measured by spacecraft observations (Brandt, (1970); Hundhausen, (1972)); Gringauz

et al., (1960); Neugebauer & Snyder, (1962)). The constituents of the solar wind are

mostly protons, alpha particles (He2+), heavier minor ions (Bame et al., (1977)) and

some negligible presence of neutral atoms (Petelski et al., (1980)). The solar wind

expands upto a heliocentric distance of about 90AU in the solar system (Stone et al.,

(2005); Burlaga et al., (2008)). The solar wind flow can transport the energy over a
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wide range of spectra of magnetic field fluctuations via the nonlinear wave-wave and

wave-particle interactions (Goldstein et al., (1995); Bruno & Carbone, (2005)). The

connection between solar activity and the Earth’s magnetic field disturbance had been

observed since the nineteenth century (Sabine, (1851); Stewart, (1861)). Near the Earth

the average density of solar wind is about 10cm−3.

Mostly solar wind has been categorized into three types (Srivastava & Schwenn,

(2000)) based on the varying boundary conditions (magnetiic field configurations) in the

corona. They are (a) fast wind originating from large coronal holes (open magnetic fields)

with velocities between 500km/s to 800km/s, (b) slow wind originating from closed field

regions such as small coronal holes and active regions, and the boundary layers of coronal

streamers with velocity between 300km/s and 500km/s and (c) the variable transient

solar wind such as coronal mass ejections driven through magnetic flux emergence and

reconnection. The Ulysses spacecraft demonstrated such types of winds originating from

the solar corona (Phillips et al., (1995); McComas et al., (1998); McComas et al.,

(2000); McComas et al., (2003); Ebert et al., (2009)). Although the study of solar

coronal heating problem has been many decades, the physics of the heating mechanism

has not been resolved till now.

1.4.4 The Magnetosphere

The interaction of the supersonic solar wind plasma with the Earth’s dipole magnetic

field forms a cavity, called the Earth’s magnetosphere. The solar wind distorts the

dipole magnetic field of the Earth, compressing the dayside and stretching the nightside

out into a magnetotail. The magnetosphere consists of many interacting subsystems

of both local (scale size of ∼ 1 km) and global (scale size of 3 × 105 km). It can show

turbulent and chaotic behaviors. Figure (1.5) shows the different geographical regions

of the magnetosphere. Since the Earth’s magnetosphere acts as an obstacle to the

supersonic flow of the solar wind, the flow speed becomes subsonic forming a shock wave
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at bow shock region. In this region, the solar wind plasma is heated, compressed and

deflected around the magnetospheric obstacle. The boundary that separates the Earth’s

magnetosphere from the solar wind plasma is called the magnetopause region. In this

region, the pressure of the Earth’s magnetic field balances the dynamical pressure of

the solar wind plasma. The region between the bow shock and the magnetopause is

called the magnetosheath region. The dipolar region or inner magnetosphere consists of

radiation belts and plasmasphere which can trap the plasma energetic charged particles

due to the Earth’s magnetic field. The plasmasphere is of doughnut-shape and it is the

innermost region of the Earth’s magnetosphere. It traps the cold plasma i.e. low energy

charged particles centred around the Earth’s equator and corotats with the Earth. The

plasmasphere extends just above the upper ionosphere upto the altitude of 4.5−8.5 Earth

radii depending upon the geomagnetic conditions. The radiation belts which can trap

highly energetic charged particles, are partly overlap with the plasmasphere. The inner

Van Allen belt extends typically in between 1 − 2 Earth radii and the outer Van Allen

belt is located at the altitudes of around 4 − 7 Earth radii. The dayside magnetosphere

is compressed, while the night side is stretched, leading to form the magnetotail region

of cylindrical volume of length 100′s of Earth radii. The hot plasmas in the magnetotail

region resides inside the plasma sheet region. The magnetotail acts as a magnetic energy

reservoir that pumps several magnetospheric processes such as substorms. The direction

of global energy convection in the magnetosphere is from nightside to dayside as opposite

to the solar wind flow direction. Near the two poles of the Earth’s magnetic field, the

solar wind plasma can penetrate deep inside the magnetosphere along the Earth’s field

lines. These two regions are called cusp regions. When some of the solar wind plasmas

enter inside the Earth’s atmosphere, the ions of the solar wind collide with oxygen and

nitrogen atoms from ionospheric atmosphere, releasing energy to produce visible airglow.

It forms a visible ring called auroral zone around the polar regions of the Earth.
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In the solar wind-magnetosphere coupling, when the solar wind changes in such a

way as to invert the orientation of the IMF lines, the tail of the magnetosphere gets

compressed and it can form magnetic reconnection. Two flows of plasma with anti-parallel

magnetic fields are brought together at an x-type neutral line. The magnetic field lines

are frozen in the plasma at far from the neutral line, however, it is unfrozen near the

neutral line. Therefore, near the neutral line, the magntic field diffuses through the

plasma, giving a new configuration of magnetic field lines. The x-type neutral line has a

separatrix region that divides the inflowing plsama from the outflows of highly energetic

particles. Inside the Earth’s magnetosphere, there are two major regions of reconnection:

(1) on the dayside magnetopause and (2) in the magnetotail. The reconnection helps the

plasma energization process by converting the magnetic energy to particle-wave energy.

Magnetic reconnection occurring on the dayside magnetopause can make the plasma

particles infiltrate the ionosphere to form aurorae glow and can disturb the Earth’s

communication networks.
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Fig. 1.5 Shows the solar wind magnetosphere system of Earth’s environment as clipped from
NASA/Goddard/Aaron Kaase
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1.5 Importance of Alfvén Waves.

Alfvén waves play an important role in the dynamics of space and laboratory plasmas

such as auroral ionosphere (Stasiewicz et al., (2000)), solar coronal plasma heating

(Shukla et al., (2006) (Wu & Yang, (2007)), tokamak plasma heating (Vlad et al.,

(1999)) and large plasma devices (Carter & Dorfman, (2014)). They are mostly observed

in the solar wind (Tu & Marsch, (1995); Coleman, (1966); Unti & Neugebauer, (1968);

Belcher & Davis, (1971)), magnetosheath (Sahraoui et al., (2003)), auroral region

(Stasiewicz et al., (2000)), solar flares (Melrose, (1992)), solar corona (Tomczyk et al.,

(2007)), the Earth’s core (Bloxham et al., (2002)), and the other magnetized planets

(Vinas et al., (1984)).

In magnetosphere, where the magnetosphereic plasma is hot and electron thermal

speed exceeds the Alfvén speed, the kinetic Alfvén wave (KAW) is more appropriate

while in cold plasma at low altitudes up to 3 − 4Re (geocentric distance), where the

electron thermal speed becomes much smaller that the Alfvén speed, then the inertial

Alfvén wave (IAW) is more appropriate.

The Alfvén wave behaves as an energy carrier in space plasma. Hasegawa, (1976)

proposed that AWs are also responsible for particle acceleration in the auroral plasma.

The heating of the solar corona by resonant absorption of AWs can provide the heat

input wave pressure (ponderomotive force) mandatory to heat and accelerate the high

speed solar wind (Hollweg, (1985); Parker, (1991)). The idea of large amplitude Alfvén

waves propagating from corona to solar wind has stimulated that these waves play a

prominent role to energize the solar wind (Belcher & Davis, (1971)).

The solar coronal heating problem has been raised from many decades since the

corona was first demonstrated to consist of plasma with a temperature of around 1 MK.

This temperature is much higher than the Sun’s surface (photosphere) temperature of

approximately 6000 K (Klimchuk, 2006). In various astrophysical phenomana, the

plasma heating and particle energization processes take place. In recent decades there
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are several theories to address the heating mechanisms and the results are compared

with the data available from the space missions. Some prominent theories are wave-wave

interaction(Yukhimuk et al. 2000), wave-particle interaction (Cairns et al. 2005),

magnetic reconnection ( Birn and Priest, 2007; Birn et al. 2012; Parnell and De Moortel,

(2012)), turbulence in solar wind (Velli et al. 2015; Van Ballegooijen et al. 2011;

Retino et al. (2008)) and shock wave formation (Reale, (2014); Feldman et al. (1983);

Longcope and Tarr, (2015); Bareford and Hood, (2015))

The DAWs have parallel electric field (w.r.t. the ambient magnetic field) perturbations

that can accelerate and heat plasma particles. The parallel electric field of DAW leads to

Landau damping and coronal heating in space plasma (Stefant, (1970); Lysak & Lotko,

(1996)). So, the KAW/IAWs are responsible for the transportation of energy from larger

spatial scales to smaller spatial scales (Tsiklauri et al., (2005)). One such type of energy

transportation is due to the transverse collapse of the magnetic coherent structures

leading to the formation of magnetic filaments parallel to the ambient magnetic field

(Champeaux et al., (1997); Champeaux et al. (1998); Lavender et al., (2001); Lavender

et al., (2002)). These filamentary structures are in various regions of the solar and

magnetospheric plasmas (Van Ballegooijen, (2004)), such as the solar corona, near the

Earth’s bow shock (Alexandrova & Mangeney, (2004)) and the auroral regions (Luhr et

al., (1994)).

Many studies suggested that the interaction of AWs with different plasma regimes

can form magnetic filamentary structures (Shukla & Stenflo, (1989); Champeaux et al.,

(1997); Shukla & Sharma, (2001); Shukla et al., (2004)). Several authors have also

studied the filamentation of AWs via nonlinear Schrödinger equation (Champeaux et al.,

(1997); Lavender et al., (2002); Passot & Sulem, (2003)). However, there is still no

consensus on the mechanism that is responsible for coronal heating and it remains as an

unsolved problem (Klimchuk, (2006); Schmelz and Winebarger, (2015)).
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1.6 Turbulence in Space Plasma

The turbulence is a ubiquitous phenomenon in a magnetized plasma fluid. Together

with wavelike phenomena, turbulence exhibits characteristics of self-organization in the

form of coherent structures such as magnetic filaments and electric current sheets in

magnetized plasmas or vortices in rotating fluids. Therefore, the complexity of turbulent

flows can also be studied through their deterministic coherent structures. The turbulent

fluctuations are not fully random, but must necessarily consist of random phase and

coherent phase. For example, the Dirac delta function can be decomposed into a set of

plane waves by Fourier transform. All the constituent waves have the same phase and

amplitude, which is helpful to check the phase coherence in the spatial domain. If the

generated coherent structures are Gaussian bell, then the Fourier transform of the wave

field is again a Gaussian. So, the bell-shaped coherent structures have the wavenumber

range in phase coherence. If the coherent structures move without changing its form,

then the group velocity of the waves should be same. This type of coherent structures no

longer follows the dispersion relation in the linear mode (Nariyuki & Hada, (2006)).

The turbulent astrophysical plasmas and magnetic fields can be found in many parts

of the solar system such as solar atmosphere, interplanetary space, the atmosphere of

stars, and planetary magnetospheres. The study of turbulence in an electromagnetically

conducting fluid is important to solve space plasma physics problems like coronal heating,

acceleration and transport of galactic cosmic rays, and the magnetic reconnection process

in the magnetosphere.

The power density spectrum of turbulence in the solar system environment shows

a power-law in frequency and wavenumber, which represents the energy cascade and

multi-scale interactions (wave-wave interaction or wave-particle interaction). The energy

can be transferred in turbulence by two ways, either direct cascade or inverse cascade

mechanisms. In direct cascade mechanism, the energy is transferred from large scales to

small scales, while in inverse cascade mechanism the energy is transferred from small
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Fig. 1.6 Power spectra of solar wind in collision-less magnetohydrodynamic turbulence (Treumann et al.,
(2015))

scales to large scales. In most of the theories of turbulence, the energy injected into

larger spatial scales is converted into the smaller spatial scales (or eddies) until it reaches

the scales at which the turbulence energy interaction with plasma particles produces

plasma heating.

To understand the intermittency of solar wind turbulence, Treumann et al., (2015)

proposed structure of inertial range spectrum (Figure (1.6) in collision-less MHD Alfvénic

turbulence evolving into a system of scale L, when the energy is injected into large- scale

eddies of wave number kin = 2π/lin >> kL = 2π/L. These structures indicate that the

spectra of fluctuations can be divided into three ranges. At the largest scale, it is “energy

containing scale” that provides the reservoir tapped by the turbulent cascade system.

The inertial range or intermediate range is characterized by power law spectra, where
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the nonlinear, inertial term in the equation of motion dominates over the dissipation.

The inertial range categorized into two regions: Iroshnikov-Kraichnan (IK) inertial

range and Kolmogorov (K)inertial range (Goldstein et al., (1995); Iroshnikov, (1964);

Kraichnan, (1965a)). In IK-inertial range, the energy cascades from large-scale eddies

to small-scale eddies in Alfvénic range, which is determined by the Alfvénic interaction

time (τA = lA/vA) leading to k−3/2 spectral shape (Kraichnan, (1965b)). While in

K - inertial range, the small-scale eddies reach to ion inertial scales (ki = 2π/λi) and

these eddies enter to the three-dimensional Kolmogorov range with spectral shape of

k−5/3 (Kolmogorov, (1991)). Further, when the width of the current eddies reach to

the electron scale (ke = 2π/λe), it is known as dissipation range. At this small scale

dissipation range the fluctuations are converted to thermal energy, which can lead to

heating of the solar plasma. The proposed spectral shape (figure 1.6) also demonstrates

that the two different slopes merge at the spectral break point as confirmed by analyzing

the spacecraft data from Mariner 10, CLUSTER, MESSENGER and Ulysses observations

closer to the Sun (Alexandrova et al. (2009); Perri et al. (2010); Perri et al., (2011)).

Mostly three types of MHD turbulence theories were proposed to understand the

energy transfer process in a magnetized plasma. These are Kolmogorov 1941 theory (K41)

Kolmogorov, (1991), Iroshnikov-Kraichnan Theory (IK) and Goldreich-Sridhar Theory

(GS). From the previous priori MHD turbulence assumptions, the energy spectrum is

function of k, due to isotropic condition. The energy per wavenumber of MHD turbulence

is E(k) = ∈α
′

kβ
′
, where α

′ and β
′ are introduced to correct the physical dimension

for kinetic energy spectrum. The E(k) and ∈ (dissipation rate) has the dimension

[L]3[T ]−2 and [L]2[T ]−3. The obtained solution of energy per wavenumber is α
′ = 2/3

and β
′ = −5/3. From Kolmogorov 1941 theory, the energy spectrum as a function of

wavenumber in the inertial range of isotropic stationary turbulence is written as

E(k) = Ck ∈2/3 k−5/3 (1.49)
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where Ck is the Kolmogorov constant having the value of 1.7 ± 0.2 (Bohr et al.,

(1998)). The similar dimensional analysis was done by (Iroshnikov, (1963); Kraichnan,

(1965a) and it is known as Iroshnikov-Kraichnan (IK) theory. The time scale of wave

interaction can be written as τ ∼ [zk]−1 where z(=
√

b2
0 + v2

0) is the unit of velocity, v0

and b0 are the root mean square of velocity and magnetic field fluctuations respectively.

The dimensions of different parameters are: the energy dissipation rate ∈= [L]2[T ]−3,

the propagation velocity b0 = [L][T ]−1,the wavenumber k = [L]−1 and the energy per

wavenumber E(k) = [L]3[T ]−2. Then using the relation ∈= bα
′

0 kβ
′
E(k)γ ′ , the solution of

one-dimensional isotropic cascade of energy spectra can be written as

E(k) = CIK(∈ b0)1/2k−3/2 (1.50)

where CIK is a constant that can be determined from experiments. IK-theory reasoned

that the magnetic and kinetic energies of AWs are expected to be equal. Thus, if

removing the background magnetic field and forcing turbulent system with kinetic energy

at a scale larger than the inertial range, then the turbulent system returns to K-41

cascade. This has been verified via simulation by Muller et al., (2005)). Therefore, the

background magnetic field reduces the strength of the nonlinear cascade from larger scale

to dissipation scale.

Goldreich & Sridhar, (1995) presented the first anisotropic theory for the inertial

range of strong incompressible MHD turbulence, which is known as GS theory. In this

theory the linear time-scale is proportional to the magnetic field strength and nonlinear

time-scale is proportional to the intensity of nonlinear interaction of magnetic fields.

The assumption of this theory is to consider the nonlinear and linear time-scale as

equal, which is called as “critical balance”. This theory also assumes that the nonlinear

cascade is purely two-dimensional in the perpendicular plane and has a three-dimensional

MHD turbulence characteristic. Thus, the energy spectra in the perpendicular plane

is proportional to E(k⊥) ∝ k
−5/3
⊥ and parallel wave vector is proportional to k∥ ∝ k

2/3
⊥ .
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Then Goldreich & Sridhar, (1995) formulated the three-dimensional energy spectrum in

MHD turbulence as

E(k⊥, k∥) = CGS
v2

A

k
10/3
⊥ L1/3

g
′
(

k∥L
1/3

k
2/3
⊥

)
(1.51)

where CGS is a dimensionless constantand, L is the dimensionless constant and en-

ergy containing at length-scale, g
′ is a dimensionless quantity. When we integrate the

three-dimensional energy spectrum, it reduces to one-dimensional energy spectrum for

perpendicular and parallel wave vectors (Tessein et al., (2009) ) with E(k⊥) ∝ k
−5/3
⊥ ,

E(k∥) ∝ k−2
∥ . Thus, the GS theory and IK theory are contradicting to each other.

The IK and GS MHD turbulence theories are the mostly accepted theories for the

isotropic and anisotropic plasma fluids respectively. There are also many other MHD

turbulence theories related to solar plasmas. These models can be classified as weak

and strong turbulence, and balanced and imbalanced turbulence. The weak turbulence

arises on account of the resonant condition that limit the volume of the interacting wave

vectors. In strong turbulence there is no such limit (Kadomstev, (1965); Galtier et al.,

(2000); Gogoberidze et al., (2009) ). If there is equal amount of energy transferred in the

cascade for both Elsasser variables (z±), then it is balanced turbulence, otherwise it it is

imbalaced turbulence (Lithwick et al., (2007); Perez & Boldyrev, (2009) ). Boldyrev

(2005) proposed strong balanced turbulence having small scale eddies of three-dimensional

anisotropy with energy spectrum E(k⊥) ∼ k
−(5+α

′ )/(3+α
′ )

⊥ where α
′ = 0 for Kolmogrove

theory (K41) and α
′ = 1 for IK theory. There are few distinct theories proposed by

researchers for imbalance turbulence on cascade and dissipation (Chandran, (2008);

Beresnyak & Lazarian, (2009); Perez & Boldyrev, (2009); Podesta & Bhattacharjee,

(2010)).

It is well known that the inertial range hydrodynamic turbulence is isotropic; whereas

with the presence of the background magnetic field, the MHD turbulence becomes

anisotropic (Shebalin et al, (1983); Oughton & Matthaeus, (2005)). However, energy
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transferred along the magnetic field is weak compared to the energy transfered in

the perpendicular direction. The energy of turbulent fluctuation in the solar wind is

not distributed isotropically over the wavenumber space. Matthaeus et al., (1999)

demonstrated that the distributed energy is isotropic with respect to the direction of

the magnetic field at k⊥ρi ∼ 10−3 wavenumber space, which creates “Maltese cross”

pattern on contour plot of magnetic field. These observed results have prompted attempts

to quantify the amount of energy splitted between parallel modes and perpendicular

modes (Bieber et al., (1996)). Mostly 90% power resides in nearly perpendicular

mode. Ruderman et al., (1999) proposed that phase mixing may be responsible for the

perpendicular mode generation. Dasso et al., (2005) decomposed the "Maltese cross"

into two: the dominantly perpendicular mode for slow solar wind and the dominantly

parallel mode for fast solar wind. The slow solar wind originates from active regions of

closed magnetic field (Woo & Habbal, (2005)), whereas fast solar wind originates from

open field lines in coronal holes (Tu et al., (2005)).

1.7 Spacecraft Observations

Various space missions like SOHO (Solar and Heliospheric Observatory) (Domingo et

al., (1995)), Ulysses, Voyager, Helios, Yohkoh, TRACE (Transition Region and Coronal

Explorer), PSP (Parker Solar Probe) (Fox et al., (2016)) have been used to measure

the solar wind and solar coronal parameters. To study the Earth’s magnetosphere

including the auroral region many spacecrafts like FREJA, POLAR, FAST (Fast Auroral

SnapshoT), WIND (Ogilvie et al., (1995)), ACE (Stone et al., (1998)), DSCOVER (Burt

& Smith, (2012)) and CLUSTER have been launched. Ulysses spacecraft was the first

mission to probe the space environment that was launched out of the ecliptic orbit which

goes over the Sun’s poles at every 6.2 years (McComas et al., (1998)). This mission

provided the evidence of the Alfvénic spectra in the polar regions of the Sun (Horbury et

al., (1996)) and in the solar wind (Forsyth et al., (1996)). For the inner heliosphere
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observation the two spacecrafts, Helios-1 in 1974 and Helios-2 in 1976 were launched.

These missions observed primarily in −situ measurements of solar wind properties, cosmic

rays (Gurnett et al., (1975); Rosenbauer et al., (1977)) and coronal mass ejections

(CMEs) (Jackson, (1985)). The Helios and Ulysses observations suggested that the

Alfvénic fluctuation emanating from the solar corona have flat power spectra (∼ f−1)

(Goldstein et al., (1999)). However, it is difficult to observe the spectral anisotropies in

the solar wind plasma by a single spacecraft data (Sari & Valley, (1976); Matthaeus

et al., (1990)). Helios and Voyager spacecraft data suggested that the solar wind is an

actively evolving magneto-fluid (Roberts et al., (1992)). The data of Helios-2 satellite

analyzed by Hollweg et al., (1982) found that Alfvén waves are responsible for high speed

streams. The Freja spacecraft data demonstrated that there are several regions of intense

field-aligned currents having several scale sizes from larger scales to the smaller scales

leading to the Alfvén wave filamentation (Lanchester et al., (2001)). Further CLUSTER

spacecraft observations of current tubes verified this in the magnetosheath regions close

to the bow shock (Alexandrova & Mangeney, (2004)). Some observed data of FREJA

and FAST suggested that the physical nature of strong electric spikes with associated

magnetic fields and density fluctuations in the auroral ionosphere and magnetosphere can

be explained in terms of dispersive Alfvén waves (Louarn et al., (1994); Stasiewicz et al.,

(1997)). The POLAR spacecraft observations have verified the existence of large scale

Alfvén waves in the auroral region of 4-6 Earth’s radii leading to accelerate electrons and

heat the plasma (Wygant et al., (2000)).

1.8 Outline of the Thesis

The objective of the present thesis is to study the DAW dynamics propagating in

an inhomogeous plasma arising from the field aligned density fluctuations because of

ponderomotive force and Joule heating. The dynamical field equations satisfy a modified

nonlinear Schrödinger equation (NLSE). The magnetic wave equations couple with
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the field aligned density perturbations, thereby the nonlinearity in the field equation

leads to the localization of KAW wave packets as an envelope solitons. As the wave

propagates, the transverse collapse of the coherent structures happens and the energy

is dissipated from large scale to small scale via small wavenumber to high wavenumber

space. The numerical simulation in pseudo-spectral method was carried out with the

possible parameters of coronal loop and solar wind plasmas to study the formation

of the coherent magnetic field structures, cascade of energy at different wave number

scales and the effect of initial plasma inhomogeneities. Transverse collapse of the field

aligned magnetic coherent structures is one of the efficient mechanism to transfer energy

from large scale to small scale, as asymptotically predicted by the NLSE for the wave

envelope (Champeaux et al. 1998; Lavender et al., (2001)). Therefore, the magnetic

coherent structures (filaments) generated by DAWs play an important role in explaining

the dissipation range of the turbulent spectra of solar wind and coronal regions. In the

present thesis, non-linear dynamical equations of DAWs have been derived, when the

non-linearity due to ponderomotive force and Joule heating are taken into account. On

account of non-linear effects, the background number density of the plasma gets modified.

This may be accounted by adiabatic and non-adiabatic response of the ion-acoustic wave

propagating along the field lines. In the present thesis, the response has been taken

to be adiabatic of the modified density, which leads to the non-linear evolution of the

DAWs. The consequence of this is that the DAWs may be filamented or modulationally

unstable. The dynamical equations have been solved numerically to get the intensity of

the magnetic filaments evaluated along the filed lines. Magnetic and electric spectra have

been evaluated and particle heating has been calculated by using Fokker-Plank equation.

A chapter wise summary of the thesis is as follows:

Chapter 1: Introduction

In this chapter, we introduce the relevant topics of thesis.
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Chapter 2: Governing Equation

In this chapter we derive the dynamical equations satisfied by dispersive Alfvén waves

by applying the two fluid model of the plasma.

Chapter 3:

This chapter explains about the pseudo-spectral method of simulation used in this

thesis. The well known cubic NLSE was solved numerically and its results were compared

with the analytical results.

Chapter 4: Generation of kinetic Alfvén Wave Turbulence in Solar Wind at 1 AU.

This chapter presents the generation of KAW coherent structures of magnetic fila-

ments applicable to solar wind at 1AU. The inhomogeneity in the magnetic field which

is represented as perturbation in the transverse direction of the magnetic field, takes the

energy from the main pump KAWs and produces the filamentary structures. When the

intensity is high enough, the filaments are broken down and the energy initially confined

to low wavenumbers is redistributed to higher wave numbers, leading to cascade of energy

at small scales less than ion acoustic gyroradius or comparable to electron gyroradius.

The magnetic field spectral profiles are presented from the numerical simulation results.

The dependence of the power spectra on different directions of the wavevector and initial

conditions of the simulation representing the transverse magnetic field inhomogeneity

are studied. The relevance of these results with other spacecraft observations and mea-

surements are also pointed out.

Chapter 5: Transient Dynamics of Kinetic Alfvén Waves and Turbulence in Solar

Coronal Loops

This chapter investigates the transient dynamics of KAWs with modified background

density due to ponderomotive force and Joule heating. A numerical simulation based

on pseudo-spectral method is used to study the evolution of KAW magnetic coherent
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structures and generation of magnetic turbulence. Using different initial conditions of

simulations, the dependance of KAW dynamics to the nature of the inhomogeneous

solar plasma is thoroughly investigated. The saturated magnetic power spectra follows

kolmogorov scaling of k−5/3 in the inertial range, then followed by steep anisotropic

scaling in the dissipation range. The KAW has anisotropy of k∥ ∝ k0.53
⊥ , k∥ ∝ k0.50

⊥ ,

k∥ ∝ k0.83
⊥ and k∥ ∝ k0.30

⊥ depending on the kind of initial conditions of inhomogeneity.

The power spectra of magnetic field fluctuations showing the spectral anisotropy in wave

number space indicate that the nonlinear interactions may be redistributing the energy

anisotropically among higher modes of the wavenumbers. Therefore, anisotropic turbu-

lence can be considered as one of the candidates responsible for the particle energization

and heating of the solar plasmas.

Chapter 6: Inertial Alfvén Wave Turbulence and Particle Heating in Space Plasma

In this chapter, we investigate the transient dynamics of IAWs applicable in low- β

plasmas. A numerical simulation based on pseudo-spectral method is used to study the

evolution of IAW magnetic coherent structures and generation of magnetic turbulence.

To understand the particle heating and it’s dependance on turbulence, Fokker-Plank

equation is studied. The distribution function is sensitive to spectral index and hence it

may enhance the thermal tail of energetic particles in the space plasma.

Chapter 7: Conclusion

This chapter summerizes the overall work of the thesis.





Chapter 2

Governing Equations

In this chapter we derive the dynamical equation for dispersive Alfvén waves while they

propagate in an inhomogenous plasma. Let us consider a low frequency DAW propagating

in x-z plane (k⃗0 = k0xx̂ + k0z ẑ) and an ambient background magnetic field B⃗0 = B0ẑ. By

using two fluid model of the plasma, we can write the momentum-force balance equation

and the consitutive field equations. We also apply the procedure of linearization in

the equations. For that purpose the density, velocity and the electromagnetic fields are

divided into an equilibrium part denoted by the subscript 0 and the perturbation part

denoted by the subscript 1.

n = n0 + n1, v⃗ = v⃗0 + v⃗1, E⃗ = E⃗0 + E⃗1, B⃗ = B⃗0 + B⃗1 (2.1)

In the equilibrium plasma, the undisturbed density, velocity and fields are constant

and uniform, i.e.

∇⃗n0 = v⃗0 = E⃗0 = 0 (2.2)

and
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∂n0

∂t
= ∂v⃗0

∂t
= E⃗0

∂t
= 0. (2.3)

Adopting the procedure of linearization i.e. neglecting the terms containing the higher

powers of the perturbating amplitude factors we can write the equations as:

Equation of motion:

∂v⃗j1

∂t
≈ qj

mj

E⃗1 + qj

cmj

(v⃗j1 × B⃗0) − γjkBTj

nj0mj

∇⃗nj1. (2.4)

Continuity equation:

∂nj1

∂t
+ nj0∇⃗.v⃗j1 ≈ 0. (2.5)

Faraday’s law:

∇⃗ × E⃗1 = −1
c

∂B⃗1

∂t
. (2.6)

where j = i, e represents either ions or electrons, v⃗ is the velocity, q is the charge, m is

the mass, c is the speed of light in vacuum, γ (cp/cv) is the ratio of the specific heats

and kB is the Boltzmann constant. Furthur n represents the plasma number density. We

assume the quasineutrality condition i.e. ne0 ≃ ni0 ≃ n0 and ne1 ≃ ni1 ≃ n1 and the

isothermal condition i.e. γe = γi = 1.

From equation (2.4), we get the perpendicular components of the electron and ion

velocities with using low frequency approximation (ω << ωci, ωce where ωci = eB0/mic

and ωce = eB0/mec are the ion and electron cyclotron frequencies respectively) as follows:

(v⃗e1)⊥ ≈ c

B0
E⃗1⊥ × ẑ − kBTe

meωcen0
ẑ × ∇⃗⊥n1 (2.7)

and
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(v⃗i1)⊥ ≈ e

ωcimi

[
E⃗1⊥ − kBTi

en0
∇⃗⊥n1

]
× ẑ − iω

ω2
ci

e

mi

[
E⃗1⊥ − kBTi

en0
∇⃗⊥n1

]
. (2.8)

The parallel component of electron velocity is

∂(v⃗e1)z

∂t
= −eE1z

me

− kBTe

men0

∂n1

∂z
. (2.9)

The current density is given by

J⃗ ≈ en0(v⃗i1 − v⃗e1). (2.10)

Now we will drop the subscript ”1” while representing the perturbating parts of v⃗, E⃗

and B⃗ except while representing the varying part of n.

The y-component of Faraday’s law is

1
c

∂By

∂t
= ∂Ez

∂x
− ∂Ex

∂z
. (2.11)

Using the conservation of current density equation, ∇⃗.J⃗ = 0, and writing the parallel

and perpendicular components of current density as J⃗z ≈ −en0v⃗ez and J⃗⊥ ≈ en0(v⃗i⊥ −

v⃗e⊥), we get

∂2Ex

∂x∂t
= B0ωci

c

(
∂vez

∂z

)
. (2.12)

By taking the z-component of Ampere’s law and eliminating the parallel component

of current density and substituting it in equation (2.12), we get,

∂Ex

∂t
= −v2

A

c

(
1 − n1

n0

)
∂By

∂z
, (2.13)

where vA(=
√

B2
0/4πn0mi) is the Alfvén speed.
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Now we can calculate the time derivative of parallel electric field from the parallel

component of Ampere’s law. In that relation we substitute the parallel component of

electron velocity from equation (2.9) and the continuity equation (2.5) to get

∂Ez

∂t
= −v2

teλ
2
e

c

∂

∂x

∂2By

∂z2 , (2.14)

where λe(= c/ωpe) denotes the electron inertial length (collisionless skin depth), ωpe(=√
4πn0e2/me) denotes the electron plasma oscillation frequency and vte

(
=
√

kBTe

me

)
denotes the electron thermal speed.

We differentiate equation (2.11) w.r .t. time and inserting the z-derivative of equation

(2.13) and the x-derivative of equation (2.14), we get the governing equation of DAWs

propagating in an inhomogenous plasma medium as ( Bellan & Stasiewicz 1998; Shukla

et al. 1999; Shukla & Stenflo, 2000a, Sharma & Kumar, 2011)

∂2By

∂t2 = λ2
e

∂4By

∂x2∂t2 − v2
Aρ2

s

∂4By

∂x2∂z2 + v2
A(1 − δns

n0
)∂2By

∂z2 , (2.15)

where ρs (= λevte/vA = cs/ωci) denotes the ion acoustic gyroradius at electron tempera-

ture and cs (=
√

kBTe/mi) denotes the ion sound speed. In the governing equation, only

one component of magnetic field can be solved. The other components of the magnetic

field can be found from the Faraday’s law.

We take the Fourier transform of equation (2.15) and get the dispersion relation of

DAWs as

ω2

k2
0zv2

A

= 1 + k2
0xρ2

s

1 + k2
0xλ2

e

. (2.16)

The governing equation (2.15) is valid for any arbitrary β plasmas. In low-β plasma

(β << me/mi) regime, the DAW is known as inertial AW. In this β regime, the above

governing equation reduces to
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∂2By

∂t2 = λ2
e

∂4By

∂x2∂t2 + v2
A(1 − δns

n0
)∂2By

∂z2 . (2.17)

By taking Fourier transform, the dispersion relation of IAWs comes out to be

ω2

k2
0zv2

A

= 1
1 + k2

0xλ2
e

. (2.18)

In intermediate-β plasma (me/mi << β << 1) regime, the DAW is known as kinetic

AW. The governing equation for the KAWs in this β regime reduces to

∂2By

∂t2 = −v2
Aρ2

s

∂4By

∂x2∂z2 + v2
A(1 − δns

n0
)∂2By

∂z2 , (2.19)

The dispersion relation of KAWs (Shukla & Stenflo, 2005) can be recovered by taking

Fourier transform to equation (2.19) as

ω2

k2
0zv2

A

= 1 + k2
0xρ2

s. (2.20)

The governing equations given above are satisfied by the perturbed magnetic fields of

the KAW/IAW. It is also equally valid for a plane wave field superimposed by a nonuniform

perturbation. One of the possible solution is a plane wave (linear polarisation) modulated

by a slowly varying envelope B′
y(x, z) which can be expressed as

By = B′
y(x, z, t)ei(k0xx+k0zz−ωt) (2.21)

where B′
y(x, z, t) is amplitude of the y component of the magnetic field. We assume

that it is spatially slowly varying in comparison to the exponential part. Now we

substitute it in equation (2.19) satisfied by KAWs to get

i
2ω

v2
Ak2

0z

∂B′
y

∂t
+ i

2
k0z

∂B′
y

∂z
+ ρ2

s

k2
0x

k2
0z

∂2B′
y

∂z2 + ρ2
s

∂2B′
y

∂x2 + 2ik0xρ2
s

∂B′
y

∂x
+ n1

n0
B′

y = 0. (2.22)
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Again we substitute the slowly varying envelope solution given by equation (2.21) into

the dynamical equation satisfied by IAWs (equation 2.17) to get

2i
ω

v2
Ak2

0z

(1 + k2
0xλ2

e)
∂B

′
y

∂t
+ 2i

k0z

∂B
′
y

∂z
+ 1

k2
0z

∂2B
′
y

∂z2 − 2ik0xλ2
eω

2

k2
0zv2

A

∂B
′
y

∂x
− λ2

eω
2

k2
0zv2

A

∂2B
′
y

∂x2 + n1

n0
B

′

y = 0.

(2.23)

In an inhomogeneous plasma, a magnetic gradient force known as ponderomotive force

acts upon the plasma. The effect of this force and electron Joule heating leads to density

perturbation (Shukla & Stenflo 1999). Magnetic field aligned density perturbations in

the form of density humps and cavities were found in laboratory and space plasmas

(Gekelman et al. 1999). Considering slow changes in time with respect to density changes

(adiabatic limit), the particle number density perturbation to the background plasma

density becomes a function of magnetic field i.e. n1 = f(B′
y). Then the above two

equations (2.22) and (2.23) are of the form of NLSEs.

In the next chapters, the above two equations (2.22) and (2.23) are numerically

solved with appropriate techniques and relevant plasma parameters applicable to the low

and intermediate β plasma regimes. The numerical simulation results are represented

graphically and interpreted to understand the DAW dynamics and other physical and

observable processes happening in space plasmas. Furthur, the numerical results are

compared with the results obtained from the spacecraft data.



Chapter 3

Numerical Methods

3.1 Introduction

Our model equations satisfied by the DAWs are of the form of nonlinear Schrödinger

equations (NLSEs). In many physical nonlinear systems, the NLSE is the envelope wave

equation. For example, in optical fibers the propogation of solitary waves is modeled by

one dimensional NLSE (Agrawal, (2013)). The two spatial dimensional NLSE is used to

model in many areas of plasma dynamics such as collapse of plasma waves (Zakharov,

(1975)) and self-focusing of laser beams (Sun et al., (2008)). The NLSE in three spatial

dimension can be used to model Bose-Einstein condensation (Antoine, (2013), Bao,

(2003), Pitaevskii, (2003)). Recently, three dimensional NLSE has been used to study

the propagation of spatial solitons in multi - mode fiber (Dai, (2010)) and nonlinear

interactions of space plasma waves (Sharma and Gaur, (2014)). The NLSEs are exactly

solvable because they are Hamiltonian integrable (Hilfer, (1999)). But this intergrability

could be destroyed if the physical system is disturbed by some perturbations (Hu et al.,

(2011), Hoz and Vadillo, (2008) Hoz and Vadillo, (2016)). Non-integrable system may

lead to chaos. Since we have considered the inhomogenious plasma environment of DAWs,

many kinds of perturbations in magnetic fields and density can be present. So our model

equation in the form of NLSE is not exactly integrable, therefore, we seek a suitable
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numerical method to solve it. The numerical methods that can solve the nonlinear partial

differential equations can be divided into two: finite difference methods and spectral

methods. Among the finite difference methods, the Cranck-Nicholson implicit (Chang et

al. (1999)) and Hopscotch (Gourlay, (1971)) methods are commonly used. The spectral

methods are more computationally efficient than most of the finite difference methods

(Agrawal, (2013)). The spectral methods have the advantage of computing the nonlinear

terms efficiently using the Fast Fourier Transform. The model equation that we have

derived in the last section will be numerically solved by using the pseudo-spectral method

of simulation. It is known as pseudo-spectral method because the Fast Fourier Transform

is taken only on speciefied discrete points in contrast to continous Fourier transform. In

the spectral method, the differential equation is represented in the terms of a basis of some

vector space and the differential equation is redused to an ordinary differential equation

systems for the coefficients. Applying this idea, the continuous Fourier transform and

finite element methods can be considered as spectral methods. But these methods have

the disadvantage that the multiplication in the spatial variables becomes convolution,

producing a big matrix-vector multiplication. In the pseudo-spectral method, the solution

is represented in terms of the basis but the equation is imposed only at discrite points.

Therefore, it can be said that the pseudo-spectral method is a spectral method in discrite

space. Using the pseudo-spectral method, one can solve the non-linear partial differential

equations very fast. For example, if we use spectral method to compute the nonlinear

term f(x)ux(x, t), where x is continuous, we have an infinite convolution. However, in

pseudo-spectral method, the discrite Fourier transform (DFT) can be performed by using

the Fast Fourier transform (FFT) and again using the inverse FFT, the function can be

converted to real space (x-space). In this way, the nonlinear terms are calculated in real

space first for every step and it saves a lot of time.
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3.2 Pseudo-Spectral Method

For a vector of discrete numbers {f [m, n]} of size M × N with equally spaced in the

directions of m and n respectively, the discrete Fourier transform (DFT) is given as,

F [k, l] = 1√
MN

N−1∑
n=o

M−1∑
m=o

f [m, n] exp−2πi
(

mk

M
+ nl

N

)
, (3.1)

for 0 ≤ k < M − 1 and 0 ≤ l < N − 1.

By applying inverse DFT, we can get back the vector f [m, n] as

f [m, n] = 1√
MN

N−1∑
l=o

M−1∑
k=o

F [k, l] exp2πi
(

mk

M
+ nl

N

)
, (3.2)

for 0 ≤ m < M − 1 and 0 ≤ n < N − 1.

The computation of DFT of N points from the defination requires O(N2) operations.

However, the algoritham of fast fourier transform (FFT) requires only O(Nlog2N)

operations (Press et al., (1996)). If the number of data is large, this difference in

the number of operations will result huge difference in computational speed and time.

Therefore, the numerical technique of FFT is widely used in solving many scientific and

engineering problems.

The main idea of 2D-FFT is to transform each row and each column by its corre-

sponding 1D-FFT. Hence, a 2D-FFT of size M × N requires (M+N) 1-D FFT. The

FFT subroutine we used in our present numerical code was taken out from the book,

Numerical Recipes in FORTRAN authored by Press et al., (1996).

Let us consider the exactly solvable cubic 2D-NLSE as

i
∂u

∂t
+ ∂2u

∂x2 + ∂2u

∂y2 + |u|2u = 0, (3.3)

where u is complex-valued function.
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To solve the problem by pseudo-spectral method, a bounded domain is required. For

an unbounded domain, as in our case, we consider the periodic domain i. e. functions

with fixed periodicity.

Let us assume that u(x, y, t) satisfies the periodic boundary conditions with period

[−π, π].

Fig. 3.1 Space and wave-number domains for the DFT

Let N be a positive integer, then we divide the interval [−π, π] in the x-direction into

N equally spaced grid-points with dx = 2π/Nx and xj = j(dx), for any j (j = 0, 1, ....N).

The grid points in the x-direction are

x−N/2 = −π, x−N/2+1 = −π+dx, ....., x0 = 0, ....; ., xN/2−1 = π−dx, xN/2 = π.

In the same way for y-direction also with spacing distance dy = 2π/Ny and grid point

yk = k(dy), for any k(k = 0, 1...N). Given u(x, y, t), our next step is to find the value of

u(x, y, t + ∆t).

For the 2D FFT, we have

ûmn = Fm,n(ujk) = 1
NxNy

Nx−1∑
j=o

Ny−1∑
k=o

ujke−i(mxj+nyk), (3.4)

for −Nx

2 ≤ m ≤ Nx

2 − 1 and −Ny

2 ≤ n ≤ Ny

2 − 1
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and

ujk = F −1
jk (ûmn) =

Nx
2 −1∑

m=− Nx
2

Ny
2 −1∑

n=− Ny
2

ûmnei(mxj+nyk), (3.5)

for j = 0, 1, 2....Nx − 1 and k = 0, 1, 2, ...Ny − 1.

Now taking the full and partial derivatives, we get

du

dt
= dujk

dt
=

Nx
2 −1∑

m=− Nx
2

Ny
2 −1∑

n=− Ny
2

dûmn

dt
ei(mxj+nyk) (3.6)

∂2u

∂x2 = ∂2ujk

∂x2 =
Nx

2 −1∑
m=− Nx

2

Ny
2 −1∑

n=− Ny
2

ûmn(−m)2ei(mxj+nyk) (3.7)

∂2u

∂y2 = ∂2ujk

∂y2 =
Nx

2 −1∑
m=− Nx

2

Ny
2 −1∑

n=− Ny
2

ûmn(−n)2ei(mxj+nyk) (3.8)

Now we can evaluate uxx + uyy as

F −1[(m2 + n2)F{u(x, y, t)}] = F −1[(m2 + n2)ûmn] (3.9)

Applying the leap-frog time step, the 2D NLSE appeared in equation (3.3) can be

expressed as

ûmn(t + ∆t) = ûmn(t − ∆t) − 2i∆t(m2 + n2)ûmn(t) − 2i∆t ̂{|ujk(t)|2ujk(t)}mn (3.10)

Here it should be mentioned that the time steps are calculated in Fourier space. For

the linear terms, the FFT is directly applied while for the nonlinear term, first the local

product in real space is taken, then it is transformed to Fourier space. It is followed

for every time steps using inverse FFT and direct FFT. This part is the essence of

quasi-spectral method.
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Following the ideas of Fornberg and Withham, (1978), the linear term can be modified

to get

ûmn(t + ∆t) = ûmn(t − ∆t) − 2i sin{−∆t(m2 + n2))}ûmn(t) − 2i∆t ̂{|ujk(t)|2ujk(t)}mn

(3.11)

The reason for this modification is explained as follows. When the wavenumbers are low

enough, all consistent difference approximations to a differential equations are accurate.

As the wavenumber increases, this accuracy reduces rapidly. This losing accuracy with

increasing wavenumber is particularly applied to the leap-frog time difference in equation

(3.10). Considering the high wavenumber condition in equation (3.10), the linear term
∂2u
∂x2 + ∂2u

∂y2 dominates the nonlinear term |u|2u. Therefore, the equation reduces to

ûmn(t + ∆t) = ûmn(t − ∆t) − 2i∆t(m2 + n2)ûmn(t), (3.12)

which is the approximation of the following equation in Fourier space

∂u

∂t
+ ∂2u

∂x2 + ∂2u

∂y2 = 0. (3.13)

Similarly equation (3.11) reduces as

ûmn(t + ∆t) = ûmn(t − ∆t) − 2i sin{∆t(m2 + n2)}ûmn(t) (3.14)

The equation (3.12) is still having the differencing error but it is not in equation (3.14)

because it is exactly satisfied for any solution of equation (3.13), i.e. for any m, n and

∆t, no matter how large the values are. It can be shown from the solution of equation

(3.13) as

u(x, y, t) = ei(kxx+kyy−ωt) = ei(kxx+kyy−(k2
x+k2

y)t). (3.15)
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Now, from this we have

u(x, y, t + ∆t) = e−i(k2
x+k2

y)∆tu(x, y, t) (3.16)

u(x, y, t − ∆t) = ei(k2
x+k2

y)∆tu(x, y, t) (3.17)

Therefore,

u(x, y, t + ∆t) − u(x, y, t − ∆t) = −2i sin{∆t(k2
x + k2

y)}u(x, y, t) (3.18)

Now, substituting all these, our main equation to solve the given 2D cubic NLSE

becomes

ûmn(t + ∆t) = ûmn(t − ∆t) − [ei(m2+n2)∆t − e−i(m2+n2)]ûmn(t) − 2i∆t ̂{|ujk(t)|2ujk(t)}mn

(3.19)

The algorithm to implement equation (3.10) and (3.19) is described as follows:

First we define the Fourier transform of the initial condition as

û1 = ûmn(t = 0) (3.20)

Next we define û2 to represent ûmn at t = ∆t. Here, for the sake of convenience, we

drop the subscript mn to be appeared in u to denote Fourier space.

Lastly for t = 2∆t to (numsteps × ∆t), we do the following by defining the inter-

mediray value û
′

(1) û
′ = ∆t(m2 + n2)û for equation (3.10).

(or û
′ = sin{∆t(m2 + n2)}û) for equation (3.11)

(2) û2 = û

(3) û3 = û1 − 2iû
′ − 2i∆t{ ̂|u2|2u2}
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(4) û1 = û2

û2 = û3

For time integration, We apply Newton’s forward method of iteration. To get better

accuracy, we apply predictor- corrector method that defines the values of ûmn(t) at

a particular time t as the average of ûmn(t − dt) and ûmn(t + dt). Finally, we get

u(x, y, t) = F −1(ûmn(t)).

The difference between equations (3.10) and (3.11) is the approximation of the linear

part of equation (3.3). The linear part of equation (3.11) has to be satisfied by any

solution of equation (3.13). Equation (3.10) is linearly stable for ∆t
(∆x)2 < 1

π2 . However,

according to linear analysis, the equation (3.11) is unconditionally stable (Fornberg and

Withham, (1978)).

3.3 Numerical Test

To illustrate the efficiency and determine the accuracy of the numerical method we are

applying, we performed the numerical soluions of 1D & 2D cubic NLSEs keeping the

benchmark of the algorithm against the analytical solutions. After fully testing the

algorithm and comparing with the well known results, the algorithm was further modified

to solve our model equations (2.22) and (2.23) satisfied by the DAWs.

The 1D cubic NLSE is given by

i
∂u

∂t
+ ∂2u

∂x2 + |u|2u = 0, (3.21)

for x ∈ R, t ≥ 0.

The cubic NLSE is a general envelop wave equation that describes the various nonlinear

physical phenomena, such as hydrodynamics, laser beam interactions, nonlinear optics,

wave generations etc. Here, u is the complex amplitude and its second spatial derivative
∂2u
∂x2 represents the nonlinearity of the medium and the cubic term, |u|2u represents the



3.3 Numerical Test 55

dispersion of the medium. When the nonlinear effect is balanced with the dispersion

phenomenon, the soliton solution is formed. We choose the following single soliton

solution (Mahdy, (2016)) as the exact analytical solution of the cubic 1D NLSE to run

the current test.

u(x, t) =
√

2α exp
{

i
[1
2cx −

(1
4c2 − α

)
t
]}

sech{
√

α(x − ct)}, (3.22)

where α is a constant and c is the speed of the soliton.

To run the test, the equation (3.22) was solved by pseudo-spectral method in the

spatial domain −30 ≤ x ≤ 30 with grid points of 128, and taking α = 0.01 and c = 0.1

for t ∈ [0, 100] with ∆t = 5 × 10−5. For this purpose, the following initial condition of

the simulation was used

u(x, 0) =
√

2α exp
(1

2icx
)

sech{
√

αx}. (3.23)

The boundary conditions are

u(L, t) = u(−L, t) = 0 for t ≥ 0. (3.24)

To check the efficiency, we compare the analytical solution against the numerical

solution. First, we compare the wave amplitude profiles ( |u| vs (x, t)) in figure (3.2).

Further, in table (3.1) and (3.2), the real and imaginary values of u(x, t) at different

locations of x and fixed t = 10 are shown for both the analytical solution and numerical

solution. The absolute error comes out to be of the order of ∼ 10−5.

Next, we consider the 2D cubic NLSE

i
∂u

∂t
+ ∂2u

∂x2 + ∂2u

∂y2 + |u|2u = 0, (3.25)

which has the analytical solution as (Sweilam, (2007))
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u(x, y, t) =
√

2αei(0.5c(x+y)−(0.25c2−α)t)sech[
√

α(x + y − ct)], (3.26)

where α is a constant and c is the speed of the soliton. The numerical simulation of

equation (3.26) was performed using the pseudospectral method with the initial condition

of the simulation as

u(x, y, 0) =
√

2αei(0.5c(x+y))sech[
√

α(x + y)] (3.27)

with boundary conditions

∂u(−L, y, t)
∂x

= ∂u(L, y, t)
∂x

= 0 (3.28)

and

∂u(x, −L, t)
∂y

= ∂u(x, L, t)
∂y

= 0, t ≥ 0. (3.29)

For numerical purpose, we took L = 40, c = 0.1, α = 0.01, ∆t = 5 × 10−5 and the

number of grid points as 256 × 256. The wave amplitude profiles (|u| vs (x, y) at a fixed

t = 10) are shown in figure (3.3) for both the analytical and numerical solutions. Figure

(3.4) shows |u| vs (x, t) at a fixed value of y = 35. Table (3.2) and (3.3) represent the

comparision of the values of u(x, y, t) (both real and imaginary parts) at y = 35 and

t = 10) between the analytical solution and numerical solution. The absolute error is

of the order of ∼ 10−5. The comparison of the numerical results we generated with the

analytical results justifies the efficiency and accuracy of the pseudospectral method.



3.3 Numerical Test 57

Fig. 3.2 Wave amplitude profiles (|u| vs (x, t)) of 1D cubic NLSE (a) analytical solution and (b) numerical
solution.

x Analytical solution Numerical solution Absolute error
-30 0.001847389 0.001847179 2.1 × 10−7

-20 0.020537122 0.020526231 1.0 × 10−5

- 10 0.077218400 0.07722730 8.8 × 10−6

0 0.140321602 0.140311501 1.0 × 10−5

10 0.082814068 0.082823057 8.9 × 10−6

20 0.019685191 0.019676181 9.0 × 10−6

30 -0.000065223 -0.000054112 1.1 × 10−5

Table 3.1 Real parts of u(x, t) at different locations of x and fixed t = 10 obtained by solving 1D cubic
NLSE.
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x Analytical solution Numerical solution Absolute error
-30 - 0.0125811 - 0.0125700 1.1 × 10−5

-20 - 0.0272522 - 0.0272412 1.1 × 10−6

-10 - 0.0349477 - 0.0349366 1.1 × 10−5

0 0.0105439 0.0105328 1.1 × 10−5

10 0.0536673 0.0536562 1.1 × 10−5

20 0.0363963 0.0363852 1.1 × 10−5

30 0.0155158 0.0155236 7.7 × 10−6

Table 3.2 Imaginary parts of u(x, t) at different locations of x and fixed t = 10 obtained by solving 1D
cubic NLSE.
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Fig. 3.3 Wave amplitude profiles (|u| vs (x, y) of 2D cubic NLSE at t = 10 (a) analytical solution and
(b) numerical solution.

Fig. 3.4 Wave amplitude profiles ( |u| vs (x, t)) of 2D cubic NLSE at y = 35 (a) analytical solution and
(b) numerical solution.
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x Analytical solution Numerical solution Absolute error
-30 0.018590 0.018139 2.2 × 10−5

-20 0.004771 0.004611 5.0 × 10−6

- 10 -0.001356 -0.001371 1.5 × 10−5

0 -0.003368 -0.003326 4.2 × 10−5

10 -0.003462 -0.003406 5.5 × 10−5

20 -0.002829 -0.002779 4.9 × 10−5

Table 3.3 Real part of u(x, y, t) at different locations of x and fixed values of y = 35 and t = 10 obtained
by solving 2D cubic NLSE

x Analytical solution Numerical solution Absolute error
-30 0.0415399 0.0408053 8.8 × 10−6

-20 0.0276667 0.0271411 5.6 × 10−6

-10 0.0170825 0.0167433 9.2 × 10−6

0 0.0098585 0.0096555 7.0 × 10−6

10 0.0052928 0.0051795 1.3 × 10−5

20 0.0025918 0.0025335 5.8 × 10−5

Table 3.4 Imaginary parts of u(x, y, t) at different locations of x and fixed values of y = 35 and t = 10
obtained by solving 2D cubic NLSE.



Chapter 4

Generation of Kinetic Alfvén Wave

Turbulence in Solar Wind at 1 AU

4.1 Introduction

From many observations and studies (Li et al. 2015; Tu & Marsch 1993; Bavassano

et al. 1998; Neugebauer 2004), it was suggested that the Alfvénicity measured by the

correlation of the field and velocity components decreases with solar distances. Alfvénicity

of around 3 and 0.7 were found at a solar distance of 0.3 AU, (Tu et al. 1990; Marsch &

Tu 1990) and 1AU (Tu & Marsch, 1995) respectively. It shows that the plasma becomes

more magnetized as the solar wind expands. However, the existence of large-amplitude

Alfvén waves near 1AU, with the Alfvénicity of around 1 were pointed out by Wang et

al. 2012. Besides this, various observations (Podesta 2013; Howes et al. 2006; Howes et

al. 2008b; Howes et al. 2008c; Howes et al. 2011b; Schekochihin et al. 2008; Schekochihin

et al. 2009; Boldyrev and Perez, 2012) have shown the existence of KAWs and its

turbulence in the solar wind at 1AU and beyond that extending throughout of the

heliosphere . Polar spacecraft measurements in the magnetotail region ( Wygant et

al. 2002 ) and inner magnetosphere at 6.6RE (Sergeev et al. 2000), observations from

UVCS (Ultraviolet Coronograph Spectrometer) on board SOHO (Solar and Heliospheric
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Observatory) in the inner heliosphere (Cranmer et al. 1999; Marsch & Tu 2001) showed

the existence of KAWs. Since the KAWs can develop field aligned electric fields, the

charged particles can be accelerated along the magnetic field direction leading to the

heating of the plasma (Hasegawa and Chen, 1975; Wu 2003; Wu & Chao 2004) and

anisotropic and mass-dependent energization of heavy ions (Voitenko and Goossens, 2004;

Wu & Yang 2006).Hence, the study of KAWs will help to enhance our understanding of

the various physical processes, for example solar wind turbulence (Chaston et al. 2005a),

coronal heating (Wu & Fang 2003) and auroral particle acceleration (Wygant et al. 2002;

Chaston et al. 2003; Chaston et al. 2004; Chaston et al. 2005b).

The Polar spacecraft data investigated by Wygant et al. 2002 found magnetic coherent

structures of KAWs having transverse scale size near to ion gyro radius. These magnetic

coherent structures (filaments) are related with inhomogeneities in magnetic fields, density

and temperature (Chen & Liu 1976; Lee et al. 1994; Xu et al. 2008). The magnetic field

fluctuations and the ponderomotive force from the nonlinear magnetic pressure results

the KAWs to generate the coherent structures of high magnetic field intensity along the

magnetic field lines. As the wave propagates, these coherent structures collapse resulting

the redistribution of energy from higher wavenumbers to low wavenumbers. This cascade

of energy leads to the heating of the plasma.

Many authors (Howes et al. 2008a; Sahraoui et al. 2009; Sahraoui et al. 2010) have

reported the evidences for the injection of KAW energy at ion gyroscale and it’s dissipation

at electron inertial scale resulting to plasma turbulence in many regions of solar plasmas.

Two main theories were proposed for this turbulence: non-linear wave-wave or wave-

particle interactions and Landau damping. Since the solar wind permeates throughout the

heliosphere and solar wind turbulence is also there, it is a good laboratory for theoretical

and observational studies (Bruno & Carbone 2013).

In space plasma, it is established that spectral index of the magnetic power spectra at

inertial range is nearly the Kolmogorov index of −5/3 (Matthaeus et al. 1982; Horbury
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et al. 1996; Leamon et al. 1998; Bale et al. 2005). It is followed by another spectral

index of −2.5 in the dissipation range (Alexandrova et al. 2008; Chen et al. 2014). This

gives the first spectral break at the ion gyroradius or the ion inertial length. The next

spectral index is about -5 to -3 at dissipation range (Alexandrova et al. 2009; Sahraoui

et al. 2010; Howes et al. 2011a; Chang et al. 2013). This gives the second spectral break

at electron scales. The transition region in between the two breaks has the spectral

slope either varying from -4 to -2 (Leamon et al. 1998; Smith et al. 2006; Roberts et al.

2013) or complex spectra with no proper spectral index (Bruno & Trenchi 2014). In one

of the studies (Lion et al. 2016), the plasma coherent structures are attributed to the

steeper spectral slope in the transition region. From the Cluster spacecraft data analysis

performed by Sahraoui et al. 2013 suggested that the spectral index in the dissipation

range to be from -5.5 to -3.5. There is no general consensus regarding the spectral indices

of different regions of the magnetic power spectra. In this chapter we try to contribute

to the shape of the magnetic power spectra and its spectral index values in the solar

wind turbulence by numerically solving the steady state KAW model equation at various

types of plasma inhomogeneities represented by the initial conditions of the magnetic

fields in the simulations.

Inspite of many studies and investigations (Markovskii et al. 2008; Perri et al. 2010;

Bruno & Trenchi 2014), there is no generally accepted theory which can explain the

nature of the spectral slopes and break points. The solar wind turbulence and cascade of

energy from large scale to small scale in the dissipation range can be explained to some

satisfactory level using the KAW (Leamon et al. 2000; Howes et al. 2008b: Schekochihin

et al. 2009) or whistler wave (Galtier, 2006: Gary & Smith, 2009; Saito et al. 2010;

Podesta et al. 2010; Shaikh 2010), ion cyclotron waves (Goldstein et al. 1994; Leamon

et al. 1998; Gary 1999;He et al. 2011), ion Bernstein waves (Howes 2009; Sahraoui

et al. 2012), and current sheets (Sundkvist et al. 2007; Osman 2011). In one of the

studies of Lion et al. 2016, it was suggested that large amplitude Alfvénic vortex (like
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coherent structures) and their collapse could be responsible for the spectral shapes and

breaks in the power spectra.

There are many mechanisms that can excite KAWs such as the kinetic fire-hose

instability driven by anisotropy in ion and electron temperature ( Malovichko 2008; Chen

& Wu 2010), field aligned current instability (Chen et al. 2011; Chen et al. 2013; Chen

& Wu 2012) and velocity shear instability (Siversky 2005). The field-aligned density

perturbations leads to magnetic coherent structures in the plasma. In the past, various

authors (Tsiklauri, 2011; Tsiklauri, 2012; Chen et al. 2015; Wu & Chen 2013) have

studied the nonlinear propagation of KAWs under density fluctuations and the formation

of high intensity magnetic filaments. In a series of studies Tsiklauri, 2011; Tsiklauri, 2012

numerically studied the coronal heating model arising from the KAWs triggered by the

density perturbations because of the solar flares. It was concluded that parallel electric

fields were generated only in the regions where density fluctuations exist (i.e. at the

coronal loop edges). It will effectively accelerate the electrons along the field directions

and the ions are effectively accelerated in the transverse direction to the magnetic field

by the perpendicular electric fields caused by the KAWs. In the Earth’s magnetosphere

also similar kind of particle acceleration caused by the KAW dynamics in a perturbed

density was found (Tsiklauri, 2011; Chen et al. 2015). Wu & Chen 2013 calculated the

growth rate of KAWs driven by transverse density gradient and found that the maximum

growth rate for instability occurs when the KAW perpendicular wavelength is near to

the spatial characteristic scale of the density fluctuations. Since the KAW perpendicular

wavelengths are much shorter than parallel wavelengths, the KAWs are always associated

with transverse density fluctuations.

The focus of this chapter is to numerically study the steady state model equation for

KAW already derived in the last chapter. The results will be analyzed to understand

the role of initial plasma inhomogeneities (fluctuations) to generate magnetic coherent

structures and distribution of energy at different wavenumbers and its anisotropy in the
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wavevector.

4.2 Model Equation

In this section, we study the dynamics of KAWs in steady state applicable to solar wind

at 1 AU. For this purpose we rewrite the governing equation (2.22) in steady state as

i
2

k0z

∂B′
y

∂z
+ ρ2

s

k2
0x

k2
0z

∂2B′
y

∂z2 + ρ2
s

∂2B′
y

∂x2 + 2ik0xρ2
s

∂B′
y

∂x
+ n1

n0
B′

y = 0. (4.1)

In an inhomogeneous plasma, a magnetic gradient force known as ponderomotive force

acts upon the plasma. The effect of this force and electron Joule heating leads to density

perturbation (Shukla & Stenflo 1999). Magnetic field aligned density perturbations in

the form of density humps and cavities were found in laboratory and space plasmas

(Gekelman et al. 1999).

The particle number density perturbation to the background plasma density was

calculated by Shukla & Stenflo, 2000b in adiabatic limit considering slow changes in time

with respect to density changes. It is given as

n1 ≈ n0

(
eξ|B′

y |2 − 1
)

, (4.2)

where ξ = {[1 − ∆(1 + δ)v2
Ak0z]/16πn0Teω

2}, ∆ = ω2/ω2
ci and δ = mek

2
0x/mik

2
0z. For ω

(1 + δ)1/2 < ωci, the density profile is a hump. For KAWs since the plasma β >> me/mi

, the particle thermal speed is greater than the Alfvén speed (vti, vte >> vA). Therefore

the electrons or ions move fast enough to respond any adiabatic response in density.

Substituting equation (4.1) to equation (4.2) and reducing it to normalized units, the

governing equation for KAW in an inhomogenous plasma becomes
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i
∂B′

y

∂z
+ 2iK

∂B′
y

∂x
+ K2 ∂2B′

y

∂z2 +
∂2B′

y

∂x2 + 1
2g

(
e2g|B′

y |2 − 1
)

B′
y = 0, (4.3)

where K = k0xρs is a dimensionless parameter defining the transverse wave number

normalized to the inverse of the ion acoustic gyroradius ρs at electron temperature.

In substituting the perturbed density, for the sake of generality we have used the

dimensionless parameter g that controls the coupling to the density perturbation and

magnetic field. When g = 0, the equation reduces to well known quadratic nonlinearity.

The following normalizing parameters are used: zn = 2/k0z, xn = ρs, and Bn =

[{1 − ∆(1 + δ)}V 2
Ak2

0z/16πn0Teω
2]−1/2.

As mentioned above, when g = 0 the equation (4.3) resembles cubic nonlinear

Schrödinger equation (NLSE). If g ̸= 0, the governing equation can not be integrated,

thereby it may result to spatial chaos.

In order to find out the relationship between the initial KAW pump wave amplitude

and the parameter g, we substitute a simpler homogeneous solution as By0e
−iz (Zhou et al.

1992; Zhou & Hi 1994) in equation (4.3) where By0 is the amplitude of the homogenious

pump KAW. Further we simplify it by taking K = 0 in the model equation to get

|By0| =
√

ln|1 − 2g|
2g

. (4.4)

It gives the range of g as 0 ≤ g < 1/2.

In the next section, we will carry out the numerical solution of equation (4.3) by

taking the main KAW as a plain/Gaussian wavefront superimposed with different kinds

of perturbations.

4.3 Numerical Simulation

In order to study the role of the different kinds of magnetic field inhomogeneities, the

numerical simulation of equation (4.3) was carried out with four different kinds of initial
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conditions (ICs) as described below. The first initial condition denoted as IC-1 is

B′
y(x, 0) = By0[1 + ε cos(αxx)] (IC-1)

where a uniform plane KAW of fixed amplitude is superimposed by a sinusoidal periodic

perturbation. The constant ε is the magnitude of the perturbation and αx which is

normalised by x−1
n is the wave number of the perturbation.

The second initial condition denoted as IC-2 is a uniform plain KAW with a Gaussian

perturbation

B′
y(x, 0) = By0[1 + ε exp (−x2/r2

01)] (IC-2)

where r01 normalized by xn is the scale size of the transverse perturbation.

The third initial condition denoted as IC-3 is a non-uniform KAW of Gaussian wave

front with a sinusoidal perturbation

B′
y(x, 0) = By0[exp(−x2/r2

0) + ε cos(αxx)] (IC-3)

where r0 normalized by xn is the transverse scale size of the main KAW initial beam

width.

The fourth initial condition denoted as IC-4 is a non-uniform KAW of Gaussian wave

front with a random perturbation

B′
y(x, 0) = By0[exp(−x2/r2

0) + ε exp(2πiθ(x))] (IC-4)

where θ(x) is a random variable uniformly distributed on [0,1].

The numerical code was developed in FORTRAN by applying pseudo-spectral method

with Fast Fourier Transform (FFT) for transverse (x-direction) space integration with

periodic length Lx = 2π/αx with 28 grid points. The numerical method used here, was

extensively discussed in chapeter 3. Along the z-direction a finite-difference method with

a predictor-corrector scheme with step size dz = 5 × 10−5 was used. In the normalized
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model equation, the linear terms appeared as second, third and fourth terms in the

equation were solved in Fourier space and the nonlinear term appeared as fifth term

in the equation was solved by taking local product in real space first and then it was

transformed to k-space by taking FFT. First we developed the programme code for

well-known cubic NLSE that can be obtained here by taking K = 0 and g = 0, which

gives the density profile as quadratic to magnetic field i.e. n1/n0 ≃ ξ|B′
y|2. Since the

cubic NLSE can be integrated, we computed the integration constant i.e. the plasmon

number N = ∑
k |Bk|2. This indicates the conservation of wave energy. In our simulation

the plasmon number was found to be constant upto the precision of six decimal places.

Once the cubic NLSE code was fully tested, the code was modified to numerically solve

our given model equation satisfied by the KAWs.
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Fig. 4.1 Coherent structures of magnetic field applicable to solar wind at 1 AU: (a) IC-1, (b) IC-2, (c)
IC-3 and (d) IC-4.
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The values of the parameters we used in numerical simulations are ε = 0.1, αx = 0.5,

r0 = 1.0, r01 = 5. Hence we get Lx = 2π/αx ≃ 12.5 ≃ 2.5r01. We chose the parameter

g = 0.01. Hence we get the amplitude of the pump KAW By0 ≃ 1.005 and the ratio of

the magnetic fluctuation to the amplitude of the pump KAW |δBy/By0| ≃ 0.1. Large

depressions of magnetic field, δB/B0 ∼ 90% were found from the satellite data analysis

in the solar wind (Winterhalter et al. 1994) the cusp, magnetosheath and magnetopause

of the earth’s magnetosphere (Tsurutani et al. 1982; Savin et al. 1998).

The solar wind data measured at 1AU by Helios 2 spacecraft (Cravens, 2004) are:

B0 ≈ 1 × 10−4G, n0 ≈ 5 cm−3, Te ≈ 0.5 × 105K = 4.31eV , Ti ≈ 0.2 × 105K = 1.72eV .

In order to substitute the required parameter values in the simulation and it’s relevant

applications to solar wind, we calculated the other parameters of interest as: β = 0.121,

vte ≈ 8.7 × 107cm s−1, VA ≈ 9.8 × 106cm s−1, ωci ≈ 0.95rad/sec. ρs = 2.5 × 106cm,

ρi = (
√

Ti/Te)ρs = 3.75 × 106cm, ρe = 4.9 × 104cm, λi = 9.9 × 106cm, λe = 2.38 × 105cm.

Here we redefine the parameters ion gyroradius ρi (= vti/ωci), electron gyroradius ρe

(= vte/ωce), ion inertial length (or ion skin depth) λi = c/ωpi and ion plasma oscillation

frequency ωpi(=
√

4πn0e2/mi).

For ω = 0.01rad/sec and K = k0xρs = 0.01; we get k0z = 6.44 × 10−9 cm−1 and

k0x = 3.98×10−9cm−1. The values of other normalizing parameters are Bn ≃ 4.2×10−5G,

xn ≃ 2 × 106 cm and zn ≃ 3 × 108 cm.

Now we start analyzing the numerical simulation results of the model equation solved

with the four initial conditions as described earlier. First the magnetic field intensity

profiles depicted by the spatial evolution of KAW packets in 2D are shown in figures

4.1(a) - 4.1(d). The localized magnetic coherent structures (filaments) of KAWs are

generated. Their sizes vary from the energy injection scale which is comparable to ion

gyroradius to dissipation scale which is comparable to electron gyroradius. It is observed

from the figures that IC-1 and IC-2 generate almost same pattern of magnetic field

intensity profile. The profile peak intensities are nearly at |By|2 = 12.29 localized at the
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spatial locations of around z = 31.50 and x = 0.29 for IC-1 and |By|2 = 14.17 localized

at around z = 31 and x = 0.40 for IC-2. Most of the filaments are generated at the mid

position of the x direction. For IC-3 and IC-4, the magnetic field intensity filaments are

very less. The peak intensities for both the initial conditions are almost same, having

the value of around 0.96 located at around x = 6.18 and z = 12.50.

The mechanism for the generation of magnetic coherent structures is similar with the

mechanism of laser focusing as explained by Kruer 2003. As the density of the medium

is perturbed, the dielectric constant and hence the refractive index of the medium will

be changed. The laser beam propagating through the medium of varying refractive

index will act as a focusing lens and the wave will be focused. Similarly here also, the

parallel ponderomotive force will modify the density. The KAWs propagating through

this medium having density perturbations will produce varying phase velocity generating

the spatial localization of the wave field.

These magnetic coherent structures enhances in transferring energy from large scales

(comparable to ion acoustic gyroradius) to small scales (comparable to electron thermal

gyroradius). The plasma inhomogeneities manifested in the magnetic field and density

perturbations in our study will take energy from the main KAW by nonlinear interaction

and as the KAW propagates, it will generate magnetic filaments. Gershman et al. 2017

have found that local generation of observed KAWs, as observed by NASA’s Magne-

tospheric Multiscale (MMS) mission, are due to the combined effects of nonlinearities

arising from inhomogeneities in the magnetic field and particle number density.
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Fig. 4.2 Plot of magnetic field amplitude verses the distance of propagation for KAWs applicable to solar
wind at 1AU (a) IC-1, (b) IC-2, (c) IC-3 and (d) IC-4.
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Fig. 4.3 Phase space plots of KAWs applicable to solar wind at 1AU: (a) IC-1, (b) IC-2, (c) IC-3 and (d)
IC-4.
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Fig. 4.4 Contour plot of KAWs applicable to solar wind at 1AU: (a) IC-1, (b) IC-2, (c) IC-3 and (d)
IC-4.
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If the parallel fluctuations in the magnetic fields and current density are sufficiently

large in amplitude as happened in the propagation of KAWs, the electrons can be

trapped in between the wave packets. The fluctuations in parallel magnetic field will

result in transit time damping effects that can be considered as magnetic analog of

Landau damping. From the magnetic field intensity profile depicted in figure (4.1), it is

observed that when the strength of the magnetic field intensity is sufficient, the collapse

of the structures at kinetic scales starts. This will lead heating of the electrons/ions in

the plasma. Furthur, if the size of the magnetic structures are less than ion acoustic

gyroradius, the ion motions decouple from the electron motions. Our simulation result

shows that the largest scale size of the magnetic coherent structures measured at the

half of the intensity peak is of the order of ion gyroradius ≈ 6ρs = 188.50 km. Lion et

al. 2016 and Chmyrev et al. 1988 also reported almost the same scale size of magnetic

coherent structures as we found in our simulation. However, if we increase the pump

wave amplitude that can be done here by increasing the parameter g, the filamentary

size becomes less than ρs (Sharma et al. 2006). When the transverse wavelength is

comparable to ρs, heating of the plasma particles is more effective by transferring energy

from the KAW to electrons/ions.

For furthur investigation, we take the value of the magnetic field amplitude at a fixed

x(x = 0) and plotted it at various positions of propagation distance z as shown in figure

(4.2). For IC-1, the motion is quasiperiodic. For other initial conditions it tends to chaotic

motions. The phase space portraits are shown by plotting |By(0, z)| vs d|By(0, z)|/dz in

figure (4.3). The motion is having irregular homoclinic orbit (HMO) with quasiperiodic

oscillations for IC-1. The hyperbolic fixed point was observed at |By0| =
√

ln(1 − 2g)/2g.

For other initial conditions, the motion is spatially chaotic.

Our numerical results showed that all four ICs produce some features of chaotic

motions. This can be quantitatively represented by calculating the Lyapunov exponent

defined as
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λ = lim
z→∞

lim
b(z=0)→0

{1
z

ln

∣∣∣∣ b(z)
b(z = 0)

∣∣∣∣} (4.5)

where b is the first derivative of B(x, z) w.r.t. z at a fixed x. The calculated Lyapunov

exponents for IC-1, IC-2, IC-3 and IC-4 were 0.013, 0.028, 0.052 and 0.097 respectively.

The positive values of Lyapunov exponents mean that the system is complex and spatially

chaotic for all ICs. But their degree of complexity and chaosness are not same. Hence,

nature of the inhomogeneties in the magnetic field and density determines the nature of

the KAW propagation and its distribution of energy.

To investigate the propagation of energy in Fourier space, we plotted the contour

plots of |Byk|2 in kx, kz plane (Figure 4.4). Here, the lines in the plot connect the

coordinates of kx and kz having the same values of |Byk|2. The intensity of the magnetic

field represented by the color bar appeared on the right panel of the figure. Initially most

of the energy is confined at kx = 0 and it is ditributed to higher wavenumbers as KAW

propagates. The distribution of the energy at perpendicular wave number is greater in

IC-1 than that of IC-2. It is observed from the contour plots that the energy is already

distributed from kz = 0 for IC-3 and IC-4.
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Fig. 4.5 Magnetic field spectral intensity |Byk|2 versus k∥ρs for solar wind at 1AU: (a) IC-1, (b) IC-2,
(c) IC-3 and (d) IC-4.
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Next we show the spectral power along the parallel wavenumber by plotting |Byk|2 vs

kz = k∥ [Figure 4.5 (a) - 4.5(d)]. Earlier it was predicted theoretically that there was

no cascade of energy in parallel wave number space (Kraichnan, (1965a); Shebalin et

al. 1983). But Goldreich & Sridhar, 1995 showed that in strong MHD regime there

is cascade of energy in the parallel wave number space. In our simulation results, all

the initial conditions have spectral indices of Kolmogorov scale k
−5/3
∥ for k∥ρs < 1 i.e.

called inertial range. This is in agreement with the observations of many authors such

as Champeaux et al. 1998; Lavender et al., (2001) and Sulem & Sulem, 1999. In the

transition region from inertial range i.e. ion scale to kinetic range i.e.electron scale, there

is no fixed spectral shape. The first spectral break happens at k∥ρs ≈ 1. The transition

region having variable spectral shape was reported from many studies (Smith et al. 2006;

Sahraoui et al. 2010; Bruno & Trenchi 2014; Jian et al. 2014). After the transition range,

the spectral index is more steep (k−2 to k−5.5) at ion kinetic scale (kρs > 1) (Leamon et

al. 1998; Bale et al. 2005; Smith et al. 2006; Sahraoui et al. 2009; Sahraoui et al. 2013;

Roberts et al. 2013). Our power spectral graph from figure (4.5), shows these slopes as

−3, −4, −2 and −2 for IC-1, IC-2, IC-3 and IC-4 respectively.
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Fig. 4.6 Magnetic field spectral intensity |Byk|2 against k⊥ρs for solar wind at 1AU (a) IC-1, (b) IC-2,
(c) IC-3 and (d) IC-4.
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The injected energy at inertial scale is redistributing to the various Fourier modes.

To witness this we plotted log-log scale of |Byk|2 versus k⊥ρs in figures 4.6(a) - 4.6(d).

The usual Kolmogorov scale of −5/3 spectral slope is found at inertial scale (k⊥ρs < 1).

The slopes are much steep at ion scale (i.e. k⊥ρs > 1) being -6 for IC-1, -8 for IC-2 &

IC-3 and -7 for IC-4. The deepest spectral slopes are at the electron scale i.e. k⊥ρs ≥ 10

or k⊥ρe ≈ 1.

The second break point in the spectral shape happens at electron inertial scale length,

i.e. k⊥ρs ≈ 10. It should be mentioned here that our present model is not applicable

beyond this scale length because of the low frequency ω < ωci approximation we have

used in deriving the governing wave equations. From the Cluster spacecraft data analysis,

Sahraoui et al., (2009) found that the cascade of energy due to KAWs at low frequency

ω < ωci happens down to k⊥ρi ≈ 20. It corresponds to KAW frequency of around 5

Hz which is the noise level of the instrument. Hence, our model is not fit for the range

beyond k⊥ρs ≈ 10. In this regime, whistler wave models (ω > ωci) or the interaction of

KAWs with whistler waves are to be taken into consideration.

Anisotropies in magnetic fluctuations in solar plasma at kinetic scales were reported

by many investigations (Chen et al. 2010; Sahraoui et al. 2010; Narita et al. 2011). They

showed that the turbulence is more anisotropic at large wavenumbers, hence more energy

cascade in the perpendicular wavenumber when k⊥ > k∥. It is evident from our spectral

intensity plots that the magnetic spectral slope is anisotrpic to the field energy producing

more deep in k⊥ than in k∥ at kinetic scale. The slopes in k⊥ are -6, -8, -8 and -7 for

IC-1, IC-2, IC-3 and IC-4 respectively. Sahraoui et al. 2013 found the magnetic power

spectra having the slopes from -5.5 to -3.5 at the electron scales.
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Fig. 4.7 Magnetic field spectral intensity |Byk|2 versus kρs for solar wind at 1 AU: (a) IC-1, (b) IC-2, (c)
IC-3 and (d) IC-4.
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Figure (4.7) represents |Byk|2 versus kρs, where the total wavenumber was calculated

as k =
√

k2
∥ + k2

⊥. It shows the slope of -6 to -8 at kρs > 1. Alexandrova et al. 2009 tried

to fit the spectral break with that of Cluster spacecraft data as ∼ e−
√

kρe for the range of

kρe from 0.1 to 1. Howes et al. 2006 and Schekochihin et al. 2009 attributed the dispersive

nature of KAWs as the main reason for the steepening of spectral index. Wave particle

interaction becomes dominant at the scales near to ion gyroradius or electron inertial

length leading to Landau damping to heat the plasma particles (Gary & Nishimura, 2004;

Sahraoui et al. 2009). Since the whistler waves and KAWs have similar prroperties, it

is not clear whether the small scale fluctuations are due to KAWs or whistler waves or

the interaction between them (Gary & Smith, 2009; Salem et al. 2012; Boldyrev et al.

2013; Chen et al. 2013). Many researchers have also studied the interaction of KAWs

with other waves such as whistler waves, magnetosonic waves, ion acoustic waves etc

as the possible way to understand the solar wind turbulence and particle acceleration.

Therefore, our present model will contribute to the knowledge of solar wind turbulence

which is not fully understood till now.

The model we are studying in this present chapter is limited to steady state (spatial

domain) only. In fact, the transient fluctuations are also to be taken into account.

Therefore, we extend the present model in the next chapter to study the transient

behaviour of the KAW dynamics in an inhomogenous medium.

4.4 Conclusion

In this chaper, we have presented the numerical simulation results of steady state

dynamical KAW propagation in an inhomogenous plasma having the inhomogeneity in

transverse magnetic field and density fluctuations. The applications of the results at 1AU

solar wind parameters were also discussed. The magnetic filaments of KAWs with high

intensity are generated as the wave propagates along the direction of magnetic field. The

dynamical motions are dependent on the type of plasma inhomogeneity represented by
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four different kinds of initial conditions in our numerical simulation. The perturbation

present in the magnetic field gets the energy from the pump KAWs. As the wave

propagates magnetic coherent structures are generated when there is a balance between

the wave diffraction and nonlinearity effects resulting from plasma inhomogeneity profile.

The collapse of the KAW packets will take place when this balance is no more and

this leads to the transfer of energy from the wave to the particles in the plasma such

as electrons and ions. This transfer of energy at perpendicular wavevector is more for

uniform initial pump KAW (IC-1& IC-2) than those for non-uniform initial pump wave

of Gaussian wavefront (IC-3 & IC-4). The transfer of energy at kinetic small scales

when the wavenumber is less than ion gyroradius and comparable to electron inertial

length causes solar wind turbulence and heating of the plasma. In our study we found

the spectral index following the Kolmogorov scale of −5/3 which is in the inertial range

followed by deeper indices varying from -2.5 to -8 in the kinetic dissipation range.

In the magnetized plasma like solar wind, where the particle density is very low, the

collision mean free path is of the order of 1AU. Since the collisions among particles are

very rear, we can not precisely well defined the scale length of the dissipation process.

Some of the spatial characteristic scale lengths in the solar wind turbulence are ρs, ρi, λi,

ρe and λe. As the scale length changes, the mechanism for energy transfer also changes,

hence energy transfer rates are also different. Therefore it results in different spectral

indices in the magnetic power spectra. Since the formation of magnetic filaments and it’s

collapse is considered as one of the faster way to transport energy, our present study may

provide some clues to understand the phenomenon of energy distribution via dissipation

in the solar wind.





Chapter 5

Transient Dynamics of Kinetic

Alfvén Waves and Turbulence in

Solar Coronal Loops

5.1 Introduction

The solar coronal heating problem, where photosphere near the sun is having temperature

of around 5780K only and the solar corona at more far away from the Sun having

temperature of around 2 × 106K, is an unresolved issue in Astrophysical community till

now. Recently various spacecraft observations such as Solar and Heliospheric Observatory

(SOHO), Transition Region and Coronal Explorer (TRACE), Hinode and Solar Dynamics

Observatory (SDO) have observed that the solar atmosphere is inhomogeneous in magnetic

field and density. Therefore, the magnetic fine structures known as magnetic filaments

which are the manifestation of field aligned density or temperature gradients play a very

significant role in the coronal heating.

Generally, solar corona can be divided as coronal holes (open regions) and coronal

loops (closed regions). The solar wind originates from the coronal holes which are cooler

and less dense. The solar wind permeates through the space with the associated magnetic
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field lines and energetic charged particles. Alfvén, 1942 for the first time, presented the

role of Alfvén waves and solar magnetic field lines to understand solar coronal heating.

Since then many physical processes were proposed, among them two prominent theories

are: heating by waves (Narain and Ulmschneider, 1996; Hood et al. 1997; Goossens, 1994;

Priest et al. 2000; Poedts and Goossens, 1989; Ruderman, 1999) and heating by flares or

magnetic reconnection (Jain et al. 2005; Hood et al. 2009; Sturrock et al. 1999; Cassak

and Shay, 2012). More recently, the role of Alfvén waves in solar coronal heating were

reported from spacecraft data analysis and theoretical studies (Parker, 1979; De Pontieu

et al. 2007; Okamoto et al. 2007; Cirtain et al. 2007).

Pure Alfvén waves can not sufficiently dissipate to heat the plasma to reach up to the

coronal temperature because of the large transverse scale length (Wu & Chen 2013).

When AW transverse wavelength is comparable to the main kinetic length scale of the

plasma, λe or ρi or ρs (whatever is longer) where λe is the electron inertial length, ρi is

the ion gyroradious and ρs is the ion acoustic gyroradius, the AWs become dispersive and

known as dispersive AWs (DAWs). DAWs can be classified into two: the inertial Alfvén

wave (IAW) when λe > ρi or ρs and the kinetic Alfvén wave (KAW) when ρs > or ρi > λe.

Many studies supported that the dispersive property of DAWs are mainly responsible

for heating the inhomogeneous plasma such as solar wind and corona (De Azvedo et

al. 1994; Voitenko, 1995; Voitenko, 1996; Elfimov et al. 1996; Asgari-Targhi and Van

Ballegooijen, 2012; Morton, 2015; Testa et al. 2014). When the low frequency (ω < ωci)

DAWs propagate in a transversely inhomogeneous plasma, it generates sufficient parallel

and perpendicular components of electric fields. Here the transverse density (or/and

temperature) inhomogeneity scale length should be comparable to the microscopic scale

length of plasma particle motions such as electron inertial or ion gyroradious length. The

parallel electric field can sufficiently accelerate the plasma along the ambient magnetic

field direction.



5.1 Introduction 87

The IAWs applicable in low β < me/mi plasmas are observed to the auroral region

of the Earth’s magnetosphere located at altitudes less than 4 Earth radii. However,

in solar corona both the plasma β values are applicable; the intermediate β plasma,

me/mi < β < 1, in active regions such as coronal holes coronal loops and low β plasmas

at the base of the coronal holes or coronal loops where the heavy particle density

n0 ∼ (108 − 1010)cm−3 and ambient magnetic field B0 ∼ (5 − 150)G (Champeaux et al.

1997). Therefore, KAW is applicable to both the solar wind β = 0.121 at 1AU (Cravens,

2004) and the coronal loops β = 0.01 (Shukla et al. 1999). For solar wind at 1AU and

coronal loops the temperatures (≈ 106K) are almost same. However, the magnetic field

of the solar wind (B0 ≈ 1 × 10−4G) is very less than that of the coronal loop B0 ≈ 100G.

Similarly the density of the coronal plasma (n0 ≈ 5 × 109cm−3) are much higher then

that of solar wind (n0 ≈ 5cm−3).

In a series of studies, Voitenko, 1996, Voitenko, 1998 showed that the KAW magnetic

filaments and its collapse is the main candidate for the nonlinear evolution of turbulent

saturated spectra in coronal loops and solar flares. Other studies also supported that the

dissipation of KAWs can lead to particle energization in bright coronal loops (Wu & Fang,

1999), bright coronal plumes (Wu & Fang 2003), sunspot chromosphere (Wu and Fang,

2007), anisotropic and mass dependent heating in solar corona ( Wu & Yang 2006; Wu &

Yang, 2007). To model the Freja sattelite data results, auroral particle acceleration and

coronal heating, many researchers (Wu et al. 1997; Wang, 1998; Chen et al. 2000) have

investigated the propagation of KAWs in an inhomogenous plasma having the density

variations in the form of dips, humps and dipoles. Further, Shukla and Stenflo, 2000

using the ponderomotive force relations derived by Bellan & Stasiewicz 1998 showed that

KAWs can produce magnetic field aligned quasistationary density humps and dips.

The anisotropic nature of KAW magnetic field energy in wavevector was reported by

many authors (Goldreich & Sridhar, 1995; Goldreich and Sridhar, 1997 Marson and

Goldreich, 2001; Cho et al. 2002) and spacecraft data (Leamon et al. 1998; Luo and
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Wu, 2010; Luo et al., 2012). They suggested that the wave energy is predominantly

cascading in the transverse directions to the field lines i.e. k⊥ >> k∥, where k⊥ (k∥) is

the wave number perpendicular (parallel) to the ambient magnetic field (Howes et al.

2006; Schekochihin et al. 2009). Hence, we will have to take into account the effect of

finite k⊥ρs i.e. ∂/∂x >> ∂/∂z in the dynamical model equations that we are studying.

The main aim of this chapter is to study the transient KAW dynamics propagating

in an inhomogeous plasma. The inhomogeneity in the plasma comes from the field

aligned density fluctuations because of ponderomotive force and Joule heating. The

governing equations derived in Chapter 2 in the form of modified nonlinear Schrödinger

equation (NLSE) was solved numerically in Fourier space with the possible parameters

of coronal loop plasma. The numerical results are analyzed to understand the generation

of magnetic filaments, distribution of energy among the wave numbers. The role of the

plasma inhomogeneity represented by four kinds of initial conditions of simulations is

also studied.

Earlier studies (Sharma et al. 2006; Singh & Sharma, 2007; Singh & Jatav, 2019) related

to the dynamics KAW in the form of modified NLSE applicable to solar wind turbulence

and coronal heating were much limited to steady state. In their studies, the anisotropic

character of the magnetic power spectra was not discussed properly. This chapter studies

the non-steady state (transient) propagation of 2D-KAWs applicable to coronal loops.

How the plasma inhomogeneity affects on the generation of magnetic coherent structures

and the wavenumber anisotropy in energy distribution, is also discussed. The generation

of 3D KAW vortices from the twisting of the magnetic coherent structures and its effect on

plasma heating was studied by Sharma et al. 2014; Sharma et al. 2016. They considered

the interactions of 3D-KAWs and 3D-ion acoustic waves and suggested that as the time

progresses, the coronal loops are twisted more and more, increasing the flow of current

in the plasma channel. When the strength of the current reaches the critical value, it

will erupt as solar flares. However, the physical mechanism of the KAW turbulence and
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heating has not been solved till now. Some possible theories may be due to dissipation

of KAWs or whistler waves or coupling of whistler waves and KAWs as studied by Gary

& Smith, 2009; Salem et al. 2012; Boldyrev et al. 2013 and Chen et al. 2013. Again it

may be due to interactions of KAWs with ion acoustic or magnetosonic waves as studied

by Sharma et al. 2017. Afterall, because of the similarities in the properties of KAWs

and whistler waves, it is difficult to distinguish which one will have more role in coronal

heating and solar wind turbulence. Therefore, the simulation results of our present KAW

dynamics may contribute something to the unsolved problem of space plasma physics.

5.2 Model KAW Dynamics

In this section, we study the transient behaviour of KAWs applicable to solar coronal

loops and its heating mechanism. For this purpose, we rewrite the governing dynamical

equation (2.22) as

i
2ω

v2
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0z

∂B′
y
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+ i

2
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∂B′
y

∂x
+ n1

n0
B′

y = 0. (5.1)

In an inhomogeneous plasma, a nonlinear magnetic gradient force called ponderomotive

force is developed. When this force combines with Joule heating, it can modify the

plasma density (Shukla & Stenflo 1999). This change in particle number density under

adiabatic approximation (i.e large density fluctuations) was theoretically calculated by

Shukla & Stenflo, 2000b and is given as

n1 ≈ n0

(
eξ|B′

y |2 − 1
)

, (5.2)

where ξ = {[1 − ∆(1 + δ)v2
Ak0z]/16πn0Teω

2}, ∆ = ω2/ω2
ci and δ = mek

2
0x/mik

2
0z. In case

of ω (1 + δ)1/2 < ωci the density change is a hump. In an intermediate plasma β, since
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vti,, vte > vA the plasma particles move fast enough to respond any adiabatic changes in

density.

Substituting equation (5.1) in to equation (5.2) and normalizing the equation we get

i
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y
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∂B′
y
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+ K2 ∂2B′

y
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y

∂x2 + 1
2g

(
e2g|B′
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)

B′
y = 0, (5.3)

where the constant K = k0xρs. In the normalization, we use tn = 2ω/v2
Ak2

0z zn = 2/k0z,

xn = ρs and Bn = [{1 − ∆(1 + δ)}V 2
Ak2

0z/16πn0Teω
2]−1/2. In the above equation, we

introduced a dimensionless parameter g. It controls the amplitude of the pump KAW,

and the coupling between the density perturbation and magnetic field. When we take

g = 0, the density profile becomes quadratic in magnetic field and the model equation

for KAW reduces to modified cubic NLSE.

Considering a homogeneous solution of the form of By0e
−iz (Zhou et al. 1992) and

K = 0, and substituting it to equation (5.3), we can get a relation of g with the KAW

pump amplitude as

|By0| =
√

ln|1 − 2g|
2g

, (5.4)

where 0 ≤ g < 1/2 and By0 is the amplitude of the homogenious pump KAW.

5.3 Numerical Simulation

The dynamical model equation (5.3) was solved numerically by the method of 2-D pseudo-

spectral for space integration and forward method with predictor corrector method for

evolution in time. Here we took the step size of dt = 5 × 10−5 and system lengths of

Lx = 2π/αx and Lz = 2π/αz , where αx (αz) is the perturbation wave number in x (z).

Both the system lengths were divided with 27 grid points each. First the numerical code

was developed for well-known 2D-cubic NLSE as mentioned in Chapter 3. The Fast
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Fourier Transform (FFT) was directly applied to linear terms. For nonlinear term, we

took the local product in real space first and then FFT was applied. After fully testing

the code for 2D cubic NLSE, it was modified to solve our present model equation (5.3).

In the numerical simulation we used four kinds of initial conditions as listed below.

First initial condition (IC-1) is a uniform plane KAW of fixed amplitude superimposed

by a sinusoidal periodic perturbation.

B′
y(x, z, t = 0) = By0[1 + ε cos(αxx)][1 + ε cos(αzz)] (IC-1)

where ε is the magnitude of the perturbation, αx (αz) is the wave number perturbation

normilised by x−1
n (z−1

n ).

Next initial condition is a Gaussian perturbation superimposed on a uniform plain

KAW

B′
y(x, z, t = 0) = By0[1 + ε exp (−x2/r2

01)][1 + ε exp (−z2/r2
02)] (IC-2)

where r01 (normalized by xn) and r02 (normalized by zn) are the transverse and longitu-

dinal scale sizes of the perturbations respectively.

The IC-3 is a pump KAW of Gaussian wavefront with a sinusoidal perturbation

B′
y(x, z, t = 0) = By0[exp(−x2/r2

0) + ε cos(αxx)][exp(−z2/r2
0) + ε cos(αzz) (IC-3)

where r0 (normalized by xn) represents the transverse scale size of the main KAW initial

beam width.

The last initial condition (IC-4) is a random perturbation superimposed on the Gaus-

sian wavefront.

B′
y(x, z, t = 0) = By0[exp(−x2/r2

0) + ε exp(2πiθ(x))]

. [exp(−z2/r2
0) + ε exp(2πiθ(z))] (IC-4)

where θ(x) and θ(z) are the random variables uniformly distributed on [0,1].
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In the simulation we used the value of the parameter ε = 0.1 and the values of

the perturbation wavenumbers αx = αz = 0.5. The perturbation wavenumbers are

chosen so that all fields may be allowed to represent as discrete Fourier series with

integral wave vector components. Furthur, we set r0 = 1.0, r01 = r02 = 5. Now we

get Lx = Lz ≃ 12.5 ≃ 2.5r01 ≃ 2.5r02. The value of g = 0.01 was chosen, so it gives

By0 ≃ 1.005. With all these parameters, the magnetic fluctuation comes out to be

|δBy/By0| ≃ 0.1.

In the coronal loops the possible plasma parameters are (Shukla et al. 1999): B0 ≈

100G, n0 ≈ 5 × 109 cm−3, Te ≈ 6 × 106K, Ti ≈ 2 × 106K . Now we calculated other

parametrs required as β = 0.01, vte ≈ 2 × 109cm s−1, VA ≈ 3 × 108cm s−1, ρs = 22cm,

ρi = (
√

Ti/Te)ρs = 68cm. By taking ω/ωci ≈ 0.02 and for k0xρs ≈ 0.01, we get

k0x ≈ 1.9 × 10−5cm−1, k0z ≈ 1.5 × 10−5cm−1. The normalizing values are xn = 22cm,

zn = 1.3 × 105cm, tn = 1.4 × 10−3sec and Bn = 0.91G.
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Fig. 5.1 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) at t = 2, 3 and 4 for IC-1.
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Fig. 5.2 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) at t = 3, 4 and 6 for IC-2.
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Fig. 5.3 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) at t = 6.5, 8 and 9.5 for IC-3.
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Fig. 5.4 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) at t = 5, 6 and 10 for IC-4.
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Fig. 5.5 Spectra of magnetic field fluctuations for IC-1 in k⊥ space (upper panel) and k∥ space (lower
panel) at t = 2, 3 and 4.
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Now, we start presenting the numerical simulation results of equation (5.3) for coronal

loops. Figure (5.1) represents the 2D snapshots of the time evolution of transverse KAW

field intensity at three instants of time. The plasma density is modified due to the

ponderomotive force acting on the plasma. Due to this, the phase velocity of KAWs

change and it gives the magnetic fields localized in space as the wave propagates. The

inhomogeneity of the field in the form of the perturbation represented here takes the

energy away and the localized magnetic structures collapse with the progress of time.

The nonlinear interactions between density and magnetic fields will regroup the collapsed

structures.

The magnetic field intensity profiles for KAWs for IC-2 are almost same as that of IC-1

except the values of the time and locations where filaments are formed. At time t = 3, 4

and 6 the filaments of highest intensities are around 30, 23 and 13 respectively. The

contour plots in Fourier wavenumber modes connecting the same magnetic field energies

are plotted in figures 5.2(d)−5.2(f). Figures 5.3(a)−5.3(c) show the the snapshots of the

magnetic field intensity profiles for IC-3. The values of the magnetic field intensities are

1.30, 0.40 and 1.36 at t = 6.5, 8 and 9.5 respectively. It is evident that it is not possible

for IC-3 to generate very high intensity filaments. Therefore, distribution of energy

from lower wavenumber to higher wavenumber is not possible, as evident from figures

5.3(d) − 5.3(f). Hence, we can conclude that the kind of magnetic field inhomogeneity

represented as IC-3 may not be appropriate to sufficienly accelerate the ions and electrons

in the plasma. The initial condition of random perturbation superimposed to a Gaussian

wavefront (IC-4) also shows almost similar results as shown for IC-3 [figure (5.4)]. Overall

summary is that the magnetic field localization for KAWs is more dependent on the

nature of the pump KAW rather than the perturbation. If the pump KAWs are same,

then the magnetic field intensity profiles are almost same irrespective of the perturbating

waveforms.



5.3 Numerical Simulation 99

The mechanism for the generation of magnetic coherent structures is similar with the

mechanism of laser focusing as explained by Kruer 2003. As the density of the medium

is perturbed, the dielectric constant and hence the refractive index of the medium will

be changed. The laser beam propagating through the medium of varying refractive

index will act as a focusing lens and the wave will be focused. Similarly here also, the

parallel ponderomotive force will modify the density. The KAWs propagating through

this medium having density perturbations will produce varying phase velocity generating

the spatial localization of the wave field.

These magnetic coherent structures help in enhancing the transfer of energy from

large scales (comparable to ion acoustic gyroradius) to small scales (comparable to

electron thermal gyroradius). The plasma inhomogeneities manifested in the magnetic

field and density perturbations in our study will take energy from the main KAW by

nonlinear interaction and as the KAW propagates, it will generate magnetic filaments.

Gershman et al. 2017 have found that local generation of observed KAWs, as observed

by NASA’s Magnetospheric Multiscale (MMS) mission, are due to the combined effects

of nonlinearities arising from inhomogeneities in the magnetic field and particle number

density.
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Fig. 5.6 Spectra of magnetic field fluctuations for IC-2 in k⊥ space (upper panel) and k∥ space (lower
panel) at t = 3, 4 and 6.
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Fig. 5.7 Spectra of magnetic field fluctuations for IC-3 in k⊥ space (upper panel) and k∥ space (lower
panel) at t = 6.5, 8 and 9.5.
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If there is large fluctuations in the parallel magnetic fields as well as high current

density, then the lighter particles ( electrons) can be sufficiently trapped in between the

wave packets. In this way, the wave energy is converted to particle energy. Therefore, it

gives magnetic analog of Landau damping and can heat the plasma. We can measure the

transverse scale size of the magnetic coherent structures from the magnetic field intensity

profile. At early times, it comes out to be of the order of ion gyroradius ≈ 6ρs = 188.50

km (measured at the half of the peak intensity). As the time progresses, this scale size

becomes smaller because of the transverse collapse. When this size reaches kinetic scales

of KAWs, enough electron or ion heating occurs. Lion et al. 2016 and Chmyrev et al.

1988 reported the scale size of KAW filament structures of the order of ρs. Further by

increasing the pump wave amplitude of the KAW, which can be achieved with increasing

the value of g, we get the scale size of the filaments at micro kinetic scales and it leads to

chaotic motion. The transfer of wave energy to particle energy is sufficiently happening

at this stage.

Next, we present the spectral energy |Byk|2 at various wavenumber space, first in kx(k⊥)

direction and then to kz(k∥) direction. From the spectral plots (figures (5.5) − (5.8)), we

see that the spectral indices of energy cascade follow the Kolmogorov scale of −5/3 in

the so called inertial range i.e. when k⊥ρs < 1 and k∥ρs < 1. This is in agreement with

the results of many authors (Champeaux et al. 1998; Lavender et al., (2001); Sulem &

Sulem, 1999). There are observational evidences from solar flares Dennis, (1985); Hudson,

(1991) showing spectral index of solar flares to be approximately −1.6. Many authors

(Dennis, 1985; Hudson, 1991). Hollweg, 1984 calculated the energy flux density in the

plasma turbulence in the coronal loops applying −5/3 spectral index. The results were

in agreement with many observations. However, how this high energy flux in the coronal

loops are achieved and what is the mechanism for turbulence leading to heating the

corona have been still debating. The generation of KAW magnetic filaments and it’s
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Fig. 5.8 Spectra of magnetic field fluctuations for IC-4 in k⊥ space (upper panel) and k∥ space (lower
panel) at t = 5, 6 and 10.

transverse collapse are proposed in this chapter as one of the candidates to explain the

coronal heating.
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We find from the magnetic power spectra that the first spectral break takes place

at k⊥ρs ≈ 1 and k∥ρs ≈ 1. Further, it shows no fixed spectral shapes for all the initial

conditions of the simulation. The first spectral break signifies a transition region from ion

scale known as inertial range to electron scale known as kinetic range. In the transition

range, our simulation results show the spectral indices in k⊥ to be −3.2 and −4 for

IC-1, −4 for IC-2, −10 for IC-3 and −2.7 for IC-4. In k∥ direction, they are −6 and

−8 for IC-1, −8 for IC-2, −12 for IC-3 and −9 for IC-4. Hudson, 1991 suggested that

to sufficiently heat the solar corona by small scale burst like solar flares; the negative

spectral magnetic energy slope of at least −2 is required. Many spacecraft observational

results reported the spectral index deeper than −2 in the coronal loops (Aschwanden &

Parnell, 2002). We also find here the anisotropy in spectral energy showing the spectral

index more deep in k∥ direction than that of k⊥ direction. Therefore, we can say that

more energy is cascading in perpendicular wavenumber space. Anisotropy in magnetic

fluctuations in solar plasma at kinetic scales were reported by many investigations (Chen

et al. 2010; Sahraoui et al. 2010; Narita et al. 2011). They showed that the turbulence is

more anisotropic at large wavenumbers, hence more energy cascade in the perpendicular

wavenumber when k⊥ > k∥. By analyzing the figures (5.5) − (5.8) and also comparing the

upper and lower panel of the figures, we confirm that there is spectral anisotropy in our

results for KAW dynamics applicable to coronal plasma. Therefore, the cascade of energy

in transverse wavenumber is more prominent than that of parallel wavenumber. Among

the four initial conditions, the third one shows the lowest energy cascade. The anisotropic

spectra of solar plasma has been verified by many authors (Marson and Goldreich, 2001;

Cho et al. 2002; Leamon et al. 1998; Luo and Wu, 2010; Luo et al., 2012). Anisotropic

scaling correlation reported was k∥ ∝ k
1/3
⊥ (= k0.33

⊥ ) ( Schekochihin et al. 2009; Cho &

Lazarian, 2004; Cho & Lazarian, 2009). From our results this correlation is k∥ ∝ k0.53
⊥

and k∥ ∝ k0.50
⊥ for first two initial and k∥ ∝ k0.83

⊥ for third initial condition and k∥ ∝ k0.30
⊥

for fourth initial condition.
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Fig. 5.9 Spectra of electric field fluctuations for IC-1 in k⊥ space: perpendicular electric field (upper
panel) and parallel electric field (lower panel) at t = 2, 3 and 4.
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In our study, we can not finalize the role of different initial conditions in the wave-vector

anisotropy. One possible way to study it furthur may be to solve the KAW dynamics

semi analytically by taking the initial conditions used here as ansatz and compare it with

the fully solved numerical solutions. Moreover, the filamentaion process can lead to other

kinds of plasma instabilities which can further contribute to energization of particles.

The wave-vector anisotropy and turbulence in space plasma is a complex phenomena.

More in depth studies are required to understand properly.

Lastly, the electric field spectra are presented at different values of perpendicular

and parallel wave numbers. From equations (2.13) and (2.14), the dimensionless electric

field components are found as Ex = (2 − e|By |2)By and Ez = By/Q. Here the constant

Q = v2
A/(v2

teλ
2
ek0xk0z) and the electric field is normalized by EN = BNk0zv2

A/(ωc). From

Figure (5.9), we find the spectral indices of −5/3 in the inertial range and −4 in the

dissipation range. Electric spectra show the same shape as that of magnetic spectra

except that the field intensities are lower in case of electric spectra. Therefore, we are

showing the electric spectra for the first initial condition only. Theoretically Zhao et

al 2016 modeled the kinetic Alfvenic turbulence of scaling law k
−5/3
⊥ and k

−1/3
⊥ for E⊥

spectra and k
4/3
⊥ and k

−1/3
⊥ for E∥ spectra. For scales smaller than the ion kinetic scales,

kρi > 1, spectral scaling of k
−1/3
⊥ was modeled (Schekochihin et al. 2009; Zhao et al 2013;

Bian & Kontar, 2010). However for strong turbulence Boldyrev and Perez, 2012 modeled

it to be −2/3. For parallel electric spectrum, Zhao et al 2016 found the spectral indices

of k
4/3
⊥ and k

−1/3
⊥ in the inertial and kinetic scales respectively. In the inertial regime,

the E∥ spectral energy increases with k⊥ (Zhao et al 2013; Bian & Kontar, 2011). By

analyzing the THEMIS and Cluster data Mozer and Chen, 2013 found that both the

electric spectra have almost the same power and scaling law of −5/3 at ion scales and

−2.1 to −2.8 at electron scales. In contrast to this, some researchers (Zhao et al 2013;

Bian & Kontar, 2010; Bian & Kontar, 2011; Mozer and Chen, 2013) predicted that the

spectral power is much higher in E⊥ spectrum. Hence, the total energy is contributed
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mainly from E⊥ energy. In our simulation results also, by comparing the two electric

spectra, we find that E⊥ spectral energy is higher of the order of 3 times than that

of E∥ spectral energy. It should be mentioned here that E∥ is the actual force which

mediates the wave-particle interaction and it is important in accelerating the charged

particles (Wu & Fang, 1999; Fletcher & Hudson, 2008; McClements and Fletcher, 2009)

via Landau resonance. Particle heating takes place when the electric thermal speed and

the magnitude of wave phase velocity are comparable. This stochastic heating problem

can be treated by considering a distribution function in velocity phase space and solving

the quasilinear diffusion equation (Fokker-Plank equation). This stochastic heating

problem will be addressed in chapter 6 when we consider the inertial AWs applicable to

space plasma.

From the electric spectra we presented, it is found that E∥ and E⊥ spectra show more

negative spectral indices in the dissipative region as compared to some of the studies

(Bian & Kontar, 2010; Bian et al. 2010; Mozer and Chen, 2013). However, our spectral

results are qualitatively matching with the results of Valentini et al. 2017 using hybrid

Vlasov-Maxwell simulations, and Howes et al. (2008) and Howes et al. (2011) using

gyrokinetic continuum simulations. Furthur, in the electron inertial length scale, i.e.

k⊥ρs, k∥ρs ≈ 5, we find a second spectral break point in the spectra. We can not explain

the second spectral break point and the following spectral index, because our model

equations satisfied by DAWs were derived for low frequency DAWs by assuming ω < ωci.

Therefore, the present study can not be applied in the dissipation regime of electron

kinetic scale length. Whistler waves ω > ωci can be one of the possible candidates to

study in this region. The nonlinear interactions arising from whistler waves and KAWs

were numerically investigated by Dwivedia & Sharma, 2013. In spite of all the attempts,

the physics behind small scale fluctuations in the dissipation range is not fully developed.

Hence, our present model may be able to provide some possible explanation to understand

the physics of wavevector anisotropy and heating of solar corona.
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5.4 Conclusion

We have carried out the numerical simulation for modified NLSE modeled for the transient

KAW dynamics in an inhomogeous plasma. The nonlinearity term in the equation arises

because of the couping of the magnetic field and the density perturbations arising on

account of ponderomotive force and Joule heating. Because of this nonlinear interactions,

coherent structures of magnetic fields in the form of solitons are generated. Furthur,

with the advancement of time, these structures break down to smaller scale size, which

are the main source of the plasma kinetic turbulence. The turbulence was studied by

plotting the power spectral graphs. The power spectral indices in the perpendicular and

parallel wavenumber Fourier space are not same, indicating the wavevector anisotropy in

energy cascade. The wavevector anisotropy in turbulence are important to study the

energization of plasma particles. The anisotropy in the dissipation range follows the

following relations: k∥ ∝ k0.53
⊥ , k∥ ∝ k0.50

⊥ , k∥ ∝ k0.83
⊥ and k∥ ∝ k0.30

⊥ for different kinds of

of initial conditions used in the simulation to represent the plasma inhomogeneity.



Chapter 6

Inertial Alfvén Wave Turbulence

and Particle Heating in Space

Plasma

6.1 Introduction

The low-frequency (compared to the ion gyrofrequency) inertial Alfvén waves (IAWs)

play very important role in laboratory, space and astrophysical plasmas (Hasegawa &

Uberoi (1982); Shukla et al., (1996); Wang et al. (1998)). The space and astrophysical

plasma examples include some more intense auroral arcs at the Earth’s northern and

southern poles (Wahlund et al., (1994); Chaston et al. (2000); Stasiewicz et al.,

(2000)), solar corona (Hollweg, (1999)) and extragalactic jets (Jafelice & Opher, (1987)).

The laboratory plasma examples includes Large Plasma Device (LAPD) (Gekelman et

al., (1994)), beam-in-plasma interaction at the SLAC National Accelerator Laboratory,

the ultra-cold, highly correlated plasma studied in CERN (European Organisation for

Nuclear Research) etc.

The IAWs can be driven by equilibrium sheared plasma flows, in which the large-

amplitude IAWs are produced (Shukla & Stenflo, (1997)). The parallel electric field of
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large-amplitude IAWs is responsible for the electron acceleration to higher energy in the

Earth’s ionosphere (Thompson & Lysak, (1996)). On the other hand the finite-amplitude

IAWs are responsible for the generation of nonlinear effects in plasma (Petviashvili &

Pokhotelov, (1992)). The IAWs are observed at the Earth’s magnetosphere, leading to

play a key role in the magnetosphere-ionosphere coupling (Hasegawa, (1976); Goertz

et al., (1979); Chaston, (2006)). These IAWs are also observed at the lower region

(base) of the solar corona (Fletcher & Hudson, (2008); Escande et al., (2019)), which

can energize the electrons and ions to reach upto the coronal temperature.

The aurora formation in the visible space is one of the prominent manifestation of

highly energetic charged particles. This is generated due to the electrons impinging onto

the electromagnetically upper atmosphere of the Earth. The neutral particles available in

the lower atmosphere of the Earth are partially ionized by the ultraviolet light of the Sun

and it is known as ionosphere. The magnetosphere is produced by the ionosphere and the

solar wind, which is magnetized by the geomagnetic field. In this region due to the the

Lorenz force, the charged particles move into the spiral shape around the magnetic field

lines. The charged particles in the magnetosphere are susceptible to accelerate along the

geomagnetic field and funneled toward northern and southern polar of the Earth where

they generate the aurora’s glowing light. The particle acceleration in the magnetosphere

is one of the reasons that motivates to study in this chapter.

The observational study of the electron acceleration by FAST, Freja, Polar, Geotail

and Cluster missions in the auroral region have been a new era of measurement from

the past three decades. The Polar spacecraft observations of Alfvénic poynting flux at

4-7 Re in the plasma sheet boundary layer are correlated with the auroral structures.

The studies of Polar and FAST spacecraft observations demonstrated that the Alfvénic

poynting flux dominates over the electron energy flux at Polar spacecraft orbit while the

electron energy flux is greater than the Alfvénic poynting flux at the FAST spacecraft

altitude. The observed studies suggested that the IAWs are losing their energy via
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wave-particle interaction to accelerate the electrons when they propagate toward the

ionosphere. These studies also suggested that the IAWs may be responsible for particle

acceleration in the ionosphere.

The auroral particle acceleration due to parallel electric field of IAWs was first

demonstrated by Hasegawa, (1976). In 1979, Goertz et al., (1979) demonstrated that

the auroral electron acceleration occurs in the lower magnetosphere where the shear Alfvén

waves are described by the IAW limit. Kletzing, (1994) studied the resonant process

that affects the superthermal electrons in aurora. These resonant electrons travelled

slower than the Alfvén waves and interact with the parallel electric fields of the Alfvén

waves. The resonant electrons are picked up by the IAWs and pushed it into the front of

the waves. This resonant interaction can accelerate electrons nearly to twice of the AW

speed and energize it to 600-1000 eV. Kletzing & Hu, (2001) repeated the calculations

of Kletzing, (1994), with density and magnetic field gradients that are applicable for the

auroral magnetosphere. It was found that the Alfvén waves move toward the ionosphere

leading to change the Alfvén speed and amplitude of the Alfvén waves. Chaston,

(2006) used test-particle calculation with similar approach of Kletzing & Hu, (2001)

and focused only on individual particle orbits instead of focusing on the dynamics of the

entire distribution function of IAWs. It predicted two different acceleration mechanisms

for electrons. The first one is, the high speed electrons move along the geomagnetic field

lines through the parallel electric fields of IAWs, thus the parallel electric field is the

electrostatic. These electrons move faster than the Alfvén wave speed and are accelerated

to greater speeds by electrostatic effect. This mechanism occurs at around 2-Re where

the parallel electric field is strong. The second mechanism shows the resonance of test

particles with the phase velocity of the Alfvén waves and this condition is called as the

Landau resonance. In this mechanism the electron receives the energy from the Alfvén

waves through the collisionless damping. The electron acceleration by Landau resonance

mechanism affects the superthermal electrons as proposed by Kletzing & Hu, (2001)
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theoretically. Furthur, Chaston, (2006) suggested that the electron acceleration by

Landau resonance is more effective because of the Earth’s magnetic field.

Turbulence in the form of temporal or/and spatial magnetic or electric field fluctuations

exists in space plasmas (Tu & Marsch, (1995); Matthaeus & Velli, (2011)). Several

spacecrafts like FAST, THEMIS and CLUSTER observations have demonstrated the

presence of magnetic field fluctuations in geospace plasma region (Zimbardo et al., (2010)),

the Earth’s plasma sheet region (Borovsky & Funsten, (2003)), the magnetosheath

region (Alexandrova, (2008)) and the auroral region (Chaston, (2006)).

6.2 Model Equation

The dynamical model equation satisfied by IAWs applicable to auroral region and solar

corona as derived in equation (2.23) is

2i
ω
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Ak2

0z

(1 + k2
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k0z
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′
y

∂x2 + n1

n0
B

′

y = 0.

(6.1)

In an inhomogeneous plasma, a nonlinear magnetic gradient force known as pondero-

motive force is developed. This force, in combination with Joule heating, can modify the

plasma density. This change in particle number density under adiabatic approximation

(i.e large density fluctuations) was theoretically calculated by Shukla & Stenflo 1999 and

found as

n1 ≈ n0

(
e−ξ2|B′

y |2 − 1
)

, (6.2)

where ξ2 = (1 + 8k2
0xλ2

e)/48πn0Te.

Substituting equation (6.2) in equation (6.1) we get
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B′
y = 0, (6.3)

where the dimensionless parameters used in the normalization are tn = 2ω/v2
Ak2

0z, zn =

2/k0z, xn = λeω/vAk0z = λe/
√

1 + k2
0xλ2

e, C = 2k0xλeω/vAk0z = 2k0xλe/
√

1 + k2
0xλ2

e and

Bn = [(1 + 8k2
0xλ2

e)/48πn0Te]−1/2.

In substituting the perturbed density, for the sake of generality we have used the

dimensionless parameter g that controls the coupling to the density perturbation and

magnetic field. When g = 0, the equation (6.3) reduces to the form of cubic NLSE. If we

increase the value of g, the system reaches to chaotic state. This was studied earlier by

some authors (Sharma et al. 2006; Singh & Sharma, 2007), but those were limited in

steady states only. Therefore, the time evolution of IAWs applicable to auroral region is

studied here.

In order to find out the relationship between the initial IAW pump wave amplitude and

the parameter g, we substitute a simpler homogeneous solution as By0e
−iz (Zhou et al.

1992; Zhou & Hi 1994) in equation (6.3) where By0 is the amplitude of the homogenious

pump IAW. Further we simplify it by taking C = 0 and we get

|By0| =
√

ln|1 − 2g|
2g

, (6.4)

where the value of g is limited as 0 ≤ g < 1/2 and By0 is the amplitude of the homogenous

pump IAW.

6.3 Numerical Simulation

The numerical simulation of equation (6.3) was carried out by using 2-D pseudo-spectral

method for space integration with periodic spatial domain of Lx = 2π/αx and Lz = 2π/αz

(where αx and αz are the perturbation of IAW wave numbers in x and z directions
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respectively) with 27 × 27 grid points. The modified version of Gazdag predictor-

corrector method for evolution in time with a step size of dt = 5 × 10−5 was employed

First, we wrote the algorithm for well-known 2D-cubic NLSE as described in Chapter 3.

The linear terms were transformed to Fourier space by performing Fast Fourier Transform

(FFT) whereas for the nonlinear term the local product in real space was taken first

and then applied FFT to transform it into Fourier space. If the linear evolution is fully

integrable, then the plane wave solution is the possible solution. After fully testing the

algorithm for 2D-cubic NLSE, the algorithm was modified to solve equation (6.3).

To understand the role of the initial conditions of the simulation which represents

the inhomogenous magnetic field, we used two different types of initial conditions of

simulation. The first initial condition we used is a uniform plane IAW at fixed amplitude

which is superimposed by a sinusoidal periodic perturbation. It is represented as IC-1.

B′
y(x, z, t = 0) = By0[1 + ε cos(αxx)][1 + ε cos(αzz)] (IC-1)

where ε is the magnitude of the wave perturbation. The wave numbers of the perturbations

αx and αz are normalized by x−1
n and z−1

n respectively. In fact, IAWs are more complicated

than the sinusoidal waves. But any type of waves can be represented by the sum of the

components of sinusoidal waves.

When a Gaussian perturbation is superimposed on a uniform plain IAW, we represent

the second initial condition as IC-2.

B′
y(x, z, t = 0) = By0[1 + ε exp (−x2/r2

01)][1 + ε exp (−z2/r2
02)] (IC-2)

where r01 (normalized by xn) is the transverse scale size of the perturbation and r02

(normalized by zn) is the longitudinal scale size of the perturbation. The parameter

values we used in the simulation are ε = 0.1 and αx = αz = 0.5 so that all fields of

the wave may be allowed to denote as discrete Fourier series with integral wave vector

components. For r0 = 1.0 and r01 = r02 = 5, we get Lx = Lz ≃ 12.5 ≃ 2.5r01 ≃ 2.5r02.
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Here we have chosen fixed value of g = 0.01 which provides the amplitude of the pump

wave By0 ≃ 1.005.

To express the normalized units of the simulation results to absolute units as well as to

substitute the values of the constants appeared in the model equation and make a relevant

application to the regions of interest in space plasma, we choose two regions: solar coronal

holes and auroral region in the Earth’s magnetosphere. First the possible solar coronal

hole parameters as reported by Champeaux et al. (1998) are: for β = 2×10−4, B0 ≈ 32G,

n0 ≈ 108cm−3, Te ≈ 0.4 × 106K, Ti ≈ 0.2 × 106K. Now we calculate vA ≈ 7 × 108cms−1,

vT e ≈ 2.5 × 108cms−1, ωci = 3 × 105Hz. For ω = 13.8 × 103Hz and k0xλe = 0.01 we get

k0x = 1.9 × 10−4cm−1, k0z = 2 × 10−5cm−1.

The values of the normalizing parameters are: xn ≈ 2.6 × 103cm, zn ≈ 2.5 × 107cm,

tn ≈ 0.362s, nN ≈ 4 × 104cm−3 and Bn ≈ 2.56G.

In the auroral ionosphere located at the altitude of 1700km, the possible plasma

parameters (Wu et al., (1996)) are B0 ≈ 0.3G, n0 ≈ 5 × 103cm−3, T ≈ 1eV ; then

β ≈ 2.2 × 10−6, vA ≈ 9.3 × 108cms−1, vT e ≈ 4.2 × 107cms−1, ωci ≈ 2.9 × 103Hz,

λe ≈ 7.5 × 103cm. For these parameters at ω/ωci = 0.02 and k0xλe = 0.1, we get

k0x ≈ 1.3 × 10−5cm−1, k0z ≈ 6.2 × 10−8cm−1.

The values of the normalizing parameters are xn ≈ 3.8 × 104cm, zn ≈ 8.1 × 108cm,

tn ≈ 0.90cm−3 and Bn ≈ 0.24G.

Our simulation results are applicable for both solar coronal holes and auroral region of

the Earth. For detailed application purpose, we need to use the values of the normalizing

parameters calculated from the possible plasma parameters in the two regions. The 2D

snapshots of the time evolution of transverse IAW field intensity for two types of initial

conditions are shown in figures 6.1(a) - 6.1(c) and 6.2(a) - 6.2(c) (upper panels) at three

instants of times. Whereas the distribution of magnetic field intensity patterns in Fourier

modes (kx, kz) are shown in figures 6.1(a) − 6.1(c) and 6.2(a) - 6.2(c) (lower panels).

These pattern lines connect the coordinates of kx and kz having the same values of |Byk|2.
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Fig. 6.1 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) for IAWs at t = 3, 3.5 and 4 for IC-1.

When the ponderomotive force acts on the plasma, the density gets modified. Due to

this, the phase velocity of IAWs changes. When the IAWs propagate, the magnetic fields

are localized in space. The inhomogeneity of the field in the form of the perturbation

represented here takes the energy away and the localized magnetic structures collapse

with the advancement of time. The nonlinear interactions between density and magnetic

fields try to regroup the collapsed structures.
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The mechanism for the generation of magnetic coherent structures is similar with the

mechanism of laser focusing as explained by Kruer 2003. As the density of the medium

is perturbed, the dielectric constant and hence the refractive index of the medium will

be changed. The laser beam propagating through the medium of varying refractive

index will act as a focusing lens and the wave will be focused. Similarly here also, the

parallel ponderomotive force will modify the density. The KAWs propagating through

this medium having density perturbations will produce varying phase velocity generating

the spatial localization of the wave field.

These magnetic coherent structures enhance the transferring of energy from large scales

(comparable to ion acoustic gyroradius) to small scales (comparable to electron thermal

gyroradius). The plasma inhomogeneities manifested in the magnetic field and density

perturbations in our study will take energy from the main IAW by nonlinear interaction

and as the IAW propagates, it will generate magnetic filaments. Gershman et al. 2017 have

found that local generation of observed IAWs, as observed by NASA’s Magnetospheric

Multiscale (MMS) mission, are due to the combined effects of nonlinearities arising from

inhomogeneities in the magnetic field and particle number density.



118 Inertial Alfvén Wave Turbulence and Particle Heating in Space Plasma

Fig. 6.2 Snapshots of normalized magnetic field intensity profiles (upper panel) and spectral contour
plots of magnetic field intensity (lower panel) for IAWs at t = 3, 3.5 and 4 for IC-2.
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Fig. 6.3 Spectra of IAW magnetic field fluctuations for IC-1 in k⊥ space (upper panel) and k∥ space
(lower panel) at t = 3, 3.5 and 4
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If there is large fluctuations in the parallel magnetic fields as well as high current

density, then the lighter particles (electrons) can be sufficiently trapped in between the

wave packets. In this way, the wave energy is converted into particle energy. Therefore,

it gives magnetic analog of Landau damping and can heat the plasma. We can measure

the transverse scale size of the magnetic coherent structures from the magnetic field

intensity profile. At early times, it comes out to be of the order of ion gyroradius ≈

6ρs = 188.50 km (measured at the half of the peak intensity). As time progresses, this

scale size becomes smaller because of the transverse collapse. When this size reaches

kinetic scales of IAWs, enough electron or ion heating takes place. Lion et al. 2016 and

Chmyrev et al. 1988 reported the scale size of IAW filament structures of the order of ρs.

Further by increasing the pump wave amplitude of the IAW which can be attained with

increasing the value of g, we get the scale size of the filaments at micro kinetic scales and

it leads to chaotic motion. The transfer of wave energy to particle energy is sufficiently

happening at this stage.

Next, we present the spectral energy |Byk|2 at various wavenumber spaces, first in

kx(k⊥) direction [Figure 6.3(a)- 6.3(c) (upper panel)] and then to kz(k∥) direction [Figure

6.3(a) - 6.3(c) (lower panel)] for first initial condition. For the second initial condition,

the same is shown in figure (6.4). From the spectral plots, we see that the spectral

index of energy cascade follows the Kolmogorov scale of −5/3 in the inertial range i.e.

when k⊥ρs < 1 and k∥ρs < 1. This is in agreement with the results of many authors

(Champeaux et al. 1998; Lavender et al., (2001); Sulem & Sulem, 1999). Hollweg,

1984 calculated the energy flux density in the plasma turbulence in the coronal holes by

applying −5/3 spectral index. The results were in agreement with many observations.

However, how this high energy flux in the coronal holes is achieved and what is the

mechanism for turbulence leading to heating the corona have been still debating. The

generation of IAW magnetic filaments and it’s transverse collapse have been proposed in

this chapter as one of the candidates to understand the coronal heating.
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Fig. 6.4 Spectra of IAW magnetic field fluctuations for IC-2 in k⊥ space (upper panel) and k∥ space
(lower panel) at t = 3, 3.5 and 4

It is found from the power spectra that the first spectral break happens at k⊥ρs ≈ 1

and k∥ρs ≈ 1. The first spectral break signifies a transition region from ion scale known

as inertial range to electron scale known as kinetic range. In the transition range, our

simulation results show the spectral indices in k⊥ to be −10 and −4, and in k∥ to be −6

for first initial condition. For second initial condition, these are −8 in k⊥ and −6 in k∥.

Hudson, 1991 suggested that to sufficiently heat the solar corona by small scale burst

like solar flares, the negative spectral magnetic energy slope of at least −2 is required.

Many spacecraft results reported the spectral index deeper than −2 in the coronal region

(Aschwanden & Parnell, 2002).
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Finally, the electric field spectra are presented in Fourier space (6.5). From Chapter

2 equations (2.13) and (2.14), the dimensionless electric field components are found as

Ex = (2 − e|By |2)By and Ez = By/Q. Here the constant Q = v2
A/(v2

teλ
2
ek0xk0z) and the

electric field is normalized by EN = BNk0zv2
A/(ωc). From figure (6.5), we find the spectral

indices of −5/3 in the inertial range for all instants of time. In the dissipation range, the

slopes are different: −8 at t = 3, and −6 at t = 3.5 and t = 4. Electric spectra showed the

same shape as that of magnetic spectra except that the field intensities are low in case of

electric spectra. Therefore, we show here the electric spectra for the first initial condition

only. Theoretically, Zhao et al 2016 modeled the inertial Alfvénic turbulence of scaling

law k
−5/3
⊥ and k

−1/3
⊥ for E⊥ spectra, and k

4/3
⊥ and k

−1/3
⊥ for E∥ spectra. For scales smaller

than the ion kinetic scales kρi > 1, spectral scaling of k
−1/3
⊥ was modeled (Schekochihin

et al. 2009; Zhao et al 2013; Bian & Kontar, 2010). However, for strong turbulence

Boldyrev and Perez, 2012 modeled it to be −2/3. For parallel electric spectrum, Zhao

et al 2016 found the spectral indices of k
4/3
⊥ and k

−1/3
⊥ in the inertial and kinetic scales

respectively. In the inertial regime, the E∥ spectral energy increases with k⊥ (Zhao et al

2013; Bian & Kontar, 2011). By analyzing the THEMIS and Cluster data Mozer and

Chen, 2013 found that both the electric spectra have almost the same power and scaling

law of −5/3 at ion scales and −2.1 to −2.8 at electron scales. In contrast to this, some

authors (Zhao et al 2013; Bian & Kontar, 2010; Bian & Kontar, 2011; Mozer and Chen,

2013) predicted that the spectral power is much higher in E⊥ spectrum. Hence, the total

energy is contributed mainly from E⊥ energy. In our simulation also, by comparing the

two electric spectra, we found that E⊥ spectral energy is higher of the order of 3 than

that of E∥ spectral energy. It should be mentioned here that E∥ is the actual force which

mediates the wave-particle interaction and it is important in accelerating the charged

particles (Wu & Fang, 1999; Fletcher & Hudson, 2008; McClements and Fletcher, 2009)

via Landau resonance. Particle heating occurs when the electric thermal speed and the

magnitude wave phase velocity are comparable. This stochastic heating problem can be
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Fig. 6.5 Spectra of IAW electric field fluctuations in k⊥ space for IC-1: perpendicular electric field (upper
panel) and parallel electric field (lower panel) at t = 3, 3.5 and 4.

treated by considering a distribution function in velocity phase space and solving the

quasilinear diffusion equation (Fokker-Plank equation). This stochastic heating problem

will be addressed in the next section.



124 Inertial Alfvén Wave Turbulence and Particle Heating in Space Plasma

6.4 Particle Acceleration

In this section, we will study the evolution of the velocity distribution function due to

the fluctuating magnetic/electric spectra at dissipation region. It can be carried out

by using the Quasi-Linear Theory (QLT) using the Fokker–Planck diffusion equation (

Fuchs et al. (1985))

∂fe

∂t
= ∂

∂vez

(
D(vez) ∂fe

∂vez

)
, (6.5)

where f(vez, t) is the velocity distribution function and D(vez) is the diffusion coefficient

given as (Rozmus et al., (1987))

D(vez) = 1
4

(
e

me

)2
lA

|Ezkmin
|2

vezkmin

(6.6)

where lA is the periodicity length and e is the charge of the electron. Further, |Ezk| =

|Ezkmin
|[|kmin/k|]S/2 with kmax and kmin as the wavenumbers at the edges of the fluctuating

field region, kmin ≤ k ≤ kmax, and S as the slope of the power spectrum.

We can take the steady state form of the equation (6.5) i.e. ∂f
∂t

= 0, if the distribution

function is independent of time when it reaches a constant value. This can be achieved

if the observation time is much longer than the characteristic time of the nonlinearity

that arises due to ponderomotive force. This characteristic time of nonlinearity is of the

order of r0/cs, where r0 is the transverse scale size of the magnetic filaments and cs is

the ion sound speed. Considering the steady state situation, we can write equation (6.5)

in dimensionless form as

∂f

∂vez

= C1

D(vez) , (6.7)

where C1 is a constant.

Now substituting |Ezk| as given above, we get
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D(vez) =
[1
4

(
e

me

)2 lA
|vez|

|Ekmin
|2
∣∣∣∣kmin

k

∣∣∣∣S]
k=ωA/v

. (6.8)

Substituting the relevent relations, equation (6.7) becomes

∂f

∂vez

= C1

D0

(
vp(kmin)

vez

)S−1
(6.9)

where

D0 = 1
4

(
e

me

)2
lA

|Ezkmin
|2

vp(kmin) . (6.10)

Performing integration on equation (6.9), we get its solution as

f = C1vp(kmin)
D0(2 − S) .

(
vp(kmin)

vez

)
+ C2. (6.11)

Here, the two constants C1 and C2 have to be evaluated using the boundary conditions.

First boundary condition is that the total number of particles nc in the distribution tail

is equal to the initial number of particles with velocities vmax ≤ vez ≤ vmin. It can be

represented mathematically as

nc =
∫ vmax

vmin

fmdv (6.12)

where

fm = ne

(
me

2πkBTe

)
exp

(
− 1

2
mev

2
ez

kBTe

)
(6.13)

The last boundary condition is: f(vez) = f(vmin). These two conditions are used two

calculate C1 and C2 as
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C1 =
(

D0(2 − S)
vp(kmin)

)
.[nc − (vmax − vmin).f(vmin)].

[
vp(kmin)
3 − S

{(
vp(kmin)

vmax

)(S−3)

-
(

vp(kmin)
vmin

)(S−3)}
-
(

vp(kmin)
vmax

)(S−2)
. (vmax−vmin)

]−1
(6.14)

and

C2 = fm(vmin) − C1vp(kmin)
D0(2 − S)

(
vp(kmin)

vmax

)(S−2)
. (6.15)

It is evident from equation (6.11) that the distribution function is dependent on the

slope of the wavenumber power spectra. The distribution function thermal tail will be

enhanced for the dissipative range of spectra than the inertial range. So we can conclude

that for more deep spectral index in the power spectra, the thermal tail of the distribution

function is elongated and the particles gain more energy.

6.5 Conclusion

To encapsulate this chapter, we have presented the numerical simulation results of the

nonlinear dynamical equation of IAWs in low β plasma applicable to solar coronal holes

and magnetospheric auroral region. These results showed the generation of coherent

structures of magnetic field intensity and turbulent spectra of magnetic and electric field

fluctuations. The magnetic coherent structures of high intensity peaks can generate other

waves and it can be the source of collapse of IAWs. The turbulent magnetic spectra

are proportional to k−4
⊥ and k−6

∥ in the dissipation range. But in the inertial range

(energy injection region) it follows k−5/3 scaling. For the fluctuating electric/magnetic

fields, the distribution function of the charged particles satisfy the Fokker-Plank equation.

By solving the distribution function in steady state condition, we showed that the

extension of the distribution thermal tail depends on the wavenumber spectral index

of the electric/magnetic field power spectra. The charged particles at the end of the
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distribution function thermal tail will have higher velocity and thereby energizing the

solar coronal or auroral plasma particles.





Chapter 7

Conclusions and Future Outlooks

7.1 Conclusions

In this thesis we explore some of the magnetohydrodynamic and kinetic properties of

nonlinear Alfvén waves in the context of solar wind, solar corona and the magnetospheric

turbulence as well as the heating of the plasma particles. It studies about the formation of

coherent, filamentary Alfvén structures, their decay processes, their role in particle heating

and acceleration, and their relevance for creating the power-law spectra of turbulence

observed in solar wind. The numerical results tried to contribute some knowledge

and understanding to resolve the yet unsolved problems of heating and acceleration

of particles in solar wind, corona and magnetosphere. The problems in these research

areas remain at the top of interest of many physicists working with magnetospheric

plasma and solar physics. This is stimulated by new experimental results from satellites,

scanning the magnetosphere and observing the Sun. After several decades of worldwide

research concerned with acceleration of solar and magnetospheric plasma, there is still

no consensus about the fundamental processes to fully understand in this direction.

Chapter 1 of this thesis contains a comprehensive review of the present knowledge

of the role of dispersive Alfvén wave (DAW) in acceleration processes in the terrestrial

magnetosphere and solar plasma. Chapter 2 derives the governing equations of DAWs
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by using the two fluid model when the plasma background density is modified by

ponderomotive force and Joule heating. Chapter 3 describes the algorithm of the

numerical method and its testing. Chapter 4 to Chapter 6 contain highlights and review

of the publications that are basis of the thesis, with a final summary in this present

Chapter 7.

The dynamical governing equations satisfied by DAWs follow the modified nonlinear

Schrödinger equation. The equations were solved by pseudo-spectral method of simula-

tion by taking Fast Fourier Transform and forward difference method. The numerical

correctness and accuracy of the solver was checked by applying it to known solutions. By

assuming an energy inputs in the form of pump waves in the kinetic range (KAW), or

electron inertial range (IAW) the author studies numerically the evaluation of these waves

that lead to filamentary nonlinear structures, or to creation of spatio-temporal turbulence.

The magnetic filaments of DAWs with high intensity are generated as the wave propagates

along the direction of magnetic field. The transverse modulation of Alfvén waves resulting

in coherent structure formation has a significant effect on the evaluation of the spectra of

the turbulent magnetic and density fluctuations. The perpendicular characteristic scale

is found to be the ion Larmor radius for the kinetic Alfvén wave and the electron skin

depth for the inertial Alfvén wave.

The applications of the results of KAWs at 1AU solar wind parameters and coronal

loops, and IAWs at solar coronal holes were also discussed. The dynamical motions are

dependent on the type of plasma inhomogeneity represented by four different kinds of

initial conditions in our numerical simulations. The perturbation present in the magnetic

field takes the energy from the pump DAWs and as the wave propagates magnetic

coherent structures are generated when there is a balance between the wave diffraction

and nonlinearity effects resulting from plasma inhomogeneity profile. The collapse of the

DAW wave packets takes place when this balance is no more and this leads to transfer

of energy from the wave to the particles in the plasma such as electrons and ions. This
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transfer of energy at perpendicular wavevector is more for uniform initial pump DAW

rather than those for non-uniform initial pump wave of Gaussian wavefront. The transfer

of energy at kinetic small scales when the wavenumber is less than ion gyroradius and

comparable to electron inertial length causes solar wind turbulence and heating of the

plasma. In our study we found the spectral index following the Kolmogorov scale of

−5/3 which is in the inertial range followed by deeper index varying from -2.5 to -8 in

the kinetic dissipation range.

The solar coronal heating has been an open problem in solar physics in spite of

having proposed many theoretical models to explain it. Dispersive Alfvén waves (DAWs)

have been proposed by many authors to be responsible for inhomogeneous heating

of solar coronal plasmas. By use of the pseudo-spectral method, the present thesis

numerically studied the turbulent power spectra of magnetic fluctuations associated with

DAWs based on the fluid model including the effects of the ponderomotive force and

Joule heating. The results showed that the steady magnetic power spectra follow the

Kolmogorov scaling in the inertial region and exhibit evidently anisotropy in the kinetic

scale range, in similar with the results obtained by many previous works cited in this

thesis. Meanwhile the present thesis also presented some interesting and important new

results that the anisotropic scaling law of the magnetic power spectra in the kinetic scales

obviously depends on the initial conditions of simulations, specifically, the distribution

and component of initial pump waves. The scaling anisotropy of turbulent power spectra

in the kinetic scales of plasma particles can importantly influence the plasma heating

and turbulent energy transferring processes. For the heating of plasma particles via the

wave-particle interactions, in general, the electric power spectra of the turbulent waves are

more important than the magnetic power spectra. For the fluctuating electric/magnetic

fields, the distribution function of the charged particles satisfy the Fokker-Plank equation.

By solving this distribution function in steady state condition, we showed that the

extension of the distribution thermal tail depends on the wavenumber spectral index
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of the electric/magnetic field power spectra. Hence, charged particles at the end of the

distribution function thermal tail have higher velocity and thereby energizing the solar

coronal or auroral plasma. Since the formation of magnetic filaments and it’s collapse are

considered as one of the faster way to transport energy, our present study may provide

some clues to understand the phenomenon of energy distribution via dissipation in the

solar wind, solar corona and other relevant plasma environments.

7.2 Future Outlooks

In addition to bringing out a theoretical framework to explain the solar wind turbulence

and coronal heating, the thesis also has explicitly brought out the simplicities involved

in existing models. We identify at least four areas that need to be incorporated in the

future work to enhance the conclusions presented here: three dimensional DAW dynamics,

considerations of arbitrary plasma β, elliptical polarization, and compact expression for

the density perturbations.

Three-dimensional considerations:- The simulations in this work are two-dimensional

by assuming the DAWs propagating in x − z plane i.e. k⃗0 = k⃗0x + k⃗0z. Generalizing the

model to a fully three-dimensional simulation can be proceeded by considering the wave

vector k⃗0 = k⃗0x + k⃗0y + k⃗0z. The numerical simulation in 3D by pseudo-spectral method

will be time consuming and require high end machines.

Arbitrary plasma- β:- Two-fluid equations under assumption of plane propagation

describe all branches of waves: Alfven, slow/fast magnetosonic, acoustic, kinetic Alfven

(KAW) and electron inertial Alfven (IAW). However, our model equation for KAW/IAW

was obtained after decoupling the solutions of two fluid equations together with Maxwells

equations where plasma β is very much less than unity. Removing this condition, one

can find out the general dynamical equation for arbitrary plasma β value. This will be

useful to study the role of nonlinear Alfven waves in many parts of the heliosphere such

as the heliospheric current sheets located at around 5A.U..
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Consideration of elliptical polarization:- The KAW is generally elliptically po-

larized having the magnetic field into two components Bx and By. When ω ≪ ωci, the

wave is nearly linearly polarized giving only one component of transverse magnetic field.

In our study, we took linearly polarized waves resulting the dynamical model equation

involving only By, other components (Bx, Bz) can be obtained from Faraday’s law. Our

study can be improved by considering the elliptical polarization by defining two modes,

left and right circularly polarized waves as Ex + iEy and Ex − iEy respectively.

Compact density perturbation:- We used the z-component of the ponderomotive

force to get the modified density (Bellan & Stasiewicz (1998); Shukla & Stenflo, (2000a))

which is valid for an adiabatic case when the ion acoustic wave is propagating along the

field line. The density perturbation can also be obtained from the normal momentum

conservation equation, which leads to a completely different equation than we used in our

study. However, it is difficult to obtain the compact expression for the modified density.

To the best of our knowledge, we have not seen this type of density expression in the

literature. So, it can be a challenging work to carry out.
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Abstract This paper presents the generation of kinetic Alfvén wave (KAW) coherent structures of magnetic

filaments applicable to solar wind at 1 AU, when the background plasma density is modified by parallel

ponderomotive force and Joule heating. The inhomogeneity in the magnetic field, which was included as

a perturbation in the transverse direction of the magnetic field, takes energy from the main pump KAWs

and generates the filamentary structures. When the intensity is high enough, the filaments are broken down

and the energy initially confined to low wavenumbers is redistributed to higher wavenumbers, leading to

cascades of energy at small scales less than the ion acoustic gyroradius or comparable to electron gyroradius.

The magnetic field spectral profile is generated from the numerical simulation results, and its dependence

on different directions of the wavevector and initial conditions of the simulation representing the transverse

magnetic field inhomogeneity is studied. The relevance of these results with other spacecraft observations

and measurements is also pointed out.

Key words: plasmas — turbulence — waves — solar wind

1 INTRODUCTION

In a magnetized plasma, Alfvén waves are produced by the

restoring force coming from the magnetic tension while the

ion mass provides the inertia to maintain the wave. Kinetic

Alfvén waves (KAWs) are low frequency (compared to

ion cyclotron frequency), dispersive, shear Alfvén modes

that exist when their perpendicular wavelength is compa-

rable to either the ion gyroradius or the electron inertial

length, while the parallel wavelengths are longer than the

ion inertial length (here, the perpendicular (parallel) direc-

tion means transverse (along) to the ambient (background)

magnetic field direction). Their plasma β is in the interme-

diate range (me/mi ≪ β ≪ 1), where β = 8πn0T/B2
0

(thermal to magnetic pressure ratio), n0 is the unperturbed

plasma number density, T (= Te ≈ Ti) is the plasma tem-

perature, B0 is the external ambient direct current (DC)

magnetic field and me/mi is the electron to ion mass ra-

tio. In this plasma β regime, the electron thermal speed

exceeds the Alfvén speed, thereby allowing the electrons

to move fast enough to respond to any adiabatic changes in

density or field profile.

Many studies (Li et al. 2016; Tu & Marsch 1993;

Bavassano et al. 1998; Neugebauer 2004) have shown that

the Alfvénicity measured by the correlation of the field

and velocity components decreases with solar distances.

At a solar distance of 0.3 AU, an Alfvénicity of around 3

was found (Tu et al. 1990; Marsch & Tu 1990). At a solar

distance of 1 AU, it becomes around less than 0.7 (Tu &

Marsch 1995) showing that as the solar wind expands, the

plasma becomes magnetically dominated. However, Wang

et al. (2012) pointed out the existence of large-amplitude

Alfvén waves near 1 AU, with an Alfvénicity of around

1. There are many independent observational evidences

showing the existence of KAWs in the solar wind in the

form of KAW turbulence at 1 AU and perhaps through-

out of the heliosphere (Podesta 2013; Howes et al. 2006,

2008b,c, 2011b; Schekochihin et al. 2008, 2009; Boldyrev

& Perez 2012).

KAWs develop field aligned electric fields which can

lead to the acceleration and heating of the charged par-

ticles along the magnetic field direction (Hasegawa &

Chen 1975; Wu 2003; Wu & Chao 2004), thus produc-

ing anisotropic and mass-dependent energization of heavy
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Abstract Understanding solar coronal heating has been one of the unresolved problems in solar physics

in spite of the many theories that have been developed to explain it. Past observational studies suggested

that kinetic Alfvén waves (KAWs) may be responsible for solar coronal heating by accelerating the charged

particles in solar plasma. In this paper, we investigated the transient dynamics of KAWs with modified back-

ground density due to ponderomotive force and Joule heating. A numerical simulation based on pseudo-

spectral method was applied to study the evolution of KAW magnetic coherent structures and generation of

magnetic turbulence. Using different initial conditions in simulations, the dependence of KAW dynamics

on the nature of inhomogeneous solar plasma was thoroughly investigated. The saturated magnetic power

spectra follows Kolmogorov scaling of k−5/3 in the inertial range, then followed by steep anisotropic scal-

ing in the dissipation range. The KAW has anisotropy of k‖ ∝ k0.53
⊥ , k‖ ∝ k0.50

⊥ , k‖ ∝ k0.83
⊥ and k‖ ∝ k0.30

⊥

depending on the kind of initial conditions of inhomogeneity. The power spectra of magnetic field fluctua-

tions showing the spectral anisotropy in wavenumber space indicate that the nonlinear interactions may be

redistributing the energy anisotropically among higher modes of the wavenumber. Therefore, anisotropic

turbulence can be considered as one of the candidates responsible for the particle energization and heating

of the solar plasmas.

Key words: plasmas — turbulence — waves — Sun: corona

1 INTRODUCTION

One of the fundamental unsolved issues of astrophysics is

the solar coronal heating problem, where the outer atmo-

sphere of the Sun has a high temperature corona of around

2×106K as compared to the photosphere of around 6000K.

In the past few decades, many spacecraft observations

from the Solar and Heliospheric Observatory (SOHO),

Transition Region and Coronal Explorer (TRACE), Hinode

and Solar Dynamics Observatory (SDO) have revealed

that the solar atmosphere is in nature far from dynamical

and thermal equilibrium. It has inhomogeneity in magnetic

field and density. Therefore, the nonuniform heating pro-

cesses of magnetoplasma fine structures play a very sig-

nificant role in the coronal heating. These coherent struc-

tures or filaments are often identified as the manifestation

of field aligned density (or temperature) striations and their

heating mechanisms are closely related to solar magnetic

fields.

The solar corona is generally divided into coronal

holes (open regions) and coronal loops (closed regions).

⋆ Supported by the RGNF, UGC, India.

The cooler and less dense coronal holes are the sources

of solar wind. The associated magnetic field lines are car-

ried away from these regions to space by the solar winds

through the escaping energetic particles. The first coronal

heating mechanism involving the role of solar magnetic

field lines was proposed by Alfvén (1942) using Alfvén

waves (AWs). Since then many theories were put forward

to explain the coronal heating and solar wind acceleration

(Marsch 2006; Sirenko et al. 2002; Cranmer et al. 2007;

Cranmer 2009). Among them, two prominent theories are:

heating by waves (Narain & Ulmschneider 1996; Hood

et al. 1997; Goossens 1994; Priest et al. 2000; Poedts et al.

1989; Ruderman 1999) and heating by flares or magnetic

reconnection (Jain et al. 2005; Hood et al. 2009; Sturrock

et al. 1999; Cassak & Shay 2012). However, there is still

no universally accepted self-consistent model to explain

the physical processes behind the coronal heating and so-

lar wind acceleration. Recently, there are many observa-

tional and theoretical evidences showing that AWs are the

main candidates for being able to transport sufficient en-

ergy in the solar atmosphere to reach the temperature of

million Kelvins in the coronal regions (Parker 1979; De
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