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Abstract  

The study of biological systems has benefited greatly from mathematical modelling 

since it us to replicate complicated biological processes and better understand the 

underlying mechanisms. ODEs, which characterise the rate of change of a system’s 

variables over time and are especially helpful for systems susceptible to continuous 

changes, are a key tool for this kind of study. We may examine how various factors 

change over time and forecast system behaviour by modelling biological processes as 

mathematical equations. These models may be used to create fresh experiments and 

test theories. In silico research, which makes use of computer simulations to analyse 

the behaviour of biological systems under diverse conditions, is one crucial use of 

mathematical modelling in biology. Advancing our knowledge of biological systems 

and creating fresh approaches to curing disease and enhancing human health depend 

on the integration of mathematical models and experimental data.  

In different chapters of the present study, various types of data are analysed using 

suitable sophisticated mathematical tools and techniques while aiming for multiple 

plausible solutions to a variety of biological and ecological problems. For instance, 

adverse feedback effects brought on by AT2R-Ang II binding reactions serve as 

reliable controls on mean-arterial variance, which, if dysregulated, might result in 

either hypertension or hypotension. Spatial temporal data analysis of PAHs 

concentration of South China Sea (SCS) revealed significant seasonal fluctuation in 

PAH levels, and the most significant environmental variables impacting the seasonal 

heterogeneity and the geographical distributions of PAHs in the surface sea waters are 

considered to be anthropogenic activities, land- and ocean-based emissions, surface 

runoff, and open seawater dilution. Another chapter analysed the ecological risk 
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evaluation of OCPs seasonal and phase-petitioning effects in SCS and ECS, which are 

important source-sink zones. Overall, the research emphasizes the significance of 

taking spatiotemporal variation into account when assessing ecological risk. In 

addition, time series analysis of data on malaria incidence in the Asia-Pacific area and 

Africa revealed significant intra- and inter-regional variations, with almost 

exclusively decadal declining patterns in the Asia-Pacific region and a somewhat 

mixed tendency in Africa. This study illustrates the relationship between intra- and 

inter-regional variations in malaria incidence and environmental conditions at broad 

geographical scales. Furthermore, understanding the significance of mutations in the 

SARS-CoV-2 spike protein, including E484K, K417N, L452Q, L452R, N501Y, and 

T478K, can aid in targeted control measures, laboratory characterization, and 

therapeutic efforts. These mutations are part of an allosteric network that affects 

interactions between the spike protein and human receptor ACE2, leading to higher 

transmissibility and infectivity. Compensatory mutations in the N-terminal domain 

(NTD) are also involved in this network, and mutations in the RBD increase 

interactions with ACE2 to varying extents, depending on their allosteric connections 

with compensatory mutation clusters in the NTD. 
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Chapter 1 

1. Introduction 

Mathematical modelling is increasingly important in the study of biological systems, 

allowing us to simulate complex biological phenomena and gain insight into the 

mechanisms that govern them. ODEs are a primary tool for this type of research, 

describing the rate of change of a system’s variables over time and being particularly 

useful for systems subject to continuous changes. 

By representing biological processes as mathematical equations, researchers 

can explore how different variables change over time and predict system behaviour 

under different conditions. These models can also be used to test hypotheses and 

design new experiments. An essential use of mathematical modelling in biology is in 

silico research. These studies make use of computer simulations to examine the 

behaviour of biological systems under various circumstances. However, mathematical 

models have limitations, including oversimplification and dependence on 

experimental data accuracy. 

 Nonetheless, combining mathematical models with experimental data is 

essential for advancing our understanding of biological systems and developing new 

strategies for treating disease and improving human health. 

1.1 Motivation 

Present study is essentially being motivated by the digital invitations taken place in 

last two decades, leading to enormous opportunities to test and validate our classic 

mathematical ideas and models while dealing with some core real life problems. 
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Following are the different types of data currently available in different public 

domains that can mostly be utilized with the use of suitable sophisticated 

mathematical tools and techniques while aiming for multiple plausible solutions of a 

variety of biological and ecological problems. 

1.1.1 High-throughput data 

High-throughput data is a term used to describe large amounts of data that are 

generated rapidly. In the fields of transcriptomics, proteomics, and genomics, where 

extensive study may rapidly produce enormous amounts of data, this phrase is 

frequently used. High-throughput data are produced using a variety of techniques, 

including protein interaction analysis, gene expression analysis, and DNA sequencing. 

One benefit of high-throughput data is the ability to look at multiple samples at once, 

which leads to a more comprehensive understanding of biological processes. This 

information can also be used to develop new diagnostic tools, find innovative drug 

targets, and broaden our understanding of illness. However, due to the size and 

intricacy of the actual data sets, high-throughput data can be difficult to handle and 

analyse. This requires the use of complex computational tools and methods, as well as 

storage choices to manage the enormous data volumes, to assess and comprehend the 

data. 

1.1.2 Heterogenous data 

Heterogeneous data is data that consists of various kinds, forms, formats, and sources. 

It is a common aspect of large data sets and can be challenging to effectively handle 

and assess. One of the main benefits of heterogeneous data is the amount of 

knowledge it offers. By combining data from various sources, we may gain a deeper 
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grasp of the subject. This could lead to wiser decision-making and more                

well-informed tactics. However, there are several challenges that come with diverse 

data. Integrating different types of data can be difficult because they may have 

contradictory patterns and formats. This calls for the use of specialised tools and 

techniques, such as data normalisation and mapping, to ensure that the data can be 

used effectively. Data diversity may also make research more challenging. It can be 

difficult to determine which types of data to use for a particular analytic activity 

because the quality, relevance, and reliability of different data types can change. 

1.1.3 Homogenous data 

Homogeneous data are those that share the same form, kind, or character. In other 

words, homogeneous data is information that is composed of similar parts and can be 

easily managed, processed, and analysed as a unique unit. Because it is easy and 

homogeneous, homogeneous data is important because it is simple to change, analyse, 

and gain deep insights. When data is homogenous, analysis can be performed 

completely without the need for pre-processing, uniformization, or other sanitization 

steps. While saving time and money, it also ensures the accuracy of the research. 

Homogeneous data, in general, is a crucial part of data administration and analysis, 

necessary for making data-driven choices. 

1.1.4 Time series data 

A time series is a collection of data that has been gathered over time, commonly at 

regular periods. Time series data can be found from a variety of sources, including 

financial markets, weather patterns, and manufacturing processes. Unlike cross-

sectional data, which are snapshots of data collected at a specific point in time, the 
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data is distinct from other kinds of data because it has a temporal dimension. Time 

series data are commonly used in statistical analysis and modelling, such as trend 

analysis, forecasting, and anomaly detection. Time series models can be based on 

statistics or machine learning and can predict future values by taking into 

consideration patterns, periodicity, and outside occurrences. It can be challenging to 

work with time series data because of non-stationarity, missing numbers, and the 

frequency of outliers. Specific techniques and processes are required in order to 

effectively assess and model the data. 

1.1.5 Spatiotemporal data 

Spatiotemporal data is a general term for information that includes both a 

geographical location and a time component. This kind of information is becoming 

more and more prevalent in several fields, including geology, earth sciences, 

municipal planning, and meteorology. One of the primary advantages of 

spatiotemporal data is its ability to monitor changes over time and space. When 

compared to data that only has a spatial or temporal component, this can provide 

crucial insights into connections, patterns, and trends that are otherwise difficult to 

detect. A spatiotemporal collection of weather trends could be used, for instance, to 

study climate change and its impacts on different locations. Another advantage of 

spatiotemporal data is the ability to create interactive visualisations that can help 

illustrate intricate patterns and connections. However, managing spatiotemporal data 

can be challenging because it frequently includes large, complex datasets that call for 

specialised tools and approaches for processing, analysis, and display. The spatial and 

temporal elements of the data may also introduce new challenges, such as missing 

data, measurement errors, and spatial and temporal dependency. Spatiotemporal data, 
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in summary, is a useful instrument for understanding complex patterns and 

relationships across space and time. Although handling this type of data has some 

challenges, the benefits it provides make it an invaluable resource in many various 

industries. 

1.1.6 Synthetic data 

Synthetic data, also known as artificial or produced data, is a type of data that is made 

using computer programmes as opposed to being collected from trusted sources. 

Synthetic data is commonly used in a wide range of uses, including developing and 

testing machine learning models, enhancing data, and protecting and privacy. One of 

the primary benefits of synthetic data is the ability to quickly and easily create huge 

amounts of data. This can be particularly useful when getting real-world data is 

challenging or unattainable. Additionally, synthetic data can be modified to fit 

specific needs and requirements, for instance, by mimicking certain groups or trends 

found in real data. In general, synthetic data can be used for several tasks. It is 

important to remember, though, that artificial data might not truly represent real-

world data and might not possess certain characteristics or complexity. Therefore, it is 

essential to carefully evaluate the quality and applicability of generated data for a 

given use case before using it. To sum up, synthetic data is a useful instrument with 

the ability to be very helpful in a range of uses. It is essential to use it carefully and 

with a clear understanding of its limitations if you want to ensure that the results are 

reliable and precise.  
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1.2 Recent development and importance 

1.2.1 National importance 

Understanding the significance of various kinds of data is essential in the rapidly 

evolving area of data science. All types of data, including heterogeneous and uniform 

data, spatiotemporal data, high-throughput data, synthetic data, and protein data, are 

crucial in a variety of industries, including agriculture, biotechnology, medicine, and 

many others. These kinds of information are crucial for innovation, study, and growth 

in India. 

A mix of organized and unstructured data from various sources and forms is 

known as heterogeneous data. Although difficult to incorporate and evaluate, it is 

crucial to the Indian healthcare sector. Healthcare workers can develop a thorough 

grasp of a patient’s health state and make well-informed therapy choices by 

integrating patient records, lab findings, and medical images. The spatial and temporal 

components of spatiotemporal data are essential to India’s agricultural, healthcare, 

and environmental sectors. Data produced rapidly and in large quantities using a 

variety of methods, such as next-generation sequencing, is referred to as high-

throughput data. This information is essential for locating genetic variations linked to 

illnesses, creating novel therapies, and carrying out extensive clinical studies in 

India’s biotechnology and healthcare sectors. Artificially produced data, or synthetic 

data, is used to mimic real-world statistics. Large-scale data training of algorithms is 

becoming increasingly crucial in India’s machine learning and artificial intelligence 

sectors. Machine learning models are more accurate when more varied databases are 

created, bias is reduced, and synthetic data is used. Analysis of proteins, essential 

components in living things, yields statistics on proteins. As it is used to create novel 
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medications and treatments, this information is crucial to the science and healthcare 

sectors in India. To find novel drug targets, comprehend disease processes, and create 

more potent therapies, researchers evaluate protein data. In conclusion, 

comprehension of the significance of various kinds of data is crucial for research, 

development, and invention across a range of industries, including agriculture, 

nanotechnology, and many others. Heterogeneous data, uniform data, spatiotemporal 

data, high-throughput data, synthetic data, and protein data are all essential for 

advancing technology and raising everyone’s standard of living in India, where these 

sectors are expanding quickly. 

1.2.2 International importance 

Heterogenous data, homogenous data, spatiotemporal data, high throughput data, 

synthetic data, and protein data, all of these kinds of data are crucial for advancing 

science innovation and study on a worldwide scale, as well as for tackling issues like 

healthcare, climate change, and sustainable development. These kinds of data must be 

accessible and available if researchers and organizations from around the globe are to 

collaborate and share knowledge. 

1.3 Literature review of data types 

Several methods, including DNA sequencing, microarrays, mass spectrometry, and 

imaging, are used to provide high throughput data. High throughput data analysis 

requires specialised software tools and processing resources in order to be effective. 

Large datasets may be analysed to find patterns and trends using machine learning 

and artificial intelligence approaches. Applications for high throughput data are 

numerous, ranging from fundamental research to clinical trials. High throughput data 
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is a fast developing industry, with new technology and applications appearing often 

[1, 2]. 

The integration and analysis of data from many sources, including clinical, 

genomic, and imaging data, is referred to as heterogeneous data. Data fusion and 

machine learning are two examples of specialised software tools and methodologies 

that may be used to integrate and analyse heterogeneous data effectively. Numerous 

fields, such as illness diagnosis, drug development, and personalised medicine, make 

use of heterogeneous data analysis. Concerns about data privacy, data quality, and the 

necessity for cross-disciplinary collaboration are among the difficulties in 

heterogeneous data analysis[3]. 

Data that is homogeneous in nature and has the same structure and format is 

referred to as homogeneous data. It is frequently employed in applications for 

machine learning and statistical analysis. When compared to heterogeneous data, 

which has different forms and structures, homogeneous data is frequently simpler to 

analyse and handle. Numerical, textual, and visual data are typical types of 

homogenous data. Numerous industries, including healthcare, banking, and social 

research, employ homogeneous data. However, there are drawbacks to using 

homogenous data as well, including the risk of oversimplification and the requirement 

for high-quality data[4]. 

A group of data points that are accumulated through time are referred to as 

time series data. In several disciplines, including finance, economics, environmental 

research, and healthcare, time series data is extensively employed. Time series data 

processing calls for specialised methods including Fourier analysis, exponential 
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smoothing, and autoregressive integrated moving average (ARIMA). Time series data 

analysis has also employed machine learning methods like neural networks and 

support vector machines (SVMs). Forecasting future values, spotting anomalies, and 

identifying patterns are some applications of time series analysis[5]. 

Data that is gathered over both place and time is referred to as spatiotemporal 

data. The spread of illness, traffic patterns, and weather patterns are a few examples 

of spatiotemporal data. Spatiotemporal data analysis poses obstacles in terms of data 

management, quality, and the requirement for specialised analytical methods. Space-

time clustering, spatial interpolation, and geographic information systems (GIS) are a 

few of the analytic methods utilised in spatiotemporal data analysis. Urban planning, 

illness surveillance, and climate modelling are a few examples of spatiotemporal data 

analytic applications[6, 7]. 

Data that is artificially produced as opposed to being gathered from authentic 

sources is referred to as synthetic data. To address privacy issues and to augment 

sparse or partial data, synthetic data can be employed. Generative adversarial 

networks (GANs), variational autoencoders (VAEs), and differential privacy are 

methods for producing synthetic data. Numerous industries, including healthcare, 

banking, and social research, use synthetic data. The necessity for validation against 

actual data and the possibility of overfitting are obstacles in the usage of synthetic 

data[8]. 
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1.4 Research objectives 

➢ Objective # 1: To develop in-silico approaches to examine some system-

regulatory mechanisms. 

Developing simulations or models using computers is known as an in-silico 

method. Examining “system-regulatory mechanisms”, which are the 

procedures that control how biological systems behave, is possible using these 

in-silico techniques. Because they enable fast and low-cost experimentation 

without the need for pricey physical experiments, in-silico methods for 

studying system-regulatory processes can be particularly helpful. Additionally, 

compared to conventional laboratory studies, computer-based simulations can 

offer a more thorough understanding of intricate biological systems. 

➢ Objective # 2:  To develop some mathematical models to fit the real 

existing data with predicted values of certain biological systems 

The process of developing mathematical models that can precisely forecast the 

behaviour of a biological system based on existing data is crucial. It usually 

starts by collecting data from real experiments or observations of the 

biological system before developing these models. Then this information is 

used to develop mathematical models or equations that explain the system’s 

fundamental workings. In general, the creation of mathematical models that 

accurately reflect real-world data is an essential tool for understanding 

complex biological systems. It enables us to try and improve their hypotheses 

and can offer a more precise and thorough understanding of how these systems 

work. 
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➢ Objective # 3: To probe the link between system properties, functional 

and dynamics across scales 

Investigating the connections between a system's characteristics, how it 

functions, and how it evolves over time at various levels of structure is 

necessary to understand the association between system properties, functional, 

and dynamics across scales. The dynamics of the system as a whole start to 

matter at the biggest dimensions. For instance, variables like temperature 

change, species relationships, and human activities can have an impact on the 

dynamics of an ecosystem.  We can better comprehend how complex systems 

function and create management plans for them by investigating these 

connections. 

1.5 Layout of the thesis 

The Ph.D. thesis is composed of six chapters that collectively explain and analyse the 

research problem, methodology, and findings of my study. 

Chapter 1: This chapter includes a summary of the research’s problems and findings. 

Chapter 2:  This chapter introduces the production of synthetic data using an in-silico 

method in the well-known Renin Angiotensin system, where we have found that the 

AT2R-Ang II binding reactions’ negative feedback effects serve as reliable limits on 

mean-arterial variation. Depending on the degree of deviation, this control’s 

instability may cause either hypertension or hypotension. 

Chapter 3: A study of the spatiotemporal data analysis of the PAH concentration in 

the South China Sea (SCS) and East China Sea (ECS) has performed in this chapter. 
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PAHs concentration were collected for four seasons in two phases, particularly 

dissolved and particulate phase. 

Chapter 4: In this chapter, a study of a spatiotemporal data analysis of OCPs 

distribution in the South China Sea (SCS) and East China Sea (ECS) was performed. 

Seasonal and phase-partitioning effects were explicitly considered when assessing 

ecological risk in this chapter. Two phases, specifically the dissolved and particulate 

phases, were used to gather OCP concentrations over the course of four seasons. 

Chapter 5: In this chapter a “Heterogenous Time Series” data analysis of Malaria 

Incidence in two malaria endemic region, Asia-Pacific region and Africa was 

conducted. The study was conducted to identify intra-and inter regional differences in 

malaria incidence, if it exists in both the regions. Furthermore, the association of 

malaria incidences with temperature and precipitation was also studied in this chapter. 

Chapter 6: In this chapter a highly transmissible SARS-CoV-2 variants with multiple 

spike mutations was studied which poses significant challenges in controlling the 

COVID-19. The study revealed that each RBD mutation site is engaged in an inter-

domain allosteric network involving distant domain mutation sites, which affects 

interactions with the human receptor ACE2 

The thesis ends with some limitations and suggestions for the future. 
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“Synthetic data is the gasoline of AI development”. … Andrew Ng 

 Chapter 2 

2. Synthetic data modelling 

Graphical View 

 

 

Figure 2.1 Schematic diagram of AT2R mediated feedback effects on Mean Arterial 

Pressure Regulation (MAP) 

 

 

 

Thakuri B, Das JK, Roy A.K., Chakraborty A.: Mean-arterial pressure maintenance under feedback 

controls over the circulating renin-angiotensin systems. (Communicated) 
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2.1 Introduction 

The classical Renin Angiotensin System (RAS) model considers the canonical axis of 

the RAS systems that measure the harmful effects of Low Blood Pressure (LBP) that 

are mediated by the AT1R. The conventional belief that the RAS can only have 

negative impacts on the cardiovascular systems has been refuted by the recent finding 

of non-canonical RAS components. Angiotensins 1-7, 1-9, type 2 angiotensin II 

receptor, angiotensin-converting enzyme, and the proto-oncogene Mas receptors are 

among the non-canonical axis of the RAS that have been identified recently[9]. The 

negative consequences of classic RAS are offset by each component. Additionally, 

these non-canonical elements have been identified as prospective therapeutic targets 

because of their demonstrated essential roles in the pathophysiology and progression 

of several CVD [10-13]. Recent research has identified AT2R as the key factor 

mediating the majority of the effector Ang II’s counter-regulatory effects among all 

the counter-regulating RAS axis [14, 15]. Mice missing or overexpressing this 

receptor show AT2R activation and associated vasodilatory effects [16]. While 

transgenic overexpression of the AT2R in vascular smooth muscle cells has 

demonstrated to prevent vasoconstriction, AT2R under-expression led to higher blood 

pressure levels. The therapeutic study of AT2R is advanced by the recent discovery of 

selective AT2R agonists CGP42112A, which has been demonstrated to lower blood 

pressure levels compared to untreated rats [17]. 

The main tenet of cardiovascular physiology is the Renin-Angiotensin System 

(RAS), a complex multi-organ endocrine system made up of several peptides and 

pathways [18]. The RAS works as a cascade and is frequently activated in response to 

low blood pressure (LBP) or damage. When the kidney’s juxtaglomerular cells pump 
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the enzyme renin into the bloodstream, it begins acting on the liver-produced target 

protein angiotensinogen (AGT), which is continually present in plasma [19]. The 

AGT is broken down by renin into the inactive peptide angiotensin I. The angiotensin-

converting enzyme (ACE) then transforms this peptide into angiotensin II (Ang II), a 

pleiotropic octapeptide, is the primary effector of the RAS system, which triggers a 

number of physiological reactions vital to cardiovascular disorders (CVD), such as 

hypertension and heart failure. This group of actions mostly functions by binding to 

two primary types of G-protein-coupled receptors with high affinity.[20], angiotensin 

II subtype-1 receptor (AT1R) and angiotensin II subtype-2 receptor (AT2R) (Figure 

2.2). The AT1R mediates most of the well-known effects of RAS, which are typically 

harmful. However, little is known about the biochemical and functional consequences 

mediated by AT2R. 

2.1.1 Angiotensin II subtype-1 receptor (AT1R) and 

Angiotensin II subtype-1 receptor (AT1R) 

Only 34% of the sequence homology between the AT1R and the angiotensin II 

subtype-2 receptor (AT2R), which has a 363 amino acid molecular weight of 41,220 

Da, has been preserved [21], despite the fact that they both have a high affinity for 

Ang II and are members of the G protein-coupled receptor family. However, AT2R 

predominates over AT1R in some specific areas of the uterus, ovary, adrenal medulla, 

and in some region of the brain. In most adult tissues of the kidney, adrenal cortex, 

and heart, AT2R expressions are substantially lower than AT1R [22-24]. There is 

increasing evidence that AT2R inhibits Ang II's vasoconstrictor effect mediated by 

AT1R [9]. Through the stimulation of a cascade made up of BK, NO, and cGMP, 

such AT2R-mediated effects culminate in vasodilation[25]. The production of NO 
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and cGMP is enhanced by AT2Rs either directly or indirectly through the stimulation 

of increased BK production, which is then mediated by BK B2 receptors[26]. To 

improve the treatment targets for CVDs, it is necessary to better understand how other 

complicated varied interactions, whether direct or indirect, mediated by the AT2R 

affected blood pressure control. 

2.1.2 Vasodilator and hypotensive effects of AT2R 

It is noticed that the vasodilator and hypotensive effects of AT2R are prolonged 

acutely for a long time and are not linked to desensitisation [24]. As a result, it has 

become an appropriate option for a therapeutic target in hypertension [27]. Indeed, 

prolonged Ang (AT1R) receptor blocker (ARB) administration encourages the AT2R 

activity with stronger vasodilator responses to Ang II, as shown by a recent in vitro 

Ang II-study of diabetic, hypertensive human individuals [27]. Similar results were 

observed in hypertensive rats following pharmacological AT2R activation in the 

presence of ARBs using Compound 21, a highly selective non-peptide agonist [28]. A 

completely distinct recent investigation in obese Zucker rats found that PD-123319’s 

chronic AT2R antagonism increased mean arterial pressure (MAP) by 13 mm Hg and 

renin expression in the kidney cortex by three times [29]. In order to properly treat 

hypertension and hypotension, these results suggest the therapeutic benefit of 

examining various RAS interactions mediated by AT2R. The goal is to mimic 

AT2R’s inhibitory feedback effects on AT1R and renin and investigate how these 

effects affect blood pressure control. It has been noticed that the AT2R-mediated 

inhibition of renin activity, which is frequently disregarded, has more drastic effects 

on MAP regulation than its opposing effects on AT1R. Additionally, it demonstrates 
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that under situations of hypertension and hypotension, these strict feedback controls 

of the MAP are relaxed. 

2.2 Methods 

The circulating RAS (cRAS) is made up of the precursor angiotensinogen, two 

important enzymes (renin and angiotensin-converting enzyme, ACE), and their 

bioactive by-products, angiotensin-I and II together with its receptors AT1R and 

AT2R. Multiple cascading effects are produced by the major effector component Ang 

II, principally through the AT1R and AT2R receptors (Figure 2.2). When Ang II 

binds to AT1R, a number of cytoplasmic signalling pathways are made possible, 

including those that control the contraction of vascular smooth muscle cells by 

activating myosin light chain kinase or inhibiting myosin light chain phosphatase [30-

32]. Through the activation of the vasodilator cascade, which is made up of BK, NO, 

and cGMP, AT2R counteracts the AT1R-mediated vasoconstrictor action of Ang II 

and promotes vasodilation activity. High Ang II causes the AT2R to further promote 

the repression of renin production and secretion, which indirectly offsets the negative 

effects caused by the AT1R [24, 33] . In the current investigation, these two AT2R-

mediated inhibitory effects have been included in the traditional RAS model to 

evaluate how this feedback control mechanism controls the MAP. 
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Figure 2.2 Block diagram of the renin-angiotensin (cRAS) system 

Renin, an enzyme produced by the kidneys in reaction to low blood pressure, cleaves circulating 

angiotensinogen (AGT) in the blood secreted from the liver into angiotensin I (ANG I). 

Angiotensin-converting enzyme (ACE) and non-ACE both work together to transform this 

inactive peptide, ANG I, into the primary effector component, ANG II. The angiotensin type-1 

receptor (AT1R) and the angiotensin type-2 receptor (AT2R) are two G-protein-coupled 

receptors that are bound by this ANG II. Vascular contractions that result in elevated blood 

pressure are caused by ANG II binding to the AT1R and activating cytoplasmic signalling 

pathways. While ANG II coupled to the AT2R blocks the AT1R's effects and reduces renin's 

ability to synthesise. The pink line denotes these negative feedback effects of AT2R. 

 



19 

 

2.2.1 Mathematical model of cRAS 

The time-dependent concentration (mol/L) changes of all cRAS components are 

mathematically described by the traditional RAS model, which is expressed by a set 

of ordinary differential equations (ODEs). Six of the seven equations [34, 35] 

incorporate cRAS components; however, the final equation[36] describes fluctuation 

of mean-arterial pressure (MAP) based directly on Ang II concentrations. Each ODE 

represents a mass balance with a fixed volume. In relation to other cRAS components, 

the rates of creation, consumption, and degradation are used to explain the rates of 

changes in concentration. Production of angiotensinogen (AGT) follows zero-order 

with a rate constant of kAGT. First-order kinetics uses the half-lives, hi, of the species 

i to define the rate of degradation. First-order kinetics are thought to govern the 

enzymatic and binding reactions, with enzyme i's rate constants ci. Two additional 

inhibitory feedback effects mediated by AT2R have been incorporated into this 

conventional model: i) that proportionately changes with the concentrations of Ang II-

bound AT2R, with the proportionality constant k1 lowering the free availability of 

Ang II for any time t, and ii) that suppresses the renin concentration which is 

presumed to be jointly proportional to the both Ang II-bound AT1R and AT2R 

concentrations with the proportionality constant k2. The final cRAS-ODE systems 

with the AT2R-induce feedback effects are as follows: 
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2.2.2 Canonical model for circulating-RAS 

=KAGT- cRenin [AGT] - [AGT], 

where KAGT denotes the steady rate of AGT production. cRenin is the rate parameter 

for the conversion of AGT to ANGI that is catalysed by renin. AGT’s half-life 

degradation is known as hAGT. 

2.

where, sRenin is the constant source of renin in absence of feedback. The second term 
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is the influence of ANGII negative feedback on renin production. The last term is the 

influence of negative feedback by the combined effect of AT1R and AT2R on renin 

production. hRenin is the half-life degradation of renin. 

3.

where the first term denotes the contribution of renin-catalyzed ANGI synthesis from 

AGT. The second term depicts the switch from AGT to ANGI synthesis as a result of 

ANGII’s feedback on renin, which has a rate constant of kRenin. Third term is the 

cAItoII is the catalysed conversion of ANGI to ANGII. hANGI is the half-life 

degradation of ANGI. 

4.  

The first term is the ANGII production. ANGII is consumed in the second term after 

binding with AT1R and AT2R. The half-life degradation of ANGII is hANGII. 

5.  

The first term is the production of  from ANGII. h is the 

half-life degradation of . The last term is the influence of negative 

feedback by the   AT2R on  production. 
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6.  

The first is the production of  from ANGII. h  is the      

half- life degradation of . 

7.  

The Mean Arterial Pressure, or MAP. The PAM constant is kMAP. The PAM decay 

rate is gamma. Peptidylglycine-α-amidating monooxygenase (PAM) may play a role 

in the secretion of atrial natriuretic peptide (ANP), which is a hormone involved in the 

maintenance of blood pressure (BP). 
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The list of parameters, units, their definitions, and numerical values with sources is below: 

Table 2.1 List of cRAS model parameters, together with definitions and references to standard values for each 

 

Model Parameters Unit Parameters Definition Numerical Values References 

KAGT mol/L/s Constant production rate of AGT 6.3×10-7 [34] 

hAGT s The half-life degradation of AGT 3.6×104 [34] 

Renin0 mol/L Initial concentration of Renin 2.06×10-13 [37] 

sRenin mol/L/s The constant source of renin in the absence of feedback 9.519×10-16 [37] 

hRenin s The half-life degradation of Renin 15 [37] 

kRenin s-1 Feedback rate constant 17.89 [37] 

cRenin s-1 Rate constant for the production of ANGI from AGT 1.7×10-14 [34] 

CAItoll s-1 Reaction rate constant for the parallel pathways catalyzing the conversion of ANG I to ANG II 6.7×10-3 [34] 

CAT1 s-1 The Glucose dependent rate parameter for binding ANGII to AT1R receptor 1.4×10-2 [34] 

CAT2 s-1 The Glucose dependent rate parameter for binding ANGII to AT2R receptor 1.2×10-2 [34] 

hANGI s The half-life degradation of ANGI 0.62 [38] 

hANGII s The half-life degradation of ANGII 18 [38] 

hAT1R_ANGII s The half-life degradation of hAT1R_ANGII 1.5 [38] 

hAT2R_ANGII s The half-life degradation of Renin hAT2R_ANGII 1.5 [38] 

kMAP mmHG M-1 s-1 PAM constant 0.05×1010 [39] 

Gamma s-1 PAM decay rate 0.15×10-3 [39] 

Kf s-1 Feedback parameter 1.36×10-8 [34] 

F mol/L Feedback parameter 5.04×10-7 [34] 

 mol/L Initial concentration of ANGII 21×10-9 [34] 

k1 s-1 Negative feedback control parameter Estimated In this study 

k2 s-1 Negative feedback control parameter Estimated In this study 
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2.3 Numerical solutions of non- linear ODEs 

Ordinary differential equations (ODEs) are often solved numerically using the fourth-

order Runge-Kutta technique. It falls under the category of an explicit technique, 

which indicates that only data from earlier time steps are used to determine the answer 

at a particular time step. For, 

 

 

2.8 

 

Runge Kutta 4th order method is given by 

 , 2.9 

 

where, 

 

2.10 

 

 

2.11 

 

 

2.12 

 

   2.13 

The function ode45 is used in MATLAB which serves as the default solver for 

ODEs. For effective computing, this function uses a Runge-Kutta method with a 

configurable time step. ode45 is made to address the following general problem: 

 , 2.14 
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where t is the independent variable, x is a vector of dependent variables to be 

determined, and f (t, x) is a function of t and x. When the vector of functions on the 

right-hand side of Eq. (2.14), f (t, x), is set and the initial conditions, x = x0 at time t0, 

are given, the mathematical model is identified. 

2.4 Non-linear least square method 

The non-linear least squares method is a mathematical optimization technique used to 

find the parameters of a non-linear function that best fit a given set of data. Given a 

set of data points (xi, yi ) where i=1,2,...,n, and we want to find the parameters a, b, 

c,... that best fit the following non-linear model: 

 y = f(x; a, b, c,...), 2.15 

where f is a non-linear function with the parameters a, b, c, … 

The goal of the non-linear least squares method is to find the values of the 

parameters a, b, c,... that minimize the sum of the squared differences between the 

observed data points and the corresponding values predicted by the model. This can 

be formulated as an optimization problem as follows: 

 minimize S(a, b, c, ...) = , 2.16 

where the summation is taken over all the data points. 

The optimization problem is created using the default properties when prob = 

optimproblem is used. The additional parameters given by one or more Name, Value 

pair inputs are used by the formula prob = optimproblem(Name,Value). Use prob = 

optimproblem(‘ObjectiveSense’,’maximize’) to describe a maximization problem 

rather than a minimization problem, for instance. 
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2.5 lsqnonlin function 

It is a particular variety of nonlinear least-squares solver that deals with nonlinear 

least-squares curve fitting issues of the following form. 

 min x ‖f(x)‖22=minx (f1(x)2+f2(x)2+...+fn(x)2) 
2.17 

with lb and ub optional lower and upper boundaries on the x-components. 

x, lb, and ub may be matrices or vectors. 

lsqnonlin needs the user-defined function to calculate the vector-valued function 

f(x)=  rather than computing the value of 2
2(the sum of squares). 

x= lsqnonlin (fun,x0) begins at x0 and seeks the least of the sum of the squares of the 

fun functions. Instead of returning the sum of the values’ squares, the function fun 

should return a vector (or array) of values. The optimization options listed in options 

lead to the minimization of x = lsqnonlin(fun,x0,lb,ub,options). To set these options, 

use optimoptions. If there are no boundaries, pass empty matrices for lb and ub. 

2.6 Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test is a very effective method for figuring out whether two 

samples are significantly different from one another. It is typically used to verify the 

consistency of random numbers. Any random number generator should have 

uniformity, and the Kolmogorov-Smirnov test can be used to check for it. The 



27 

 

Kolmogorov-Smirnov statistic measures the difference between two samples’ 

empirical distribution functions or between their empirical distribution functions and 

the cumulative distribution function of the reference distribution. This statistic’s null 

distribution is calculated under the assumption that the sample was taken from the 

reference distribution (in the event of a single sample) or that all samples were taken 

from the same distribution (in the two-sample case). 

For n independently dispersed and identically distributed (i.i.d.) ordered 

observations Xi, the empirical distribution function Fn is defined as 

 Fn(x)=  = , 2.18 

where  is the indicator function equal to 1 if  x and equal to o otherwise. 

With respect to a specific cumulative distribution function F(x), the Kolmogorov-

Smirnov statistic is 

 Dn= , 2.19 

where supx is the set of distances’ supremum. The statistic, intuitively, selects the 

biggest absolute difference between the two distribution functions over all possible 

values of x. 

2.7 Local sensitivity analysis 

A technique called local sensitivity analysis is used to evaluate how changes in input 

variables would affect a model's or system’s output. It entails examining how 

sensitive the model output is to little changes in the input variables close to a certain 
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point. A model’s behavior under various circumstances may be understood and the 

most important input variables can be found by using local sensitivity analysis. 

Additionally, it can help with model validation and verification. The fact that local 

sensitivity analysis only offers information on the sensitivity of the model output to 

minor perturbations around a particular place is one of its limitations. It does not offer 

details on the model’s overall behavior or the results of more significant 

perturbations. To completely comprehend the behavior of a model or system, it is 

crucial to integrate local sensitivity analysis with other methodologies, such as global 

sensitivity analysis. In conclusion, local sensitivity analysis is a beneficial approach 

for examining the influence of changes in input variables on the output of a model or 

system. It gives a gauge of each input variable’s relative weight and can help with 

model validation and verification. To completely comprehend a model or system’s 

behavior, it is crucial to combine local sensitivity analysis with other methods. 

2.8 Synthetic data generation and in-silico Experiment 

In order to investigate the impact of AT2R-mediated feedback regulation under 

various cardiovascular situations, the traditional RAS model is linked with changes in 

MAP over time. The formula MAP=DP+1/3(SP-DP) is frequently used to calculate 

the MAP, which stands for mean arterial pressure for a single cardiac cycle; DP 

stands for diastolic pressure, and SP for systolic pressure. 

Three separate cardiovascular physiologic conditions have been taken into 

consideration, each of which is indicated by a different range of MAP variations: the 

normal situation (MAP 70–100 mmHg), hypertension (MAP 101–190 mmHg), and 

hypotension (MAP 40–69 mmHg). The ode45 function in MATLAB version R2021a 
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was used to use the fourth-order Runge-Kutta method to numerically solve the ODE 

model. The model has been run for 106 seconds (or about 12 days), with consistent 

time increments of 0.01 seconds, giving it plenty of time to reach a feasible steady 

state. 

The steady-state numerical solutions of the model’s MAP variable are fitted 

against the randomly chosen MAP values in order to estimate the unknown feedback 

control parameters k1 and k2 and explore AT2R-mediated feedback effects. 100 

randomly selected points are taken from the defined known ranges of the MAP 

fluctuation for each circumstance (normal, hypertension, and hypotension), and these 

points are then fitted with the model MAP steady-state solutions using the non-linear 

least square approach. The sum of squared differences near to zero indicates the 

appropriate fits. We have minimized the sum of squared differences between the 

randomly selected MAP values from the prescribed ranges and the model solution of 

MAP steady states in order to obtain the most accurate estimates of the parameters k1 

and k2. The set objective function of the sum of squared differences was used with the 

MATLAB’s optimproblem function to define and perform this optimization problem. 

Using the MATLAB lsqnonlin function, which enables the local minimum with an 

estimation of the sum of squared differences, this problem has been solved for the 

parameters k1 and k2 (Figure 2.3). 
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Figure 2.3 In-silico experiment flow chart 

i) three disparate ranges of MAP variations are considered to defined three distinct 

cardiovascular physiologic conditions, 70-100 mmHg (normal), 101-190 mmHg (hypertension), 
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and 40-69 mmHg (hypotension); (ii) Randomly picked MAP values from these ranges are fitted 

against the model steady-state solutions of MAP variables and minimized the sum of squared 

differences; (iii) Three states are established: normal, hypertension and hypotension states with 

the estimated control parameters values of k1 and k2; (iv) 100 dynamic steady states for each 

condition (normal, hypertension, and hypotension) are established to examine their relationship 

and feedback effects and the mean transient trajectories are also evaluated, (v) Statistical 

significance of observed differences in the model simulated samples are calculated using 

Kolmogorov-Smirnov (KS) test and Q-Q plot. 

For the three scenarios—normal, hypertension, and hypotension—three sets of 

parameter values are estimated. With the allowable sum of squared differences 0.01, 

we selected 100 estimated parameter values of k1 and k2 in each set to compare 

significant differences between these three cardiovascular states. With these 

parameter values, the model has been run once more, and steady-states have been 

established. According to the parameters' belongingness, this simulation created 100 

steady states for each case. We have calculated average transient states and their 

standard deviations in addition to steady-states. 

 The Kolmogorov-Smirnov test has been used to assess pairwise differences 

between the normal, hypertensive, and hypotensive states, and p-values and D-

statistics are derived from the model-simulated samples. Additionally, Q-Q plots are 

created to visually depict these variations, indicating which distribution is more 

skewed or which has heavier tails. 

For the control parameters k1 and k2, a local sensitivity analysis was performed 

to assess the reliability of the feedback control. From the model-simulated samples, 

we have first evaluated the range of variations of k1 and k2 under normal, 

hypertension, and hypotension situations. Each parameter's lower and upper bounds 
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are calculated with a 95% confidence level using its mean and standard deviation. The 

steady-state concentrations of renin and Ang II are recalculated after the mean values 

of k1 and k2 are perturbed within 0.01-neighborhood. The steady states of renin and 

Ang II were examined in terms of percent changes. In order to quantify how much the 

degree of controls exerted by k1 and k2 varied depending on the condition, these 

results were compared among the normal, hypertension, and hypotension states. We 

have normalized the model solutions X using the formula, 

 

to make it into a unit less amount lying between 0 and 1 in order to compare the 

steady-state concentrations of renin and Ang II displaying very low numerical 

quantity (i.e., multiple of 10-7) and to perform statistical testing. 

2.9 Results 

a) At steady states, differential AT2R-mediated feedback controls led to the 

emergence of a linear relationship. 

To assess transient and steady-states across various cardiovascular physiologic 

situations (such as normal, hypertension, and hypotension) defined by differential 

ranges of MAP change, the model solutions of Ang II and renin are tracked through 

time. For each particular scenario, 100 model-simulated random samples were taken, 

each with a unique set of AT2R-mediated control parameters. It has exhibited 

considerable fluctuation in feedback control parameters in hypertension and 

hypotension situations compared to its normal states while retaining similar steady-
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states of Ang II and renin (approximately 1.52 × 10-7 ± 3.8 × 10-10, and 9.11×10-8 ± 

2.2× 10-10 mol/L, respectively). 

Renin achieves the steady state more quickly than Ang II. There are notable 

variances in the transient dynamics even though both concentrations monotonically 

rise and plateau. When compared to hypertension and hypotension, it separates 

transient states with considerably different average values over time (Figure 2.4). 

With normalized concentrations, the Q-Q plot (Figure 2.5) and the Kolmogorov-

Smirnov test further illustrate these disparities (Table 2.2). At steady-states, the cRAS 

system with AT2R-mediated feedback controls upholds a linear relationship between 

the concentrations of renin, Ang-I, and II (Figure 2.6): 

 [Renin]*=a1[ANG II]* +a2[ANG I]* +a3 2.20 

where, a1=  

a2=  

a3=[Renin]0 -   
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Figure 2.4 Transient dynamic of [Renin and [ANGII] 

 Transient dynamics of [Renin] and [ANGII]-mean trajectory (blue line) with standard 

deviations highlighted in cyan hue, (A) when the MAP varies in the normal range 70-100 mmHg, 

(B) the MAP varies in the range 101-190 mmHg (hypertension), and (C), the MAP varies in the 

range 40-69 mmHg (hypotension). 
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Figure 2.5 Q-Q plots showing deviations of [Renin] and [ANG II] 

The normal condition is shown by a red ring, hypertension and hypotension are denoted by a 

blue ring, and the deviations of [Renin] and [ANG II] states from the normal state are shown by 

Q-Q plots, respectively. 
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Table 2.2 Kolmogorov-Smirnov (KS) test results of significant differences among the three MAP condition 

 
 

KS-test 

Dynamic 

States 

Normal Hypertension Hypotension 

p-value D-statistic p-value D-statistic p-value D-statistic 
[Renin] [ANG II] [Renin] [ANG II] [Renin] [ANG 

II] 

[Renin] [ANG II] [Renin] [ANG II] [Renin] [ANG II] 

Normal Steady-state 

 

1 1 0 0 1.632×10-

13 

2.2×10-

16 

0.5650 0.6280 1.341×10-

3 

1.216×10-

7 

0.3080 0.4640 

Transient 

state 

 

1 1 0 0 2.2×10-16 2.2×10-

16 

0.017696 0.022696 0.9987 7.14×10-7 0.000537 0.003853 

Hypertension Steady-state 1.632×10-

13 

2.2×10-16 0.5650 0.6280 1 1 0 0 5.995×10-

15 

2.2×10-16 

 

0.6600 0.7340 

 

Transient 

state 

 

2.2×10-16 2.2×10-16 0.017696 0.022696 1 1 0 0 2.2×10-16 2.2×10-16 0.017246 0.022177 

Hypotension Steady-state 1.341×10-

3 

1.216×10-

7 

0.3080 0.4640 5.995×10-

15 

2.2×10-

16 

 

0.6600 0.7340 

 

1 1 0 0 

Transient 

state 

 

0.9987 7.14×10-7 0.000537 0.003853 2.2×10-16 2.2×10-

16 

0.017246 0.022177 1 1 0 0 
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b) The MAP variation is more significantly impacted by AT2R-mediated 

reduction of renin activity. 

The findings demonstrate that there are considerable differences in AT2R-mediated 

feedback control across the normal, hypertensive, and hypotensive states (Table 2.3). 

It should be emphasised that different control parameter sets can produce similar 

cRAS steady states for each of the three MAP conditions that are being taken into 

consideration. It follows that this points to the existence of several AT2R-mediated 

regulation in both normal and hypertensive and hypotensive situations. The present 

work calculated these two separate sets of control parameters, k1 and k2, and found 

significant variations between them at their mean values and 95% confidence 

intervals. In particular, k1 levels remained close to 0.008 ±0.005 under normal, 

hypertensive, and hypotensive circumstances. Therefore, it suggests that AT2R has 

consistently negative effects on AT1R across all MAP variabilities. The duration of 

the k2 variation increases by ~4.6 and 2 times, respectively, in hypotension and 

hypertension comparing to the normal MAP conditions, with a typical range of (2.15, 

2.67) in the normal MAP fluctuation. In contrast, k2 has drastically different means 

and possible ranges of variations. This data shows that strict AT2R-mediated control 

is loosened in hypertension and hypotension, and substantially higher renin activity 

suppression is required to maintain normal MAP. 
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Table 2.3 Negative feedback control parameters in the RAS model in different map 

conditions 

 

c) The interactions of the cRAS components led to the emergence of robust 

control of MAP. 

The receptors AT1R and AT2R mediate cRAS responses to hypertension and 

hypotension as well as its feedback effects on MAP variation, inducing cascaded 

actions that alter important cRAS regulatory components[9]. The findings 

demonstrated that varied ranges of MAP variation influence AT2R mediated negative 

feedback effects on AT1R and on the renin production and secretion. Whether these 

modifications are extremely sensitive or exhibit a certain level of robustness over an 

extended length of time has been confirmed. The feedback parameters k1 and k2 have 

undergone local sensitivity analysis in order to answer this query. The findings of this 

investigation demonstrate that small perturbation in both k1 and k2 in normal, 

hypertensive, and hypotensive MAP variations cannot appreciably alter 

concentrations of renin and ang II (Table 2.4). The unaltered linear connections 

between renin and ang concentrations that are maintained despite MAP fluctuations 

also reflect these sensitivity (Figure 2.6). 

 

Hypertension Hypotension Normal 

k1 (95%CI) 0.0067 - 0.0092 0.0090 - 0.0104 0.0068 - 0.0091 

k2 (95%CI) 1.5670 - 2.4572 2.7642 – 4.9295 2.1503 - 2.6666 

Mean k1 0.0080 ± 0.0055 0.0097 ± 0.0027 0.0080 ± 0.0051 

Mean k2 2.0121 ± 2.0057 3.8468 ± 4.0590 2.4084 ± 1.1706 
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Figure 2.6 A linear steady-state relationship between [Renin and [ANGII] 

Renin and Ang II have a linear connection in steady state. It should be noted that the AT2R-

mediated feedback mechanism that enables cRAS to maintain this linear relationship differs 

dramatically under normal, hypertensive, and hypotensive situations. 
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Table 2.4 Local sensitivity analysis of AT2R-mediated feedback control parameters 

Normal 

 

Hypertension 

 

Hypotension 

 

AT2R-mediated Feedback 

control parameters 

  

[Renin]* 

  

[ANG II]* 

  

AT2R-mediated Feedback 

control parameters 

  

[Renin]* 

  

[ANG II]* 

  

AT2R-mediated Feedback 

control parameters 

  

[Renin]* 

  

[ANG II]* 

  

k1=0.0080 

  

k2=2.408 

  

Fixed 

  

Fixed 

  

k1=0.0080 

  

k2=2.0121 

  

Fixed 

  

Fixed 

  

k1=0.0097 

  

k2=3.8468 

  

Fixed 

  

Fixed 

  

 

k1=0.008+ 

0.01  

 

k2=2.408+ 

0.01  

0.0020 

  

0.0020 

  

 

k1=0.0080+ 

0.01  

 

k2=2.0121+ 

0.01  

0.00157 

  

0.00157 

  

k1=0.0097+ 

0.01  

k2=3.8468+ 

0.01  

0.003501 

  

0.003501 

  

k1=0.008 - 

0.01  k2=2.408-0.01  

0.0020 

  

0.0020 

  

k1=0.0080- 

0.01  

 

k2=2.0121- 

0.01  

 

0.00155 

  

 

0.00155 

  

k1=0.0097- 

0.01  

k2=3.8468- 

0.01 

0.003479 

  

0.003479 
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2.10  Summary 

a) In this Chapter I have discussed the adverse feedback effects brought on by 

AT2R-Ang II binding reactions serve as reliable controls on mean-arterial 

variance. Depending on the degree of the deviation, this control’s 

dysregulation might result in either hypertension or hypotension. 

b) Further it has been demonstrated that activating AT2R-renin interactions that 

suppress renin activity significantly contribute to the maintenance of healthy 

MAP fluctuation, which further suggests that this interaction may be a 

possible therapeutic target for lowering blood pressure. 



42 

 

“Spatiotemporal data holds the key to unlocking new insights into the relationships 

between space, time, and events” …… John Krumm 

Chapter 3 

3. Spatiotemporal data modelling and analysis-I 

Graphical View 

 

Figure 3.1 Graphical Abstract 

 

 

Wang, C., Thakuri, B., Roy, A. K., Mondal, N., Chakraborty, A. (2022). Phase partitioning effects on 

seasonal compositions and distributions of terrigenous polycyclic aromatic hydrocarbons along the 

South China Sea and East China Sea. Science of The Total Environment, 828, 154430. 
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3.1 Introduction 

In the global biogeochemical cycles, a class of persistent organic pollutants known as 

polycyclic aromatic hydrocarbons (PAHs) is widely spread and is substantially to 

blame for the contamination of the environmental matrix[40-42]. Due to the strong 

mutagenic and carcinogenic properties of PAHs, which are a major hazard to human 

health and have negative effects on ecosystems, study interest has been focused on 

their occurrences and distributions for a number of decades[40, 43-46]. These effects 

are primarily caused by human activity, which results in pollution from incomplete 

combustion and pyrolysis of fossil fuels or wood (pyrogenic) or from the release of 

crude and refined petroleum (petrogenic), as well as from increased industrial 

activities that have an adverse effect on the environment[47-50]. When pervasive 

organic pollutants are released into the atmosphere, they are eventually transported by 

surface runoff and atmospheric transport processes and deposited in neighbouring 

marine habitats, where they bioaccumulate over time and reach high 

concentrations[40, 50]. Due to their hydrophobic characteristics, released PAHs are 

either immediately absorbed by suspended particulate matter or dissolved and 

dispersed through the sea surface water[40]. Numerous PAH species cannot be 

deposited as sediment due to strong ocean currents. Recent studies have revealed 

substantial levels of bioaccumulation by marine life, which offers a long-term serious 

risk due to eco-toxicity, a human mutagenic and carcinogenic effect, retention in food 

chains, and an impact on ocean biogeochemical cycles[40, 51, 52] . Understanding the 

phase partitioning, geographical and temporal variations in composition, and 

distribution of PAH species is crucial for better coping with PAH contamination in 

ocean systems. This study addressed this issue and shown that the two phases of 
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dissolved and particulate forms along the continental shelf borders of the northern 

South China Sea (SCS) and East China Sea differ significantly in terms of PAH 

species composition and distribution (ECS). 

Human activity has a significant impact on the marginal seas that separate 

continents from oceans, which modifies the source-sink dynamics of organic 

pollutants by serving as both a “source” and a “sink” for releasing terrigenous 

substances into oceans[53, 54]. Because most PAHs are semi-volatile, they frequently 

redistribute in dissolved and particulate forms, which creates significant uncertainty in 

forecasting their environmental fate[55, 56]. Only thorough sampling strategies with 

sound methodologies capable of explaining such variances will be able to reduce 

these inherent uncertainties. The SCS containing an area of 3,500,000 km2, located at 

the confluence of the Indian and Pacific Oceans[57], and the ECS covering an area of 

770,000 km2, located at the confluence of the Sea of Japan and SCS, have both been 

taken into consideration for this study’s analysis of the issue [58]. Rapid population 

and economic growth in the neighbouring developing nations is causing more surface 

runoff and organic pollution deposition in the SCS and ECS. Additionally, the release 

of PAH is influenced by oil spills from oil tankers and shipwrecks in the water[59]. 

PAH contaminations in SCS or ECS have been the subject of a few recent 

investigations, however phase-wise spatial and temporal fluctuation of PAHs is 

frequently disregarded. The goals of this study are to describe seasonal spatially and 

temporal fluctuations and to phase petition along the water depth, both of which are 

crucial for assessing the ecological danger of PAHs. 
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3.1.1 PAH species 

The U.S. EPA classified 16 PAHs that are quantified in two phases, dissolved and 

particulate forms as priority pollutants out of the more than 200 species of PAH that 

have been found based on their carcinogenic, mutagenic, and teratogenic properties to 

better deal with PAH contamination. The following 16 PAH species are taken into 

consideration: Acenaphthylene (Ace), Acenaphthene (Acen), Fluorene (Flu), 

Anthracene (An), Benzo(a)anthracene (BaA), Chrysene (Chry), Benzo(b)fluoranthene 

(BbF), Benzo(k)fluoranthene (BkFA), Benzo(a)pyrene (BaP), Indeno (1,2,3-cd) 

pyrene (IP), Fluoranthene (Fluo), Phenanthrene (Phen), Dibenzo (a,h) anthracene 

(DBA), Benzo (g, hi) perylene (BgP) Pyrene (Py), Naphthalene (Nap). 

The two groups of these PAHs are divided based on their molecular weight: a) 

PAHs with a low molecular weight and fewer than four aromatic rings (i.e., Nap, Ace, 

Acen, Flu, Phen, An), and b) PAHs with a high molecular weight and four or more 

rings (i.e., Fluo, Py, BaA, Chry, BbF, BkFA, BaP, IP, DBA, and BgP). With its six 

aromatic rings, indeno (1, 2, 3-cd) pyrene (IP) has the highest molecular weight, 

coming in at 276.3 g/mol, while naphthalene (Nap), which only has two rings, has the 

lowest molecular weight, coming in at 128.1 g/mol. Compared to low molecular 

weight PAHs, these high molecular weight PAHs often have a lower water solubility 

and partition more easily into organic materials. It is crucial to independently compute 

the spatiotemporal distributions for the dissolved and particulate phases because these 

variations in water solubility and molecular weights are reflected in the 

spatiotemporal distribution and changes in PAH compositions. 
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3.2 Methods and materials 

3.2.1 Study area and sample collection 

A field survey was conducted between 2009 and 2011 on the northern SCS and ECS 

continental shelf margins using the scientific research ship “Dongfanghong-2”. The 

current study ran four water sampling operations in the spring of 2011 (April–June), 

summer of 2009 (July–August), fall of 2010 (October–December), and winter of 

2010. (December 2009 to January 2010). The sampling stations of the four journeys 

had slightly varying settings due to the restrictions of the cruise routes and weather, 

but overall they covered the entire northern SCS and the ECS. The investigation has 

set up a few “overlapped” stations and sections in the Yangtze River Estuary and the 

Pearl River Estuary over the course of four seasons to ensure the consistency of the 

study area and the comparability of the data. Using a submersible pump or a stainless-

steel drum (10L) and a stainless-steel drum with a volume of 80L, 30–50L of surface 

seawater (with a depth of no more than 1m) was collected at selected stations, and the 

volume was recorded. The saltwater was then filtered via a particle phase filter 

membrane and into a 4L brown bottle using a peristaltic pump or glass-fibre filter 

(GF/F) system, which was then utilised to remove the membrane from the filtered 

water sample. A mixture of 50 ng of five deuterated PAHs was added to a portion of 

the filtered water sample (between 8 and 12 litres) to serve as a substitute for the real 

standards. With a flow rate of roughly 1 mL/s through the extraction column and 

under vacuum, the solid-phase extraction system was employed to absorb and fix 

PAHs and other dissolved organic compounds. Prior to water sample enrichment, the 

solid-phase extraction (SPE) column was activated with 10 mL of methanol and 

eluted with 10 mL of ultrapure water (resistivity of 18.25Mcm). The acquired 
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granular phase GF/F and dissolved phase SPE column samples were then sealed in a 

small bag after being wrapped in pre-fired aluminium foil sheets. It was frozen and 

kept at -4°C. Referred to were the thorough sample analysis techniques. 

3.2.2 Data analysis 

Seasonal data were gathered from various sites at various water depths (spring, 

summer, fall, and winter) (WD). There were 92 sites in the spring, with WD varying 

from 0 to 4795 metres, and 109, 75, and 88 sites for the summer, fall, and winter, 

respectively, with WD varying from0 to 4795 metres, 0 to 3848 metres and 0 to 4180 

metres respectively (Figure 3.2). By examining 29 overlapping sites for the 

particulate PAHs and 31 dissolved overlapping sites for all seasons, the seasonal 

heterogeneities were ascertained. The temperature of the water varied significantly by 

season at each site (spring: 24.91°C±3.77; summer: 28.56°C±1.58; fall: 

22.37°C±3.44; winter: 19.11°C±5.19). All the locations' and all the seasons' water 

salinity (%) stayed almost the same (spring: 33.39±1.09; summer: 31.93±2.72; fall: 

33.25±1.55; winter: 33.49±1.32). All the locations also assessed suspended particulate 

matter (mg/L), which varied greatly from one site to the next and seasonally, with an 

average range of 9–15 mg/L. For the 16 PAH species in both the dissolved and 

particulate phases, the Mahalanobis distance (MD) matrix and standard Person 

correlation matrix, respectively, were used to calculate the correlation and distances 

among the individual PAH concentrations in the R Programming Language (version 

4.1.1) (); (The R Core Team, 2021)[60, 61], respectively. Non-metric 

multidimensional scaling (NMDS) was used to find the hidden dimensions in the data. 

The R programming language’s vegan package was used for this investigation (Jari 

Oksanen et al., 2020). The current work used the venerable Principal Component 
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Analysis (PCA) in MATLAB (version R2021a) to ascertain the significant degree of 

seasonal variation of various PAH species concentrations[62].Before doing the PCA, 

it was discovered that all of the seasons’ unique PAH concentrations were 

intermingled across all of the overlapping locations independently for the dissolved 

and particulate PAH. 

 

 

Figure 3.2 Sampling location along the South and East China Seas 

Distribution map of the four seasons’ sample locations around the South China Sea (SCS), which 

covers an area of 350 km2. There are 31 and 29, respectively, total overlapping sites for dissolved 

and particulate PAHs. 

Spring Summer 

Fall Winter 
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3.2.2.1 Mahalanobis distance (MD) 

The MD calculates the distance between a point and a distribution by counting the 

standard deviations between the point’s location and the distribution’s mean. As one 

gets away from the distribution’s mean, the distance grows from zero. The MD i for 

the two random points 
( )1 2 3, , ,..., nx x x x x=

and 
( )1 2 3, , ,..., ny y y y y=

  of the same 

distribution and the covariance matrix S , and ,i ix y  are the observation at 
thi  site, is 

defined by Eq. (3.1): 

 

 

3.1 

3.2.2.2 Pearson’s correlation matrix 

If changes in one variable result in changes in the other, the two variables are said to 

be correlated. In general, correlation describes the statistical relationship between two 

variables. The Pearson correlation coefficient (rxy) may be used to determine if two 

variables x and y have a linear relationship. 

 
rxy =  

3.2 

 

A correlation matrix is a table that shows the correlation coefficients for 

various variables. The correlation between all potential pairings of values in a table is 

shown in the matrix. It is an effective tool for finding and displaying trends in the 

provided data, as well as for summarising a huge dataset. 
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3.2.2.3 Non-metric multidimensional scaling (NMDS) 

A non-metric multidimensional scaling (NMDS) technique si used to find the data’s 

hidden dimensions. This ordination approach is unrestricted and makes no 

assumptions about how the data are distributed. There are no hidden axes of variation 

in NMDS; instead, a small number of axes are explicitly selected before the study and 

the data are fitted to those dimensions. Second, the majority of other ordination 

techniques are analytical, producing a single, distinctive answer to a collection of 

data. NMDS, on the other hand, is a numerical method that iteratively searches for a 

solution and terminates computation when a workable` solution has been identified, or 

after a certain number of attempts. The MDS technique is simple in concept but 

computationally challenging to implement. One first begins with a data matrix made 

up of p columns of variables and n rows of samples. Based on this, a n × n 

symmetrical matrix of all pairwise distances between samples is produced using a 

suitable distance measure, such as the Bray, Manhattan, and Euclidean distances. This 

distance matrix will be used for the MDS ordination. Next, the ordination’s desired 

number of m dimensions is selected. The two ordinations would have to be carried out 

independently since a n-dimensional ordination is not comparable to the first n 

dimensions of an n+1-dimensional ordination. 

A quantitative metric of ordination fit known as “stress”, with a value of less 

than 0.15 representing goodness of fit, was used to determine the success of NMDS in 

dimensionality reduction[63] which can be calculated as, 
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3.3 

 

 

where  is the distance predicted by the regression and dhi is the ordinated distance 

between samples h and i. Using the R programming language’s vegan package, this 

analysis was carried out[64]. 

3.2.2.4 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a technique used for dimensionality reduction 

in multivariate data analysis. The main goal of PCA is to transform the original data 

into a new set of variables, called principal components (PCs), which capture most of 

the variation in the data with the least possible loss of information. PCA is based on 

the eigenvalue decomposition of the covariance matrix of the original data. 

The PCA breaks down the complicated data into a smaller set of dimensions 

known as principal components (PCs), where each PC is independent of all other 

PCs[65, 66]. We may discover the data’s hidden dimensions using this analysis, and 

PCA plots reveal probable clusters. Typically, the variability of the set of retained 

PCs, which is determined by the percentage of total variance that each PC accounts 

for, is used to assess the quality of the PCA which is given by Eq. (3.4), 

 

 

 

3.4 

where  is the matrix’s eigenvalue and  ( )tr S
 represents the trace of the covariance 

matrix. 
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3.3 Results 

3.3.1 Spatial distribution and PAH phase composition 

Compared to low molecular weight PAHs, high molecular weight PAHs typically 

have a lower water solubility and partition more easily into organic materials. It is 

crucial to independently compute the spatiotemporal distributions for the dissolved 

and particulate phases because these variations in water solubility and molecular 

weights are reflected in the spatiotemporal distribution and changes in PAH 

compositions. Total PAHs computed as the sum of the averages of the 16 PAHs 

across the overlapping sites show significant seasonal variations. The summer months 

had the greatest overall PAH concentrations, which were 76.34 ng/L in the dissolved 

phase and 67.43 ng/L in the particulate phase. The dissolved phases show significant 

seasonal fluctuations in the spring (24.5 ng/L), summer (76.34 ng/L), fall (44.91 

ng/L), and winter (51.1 ng/L). In contrast, summer has a much higher value of 67.43 

compared to spring, fall, and winter’s relatively low and equivalent total PAHs 

concentrations. Indicating regional homogeneity, which often characterises the 

marginal seas trapped between the continents, the data on spatial distributions among 

the 31 overlapping sites indicated little variations between the sites for both phases 

(Figure 3.3). In both the dissolved and particulate phases, it is noteworthy that only a 

few numbers of PAH species spatially dominate throughout all the locations, while 

others retain comparatively lower and almost equal concentrations. All of the SCE 

and ECS sites exhibit strong seasonal variation, and the between-phase changes 

continue to be very noticeable. Flu maintains at least a two-fold larger concentration 

in the dissolved phase than the other species during the spring and summer seasons. 

Flu showed its greatest mean concentration during the summer, which ranged from 
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34.48 ng/L to a wide 9.133-263.06 ng/L range. In contrast to the summer, which 

revealed a very broad range of variability in all the PAH species, other species 

showed a substantially reduced range of variations. Naphthalene (Nap), in contrast, 

continues to be common in the particulate phase despite having substantially lower 

concentrations than all other PAH species. Nap in particular has the greatest mean 

summer concentration of 54.78 ng/L, which is 10 times greater than its concentration 

in all other seasons. During summer, there is a very wide range of variance over all 

the overlapping sites, ranging from 4.05 to 324.2 ng/L. In contrast to the Nap, the 

other PAH compounds noticeably retain much lower particle concentrations 

throughout the year. While searching for compositional variations between the two 

phases and the four seasons, we discovered whole different compositional patterns. 

Flu’s concentrations in the dissolved phase were at their maximum throughout the 

spring and summer, but during the fall and winter, Flu overtook Phen as the second 

most prevalent substance. The four seasons’ PAH species compositions with 

concentrations greater than 1 ng/L are listed in the following order: Winter: 

Phen>Flu>Acen> Ace> An>Fluo>Py; Spring: Flu>Phen>Py>Acen>Fluo; summer: 

Flu>Phen> Ace>Acen>An>Fluo; fall: Phen>Flu>Acen>An>Py>Ace. Comparatively 

less PAH compounds had concentrations more than 1 ng/L in Nap particulate 

concentration, which remained the highest during all four seasons. Between PAH 

species, the compositional order has significantly varied. The only PAH species with 

quantities more than 1 ng/L in the spring, fall, and winter is nap. Several particulate 

PAH species retain concentrations greater than 1 ng/L over the summer, in the 

following order: Nap>Py>Phen>Fluo>Flu. 
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Figure 3.3 Spatial distribution of 16 PAH identified by U.S. EPA 

It displayed the spatiotemporal fluctuation at 31 locations along the South China Sea (SCS), with 

varying concentrations throughout each of the four seasons: spring, summer, fall and winter, and 

two distinct measured types of concentrations (ng/l): dissolved and particulate. 

3.3.2 Correlations and seasonal heterogeneity of PAH 

We generated the pairwise Pearson correlation matrix and the MD matrix across all 

the overlapping locations across the four seasons in order to comprehend the 

spatiotemporal fluctuation of the 16 PAH species. The seasonal averages of PAH 

species were shown to have extremely high degrees of correlation and high MDs, 

which essentially explains the spatiotemporal patterns of persistently high 

concentration of a small number of PAH species. Notably, the findings revealed 

divergent association patterns between the amounts of dissolved and particulate PAH 

(Figure 3.4 A). In general, there is a substantially stronger correlation between 

particulate PAH concentrations relative to dissolved PAHs. Strong correlations exist 

between consistently high particle concentrations of the Nap and Ace, Acen, Flu, 
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Phen, An, Fluo, Py, Chry, and BkFA (correlation coefficient >0.5, p-value < 2.2×10-16 

The dissolved concentrations of Flu and Phen, which remained at greater levels across 

all four seasons, however, showed only a very weak connection with the 

concentrations of the other dissolved PAH species (p<0.05). As a result, it suggests 

that several oceanic factors (such as current, salinity, and water depth) may be to 

blame for the variance in concentration of dissolved and particulate PAHs. Using MD, 

the phase-specific correlation pattern was further discovered. Compared to particle 

concentrations, the dissolved PAH concentrations are far more dispersed (Figure 3.4 

B). It was discovered that Flu, Phen, Ace, and Acen maintained substantially higher 

mean MDs (>3.5) than all other PAH species due to their continuously common 

dissolved concentrations. From all other particulate PAH species concentrations, only 

the particulate Nap concentration showed a very high mean MD (> 5.5). 
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Figure 3.4  Correlation and distance matrix of all PAH species 

In general, particulate PAH concentrations are much more strongly correlated than dissolved 

PAH concentrations, as shown in (A). Additionally, several dissolved PAH species concentrations 

are much more dispersed than particulate concentrations due to a higher (> 3.5) mean 

Mahalanobis distance from all other PAH species as shown in (B). 

3.3.3 Effects of PAH phase partitioning and source location 

We used the NMDS approach in order to investigate the significance of phase 

partitioning, which contradicts the significant seasonal variation of PAH 

compositions. It aims to map the seasonal PAH concentrations in a predetermined 

number of dimensions by solely utilising pairwise similarities that maintain the rank 
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order of similarities between the various PAHs. The dispersion of a plot of distance vs 

dissimilarity for all pairs of samples, which was condensed into a stress value, is 

depicted as a two-dimensional figure. It shown that the modest seasonal dispersion of 

particular PAHs (Figure 3.5, Figure 3.6, Error! Reference source not found.). 

However, whereas particulate PAH concentrations are generally well-grouped 

seasonally as seen by a lower stress value of 0.1, dissolved concentrations are 

observed to be extensively scattered across all seasons. As can be seen, the 

distribution patterns of the dissolved and particulate PAH species are in sharp 

contrast. 

 

Figure 3.5 Non-Metric multidimensional scaling (NMDS) analysis 

A stress value, which is a summary of the dispersion of a plot of distance vs dissimilarity for all 

pairs of samples, is reflected in a two-dimensional graphic. It demonstrated how the distribution 

patterns of the dissolved and particulate PAH species are in stark contrast. 
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Figure 3.6 NMDS Season-Wise 

 Table 3.1 Season wise stress values of the NMDS 

 

The stress values show how well the NMDS works. In contrast to the largely dispersed 

distribution of dissolved PAHs, the data demonstrated better clustering of particulate 

concentrations during spring, summer, autumn, and winter. 

To locate the likely source of PAH contaminations, the principal component analysis 

(PCA) was used. (Table 3.2) lists the PCA outcomes. As shown, the first two axes, 

PC1 and PC2, accounted for 94.18% of the overall variability and explained 

variations in dissolved PAH concentrations of 82.29 and 11.89%, respectively. In 

particular, dissolved Flu and light loadings of the Acen and Ace weighed more 

heavily on PC1, whereas Phen alone weighed more heavily on PC2. Therefore, it was 

determined that PC1 was formed from petroleum, which typically produces Flu-a low 

molecular weight component with three aromatic rings, whereas PC2 was derived 

Phase Spring Summer Fall Winter All seasons 

Dissolved 0.180 0.115 0.188 0.045 0.131 

Particulate 0.043 0.000 0.071 0.075 0.114 
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from the dissolved Phen, with the main sources being the burning of fossil fuels, 

traffic, and industrial exhausts. In stark contrast, a single principal component axis, 

PC1, which was highly weighted by a single particulate PAH Nap, described 

particulate PAH variations to the tune of 99.77%. PC1 has been generated from the 

Nap with two rings and the lowest molecular weight of 128.1 g/mol, which has coal 

tar or petroleum distillation as its primary source. 
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Table 3.2  Principal Components Analysis (PCA) Results 

 According to this, the spatiotemporal variation in PAH concentrations was mostly one-dimensional and provided more than 80% of the total data. 

 Dissolved PAHs Particulate PAHs 

 PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 

Nap - - - - 9.96×10-1 -8.52×10-2 -2.61×10-2 -8.30×10-4 

Ace 1.40×10-1 6.30×10-2 9.83×10-1 2.97×10-2 2.34×10-3 8.79×10-3 9.69×10-3 3.69×10-2 

Acen 2.48×10-1 -5.95×10-2 -6.14×10-2 9.57×10-1 4.46×10-3 2.87×10-2 1.22×10-2 5.48×10-2 

Flu 9.56×10-1 -6.16×10-2 -1.24×10-1 -2.56×10-1 1.57×10-2 9.68×10-2 -4.71×10-3 1.67×10-1 

Phen 6.42×10-2 9.87×10-1 -7.86×10-2 5.22×10-2 5.14×10-2 6.71×10-1 -2.54×10-1 6.48×10-1 

An 1.43×10-2 8.90×10-2 8.64×10-2 -3.37×10-2 3.51×10-3 7.81×10-2 -2.60×10-4 3.17×10-2 

Fluo 3.98×10-3 4.41×10-2 -1.17×10-2 -5.44×10-2 2.55×10-2 1.04×10-1 4.56×10-1 1.15×10-1 

Py 3.24×10-5 6.59×10-2 -4.14×10-2 -1.04×10-1 6.62×10-2 7.09×10-1 2.34×10-1 -6.48×10-1 

BaA -2.80×10-4 3.03×10-3 -4.46×10-3 -7.14×10-3 3.74×10-3 -7.70×10-5 3.08×10-1 9.51×10-2 

Chry 2.95×10-4 4.57×10-3 -4.24×10-3 1.04×10-2 1.24×10-2 -1.00×10-1 5.44×10-1 1.62×10-1 

BbF 5.63×10-4 2.49×10-3 -1.03×10-3 1.72×10-3 2.59×10-3 -1.02×10-3 1.92×10-1 8.58×10-2 

BkFA 3.56×10-4 -2.81×10-3 -1.85×10-3 3.82×10-3 4.01×10-3 -3.55×10-2 1.99×10-1 6.17×10-2 

BaP 1.51×10-4 1.28×10-3 -2.90×10-4 -1.94×10-3 4.99×10-3 8.95×10-3 3.01×10-1 1.55×10-1 

IP 3.97×10-4 2.50×10-4 2.75×10-4 -1.53×10-3 1.73×10-3 2.76×10-2 2.45×10-1 1.46×10-1 

DBA 4.17×10-4 4.54×10-5 8.17×10-4 -3.91×10-3 3.78×10-3 2.93×10-2 2.28×10-1 1.49×10-1 

BgP 1.21×10-4 1.06×10-3 -1.03×10-3 3.07×10-3 -1.30×10-4 1.29×10-2 4.53×10-2 3.10×10-2 

Explained 82.29% 11.89% 3.81% 1.44% 99.77% 0.13% 0.07% 0.018% 

Mean 3.39 5.28 18.30 15.27 14.88 0.12 0.13 0.44 

Eigenvalues 695.93 100.55 32.26 12.21 2180.09 2.94 1.53 0.39 
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3.3.4 Evaluation of the ecological risks posed by dissolved 

and particulate PAHs 

Marine habitats may be at danger from high amounts of dissolved and particulate 

PAHs. It became essential to evaluate the possible harm caused by certain PAHs 

depending on their concentrations as a result. Such ecological risk assessment also 

enables the PAHs to be characterised in terms of any possible threats to the 

environment, and consequently, to ecosystems. The risk quotient (RQ) method, first 

suggested by[67] and later modified by[68] by include the toxic equivalence 

components, has been used to quantify the ecological risk of organic chemicals. 

Additionally, the enhanced RQ has been employed in this work to assess the various 

PAHs’ potential risks for both dissolved and particulate concentrations. 

The level of danger provided by particular PAHs is indicated by the RQ value, 

which is determined as follows: 

 

 

3.5 

 

Where PAHsC  are specific PAHs concentration; MPCC are they at the maximum 

permitted concentrations (MPCs) in the medium as suggested by [67] 1MPCRQ   

showing the significant risk. 

The current study’s findings revealed that none of the PAHs, in both the 

dissolved and particulate phases, represent a significant harm to ecosystems 

throughout the seasons (Figure 3.7). All the dissolved PAHs, with a few notable 

exceptions, exhibited extremely considerable seasonal fluctuation with values less 
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than 0.1, in contrast to all the particulate PAHs, which all showed MPCRQ values 

below 0.05. In particular, MPCRQ of the Flu is 0.16 in the spring, 0.42 in the summer, 

and 0.23 in the winter, but the of the Nap MPCRQ  was 0.72 in the fall. Such significant 

seasonal change of the MPCRQ  shows the need for phase partitioning and PAH 

monitoring. 

 

Figure 3.7 Risk quotient (RQ) variation across the four Seasons 

Risk Quotient (RQ) variation across the four seasons. To determine the seasonal high-risk 

potential of certain PAHs, we solely computed RQMPC. All of the dissolved PAHs had RQMPC 

values below 0.1 with just a few notable outliers, whereas all of the particulate PAHs had RQMPC 

values below 0.05. 
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3.4 Summary 

In this chapter I have conducted a spatial temporal data analysis of PAHs 

concentration of South China Sea (SCS) which are primarily impacted by transfers of 

water masses, energy, and materials between this marginal sea and the Pacific Ocean. 

The findings of the current research revealed significant seasonal fluctuation in PAH 

levels (Figure 3.3), nearly in agreement with the earlier studies. Furthermore, the 

most significant environmental variables impacting the seasonal heterogeneity and the 

geographical distributions of PAHs in the surface sea waters are considered to be 

anthropogenic activities, land- and ocean-based emissions, surface runoff, and open 

seawater dilution [50, 69]. 

2. The pyrogenic (pyrolytic) sources of PAHs include incomplete combustion 

of diesel fuel and engine oil, wood, coal tar, biomass from forest fires, grass 

fires, waste incinerators, and fossil fuels used in industrial operations and 

power plants. Both of these sources are related to the production of 

petroleum[70] At the majority of the stations under study, the sources of 

PAHs come primarily from petrogenic sources, with very little input from 

pyrogenic sources such incomplete fuel combustion in boats and car 

engines. 

3. High levels of Nap and high concentrations of high-molecular-weight 

PAHs, such as Ace, Acen, Flu, Fen, An, Fluo, Py, Chry, and BkFA, were 

found to be significantly correlated (p< 0.05) (Figure 3.4), indicating 

significant secondary sources and the strong correlation of PAHs 

suggesting that they originated from a common source (such as wood, coal 
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combustion, and petroleum), which may be widely distributed in the 

studied location and abundant[50, 71]. 

4. The concentration of nap particulate remained greatest throughout all four 

seasons, and the MD matrix also showed that comparatively fewer PAH 

species had concentrations greater than 1 ng/L. The results of the NMDS 

clearly show the limited seasonal dispersion of PAHs and the divergent 

impacts of phase partitioning. Using PCA, it was possible to determine the 

main sources of phase-wise PAH contamination, which were either 

petroleum distillation or coal tar. 

In both the dissolved and particle phases, RQ values revealed that no PAH 

poses a significant threat to ecosystem health across the seasons; only the particulate 

Nap exhibited a comparatively high value of MPCRQ
 of 0.72 in the fall. The 

spatiotemporal fluctuations of PAHs may be further influenced by several important 

processes, such as air-sea exchange and deep-sea burial. To improve this current study 

and analyse regional and global source-sink dynamics of the PAHs in the future, these 

must be looked at. 
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“Spatiotemporal data analysis is the key to understanding the dynamic patterns and 

processes that shape our world” …… Michael Goodchild 

Chapter 4 

4. Spatiotemporal data modelling and analysis-II 

Graphical View 

 

Figure 4.1 Graphical Abstract 

 

 

Wang, C., Feng, L., Thakuri, B., Chakraborty, A. (2022). Ecological risk assessment of 

organochlorine pesticide mixture in South China Sea and East China Sea under the effects of seasonal 

changes and phase-partitioning. Marine Pollution Bulletin, 185, 114329.  
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4.1 Introduction 

Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) that are 

commonly utilised as broad-spectrum insecticides for efficient agricultural pest 

control [72]. They are highly poisonous, resistant to biodegradation, quickly 

accumulated in food chains, and capable of biomagnification, making them the most 

dangerous agents with a severe influence on the environment and ecosystems [73, 74]. 

OCPs have drawn significant global attention due to their widespread use and known 

negative effects on human health, including cancer, reproductive defects, and 

endocrine and immunological toxicities [75]. As a result, OCPs are illegal in the 

majority of developed nations in the Northern Hemisphere. However, several 

Southeast Asian nations still employ them [76-79]. OCPs continue to pose a severe 

worldwide threat because to their long-distance transport capabilities from the sources 

through recurrent evaporation-condensation processes, even though their current 

usage are constrained to certain nations and regions. OCPs are easily bound by 

suspended particulate matter (SPM) in water and air and often redistributed by 

absorption on solid particles due to their high values of octanol/water partition 

coefficient and poor water solubility[80, 81] . OCPs precipitate to the bottom of water 

after being absorbed by allochthonous and autochthonous particles. OCPs that are 

collected from several sources, including neighbouring agricultural sites, surface 

runoff from catchment regions, fall with precipitation, atmospheric circulation, and 

movement by ocean currents, are frequently a sink for marine and aquatic 

ecosystems[69, 82, 83] . As a result, it continues to be important to monitor and better 

regulate the distribution, incidence, and ecological threats caused by marine OCP. The 

most severely harmed marine habitats are those that border continents and oceans, and 
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these ecosystems have been identified as being crucial to the source-sink dynamics of 

POPs. With a combined area of about 4.7 million km2, China’s marginal seas, which 

include the Bohai Sea, Huanghai Sea, East China Sea, and South China Sea, are 

particularly affected by eutrophication, overfishing, excessive land reclamation, 

adjacent land use changes, and climate change. As a result, the seas' ability to support 

human well-being is declining [84-86]. The marginal seas of China provide 

significant sea-based commercial links between the Eurasian, Pacific, and Indian-

Australian areas, while the neighbouring land regions are currently seeing rapid 

population growth. According to current reports, during the past 20 years, China’s 

marginal waters have received almost 5000 tonnes of DDT releases[87] . These OCPs 

may be carried with the particles to the deep sea and buried there or may be partly 

destroyed by plankton. Along with serving as a substantial global OCP sink, it also 

releases a sizeable quantity of OCPs through processes including air-water exchange 

and volatilization[88] . Estimating occurrences, variability, and risk assessments 

become crucial for sustainable management of OCPs and its impact because the 

marginal seas of China are heavily impacted by historically largest and most 

widespread use of OCPs in China and Southeast Asia and that is largely controlled by 

seasonally alternating East Asia monsoon. 

The classic methods of risk assessment focus on the risk estimations of a 

particular kind of chemical. An environment that is frequently exposed to chemical 

mixtures rather than a single item may have more danger than this evaluation 

indicates [89, 90]. A chemical with a concentration below the no observed effect can 

nonetheless have a combined impact when it is taken into account in a combination 

risk calculation. Consequently, ecological risk evaluations of co-exposed 
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contaminants based on mixture risk models (MRM) can offer more accurate estimates 

of a variety of dangerous compounds [91]. This method was used to estimate the risk 

associated with OCP mixtures in the SCS and ECS. 

4.2 OCPs species 

The 11 OCP species that were taken into account in this study were divided into three 

broad groups based on their chemical similarities: DDTs (ο, р’-DDE; р, р’-DDE; ο, 

р’-DDD; р, р’-DDD; ο, р’-DDT; р, р’-DDT), hexachlorocyclohexane (HCH (α-HCH; 

β-HCH; γ-HCH; δ-HCH), and hexachlorobenzene (HCB)(). has a list of their 

fundamental chemical characteristics. 

4.3 Methods and materials 

4.3.1 Sample collection and the study region 

The scientific research ship “Dongfanghong-2” collected surface water samples from 

each established station (with a depth of no more than 2m) throughout the SCS and 

ECS continental shelf borders from 2009 to 2011. This fieldwork was done in the 

spring of 2011 (April-June), the summer of 2009 (July-August), the fall of 2010 

(October-December 2010), and the winter of 2009-2010. (Figure 4.2). At each 

station, a submersible pump was utilised to transfer the water into a 50-liter steel 

barrel. Then, particle was separated using a peristaltic pump and a filtration system 

(particles with size > 0.75 μm) and dissolved phase. To remove dissolved OCPs from 

the filtered water, two parallel solid-phase extraction (SPE) processes with prior 

cleaning were used. Prior to enriching the water sample, an activated SPE column 

containing 10 mL of methanol was eluted with 10 mL of ultrapure water (resistivity of 

18.25 MΩ·cm). Finally, pre-fired aluminium foil paper was used to wrap the granular 
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phase and dissolved phase SPE column samples and seal them within a small bag. 

The SPE column samples from the granular phase and dissolved phase were then 

packed in a small bag and covered in pre-fired aluminium foil sheets. At -4 °C, it was 

frozen and kept. 
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Table 4.1 Basic chemical properties of 11 OCPs  grouped into three primary classes 

OCP class Chemicals CAS Molecular Weight [g/mol] Log Kow Solubility (25℃) [mg/L] 

Hexachlorobenzene HCB 118-74-1 389.3 5.40 4.7×10-3 

Hexachlorocyclohexane 

α-HCH 319-84-6 290.8 3.80 2.0 

β-HCH 319-85-7 290.8 3.78 0.24 

γ-HCH 59-89-9 290.8 3.72 7.3 

δ-HCH 319-86-8 290.8 4.14 31.4 

DDTs# 

o, p'-DDE 53-19-0 320 7.00 0.14 

p, p'-DDE 72-54-8 320 6.51 0.04 

o, p'-DDD 3424-82-6 320 5.87 0.10 

p, p'-DDD 72-55-9 320 6.02 0.16 

o, p'-DDT 789-02-6 320 6.70 7.68×10-2 

p, p'-DDT 50-29-3 320 6.91 4.96×10-3 

Source: https://pubchem.ncbi.nlm.nih.gov; https://comptox.epa.gov; https://www.drugbank.ca 

# DDE: 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene; DDD: 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane; DDT: 1,1,1-trichloro-2,2-bis(4-chlorophenyl) e



 

71 

 

 

Figure 4.2  Sampling location along the South and East China Seas 

~4.7 million km2 of the South and East China Seas were sampled at the following locations: 

Spring 92, Summer 116, Fall 78, and Winter 85. There were 30 total sites where the dissolved and 

particulate OCPs overlapped. 
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4.4 Data analysis 

For the 11 OCP species, chemical concentrations were found. Four seasons of sample 

sites were used to analyse the measured data’s seasonal and regional variance. The 

number of sampling locations (spring: 92; summer: 116; fall: 78; winter: 85) and 

location-specific water depth (18-4795; 15-1051; 16-3848; 20-4180m), site-specific 

surface temperature (24.913.77; 28.561.58; 21.075.62; 19.095.21 °C), and overall 

water quality (salinity: 33.39±1.09; 31.93±2.72; 33.45±1.47; 33.44±1.37%, and SPM: 

5.21-34.23; 4.46-66.89; 7.75-93.77; 0.96-130.04 mg/L). In all four seasons, there 

were just 30 counts, which is a relatively low number of overlapping locations. To 

evaluate the phase-partitioning effects, the dissolved and particulate phases were 

separated. 

4.4.1 K-means clustering 

A form of unsupervised learning is K-Means clustering. Finding groups in data is the 

major objective of this technique, and K stands for the number of groups. Each data 

point is sorted iteratively into one of the K groups according to how comparable its 

features are. Starting with K centroids that are randomly chosen from the dataset as 

starting estimates, the K-Means method is used. The method repeats two operations: 

allocating data points and updating Centroids. 

By dividing the sampling sites according on the concentration profiles of 11 

OCP species, the K-means clustering technique was used to analyse site-to-site 

variations over the four seasons. Each site belonged to one of the clusters with the 

closest mean once clustering was complete (i.e., cluster centroid). Expectation-

Maximization strategy was used with the K-means clustering technique [92, 93]. The 
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data points are assigned to the nearest cluster in the expectation stage, and the cluster 

centroid is calculated in the maximising step. The data points were assigned to 

clusters in this procedure such that the sum of the squared distances between the data 

points and the centroid would be as small as possible. Within the clusters, which 

represented more comparable data points, less variance was retained. 

Out of 100 initializations that generate the best total sum of distances, we used 

K-means clustering in MATLAB version R2021a with the input of 2 clusters and 

picked the best initial centroid arrangement. We chose a good distance measure by 

using the approach of trial and error, which minimises the distance from the centroid 

and displays the lowest level of overlapping dots[94, 95]. The L1 distance, or the sum 

of absolute differences (Eq. 4.1), was shown to produce the best clustering results: 

 

 

4.1 

 

where  jx  stood for a data point and jc   for the centroid. 

4.4.2 Principal Component Analysis (PCA) 

To ascertain the connections between various sources and OCP concentrations, PCA 

was used. It breaks down the complicated data into a small number of dimensions 

known as principle components (PCs)[96, 97]. There is no correlation between any 

two PCs. The variability associated with the collection of independent PCs, which is 

quantified by the share of total variance that each PC accounts for in Equation (4.2), 

determines the characteristics of PCA. 
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4.2 

 

where λ was taken to be the eigenvalue of the matrix A and tr(A) stood for the trace of 

the covariance matrix. 

Using the built-in PCA function in MATLAB version R2021a, which 

essentially employs the singular value decomposition technique, we implemented the 

PCA. It returns the principal component coefficient matrix, which is an 11 by 11 

matrix with one principal component coefficient in each column. PCs are sorted 

according to component variance in descending order. 

4.4.3 Hausdorff Distance Measure (HDM) 

When two data sets that show how far apart two things are from one another are 

compared, the Hausdorff distance is calculated [98, 99]. It is the greatest possible 

distance between any two points in one set and their closest neighbours in the other 

set. If the distance between any two points on two sets is “not too far”, then two sets 

are said to be “similar or near”. If there are two finite point sets,  1 2, ,..., pA a a a=  

and  1 2, ,..., qB b b b= , which stand in for two sets of observations, the HDM is defined 

by Equation (4.3) as follows: 

 

 
 

4.3 

 

where the distance metric, d, was frequently seen as ( , )d x y x y= −  and .  served as 

an example of the Euclidean norm. We used this metric to assess how different the 

overlapping sites were from one another throughout all seasons and in both the 

dissolved and particulate phases. It was carried out in MATLAB R2021a. 
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4.4.4 Mixture risk model (MRM) 

For the estimates of spatiotemporal ecological risk, a two-tier MRM was taken into 

account. To investigate the impact of phase-partitioning between the dissolved and 

particulate forms of 11 OCPs, two separate evaluations were conducted. RQ was 

computed as a ratio between the recorded OCP concentration and the predicted no-

effect concertation (PNEC), also known as the non-observed effect concentration 

(NOEC), in the first tier using concentration addition techniques at each location. The 

combination RQs were then determined by adding together all the species that 

belonged to the three main groups of OCPs, HCB, HCH, and DDTs. Three example 

trophic levels were added in order to take into account the ecological consequences by 

substituting the NOEC/PNEC with the half-effect concentration (EC50) of algae and 

Daphnia and the half-lethal concentration (LC50) of fish, adjusted by suitable 

evaluation factors extracted from [87](. The U.S. EPA's ECOSAR (Ecological 

Structure Activity Relationships) database contains estimates of EC50 and LC50. 

Finally, Equation (4) was used to estimate the mixture RQ: 

 

 

 

4.4 

 

where i=HCB, HCH, and DDTs; MCij was measured concentration of jth species of 

the OCP class i and AF was assessment factor. According to different ranges of RQ 

values, risk levels were graded as follows: low risk: 0.01<RQ<0.1; medium risk: 

0.1<RQ<1; and high risk: RQ>1. 
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The second layer of the MRM only operated when RQ > 1, and RQSTU was 

determined by adding the toxic units of the most vulnerable organism group for each 

sample trophic level, as indicated in Eq. (4.5): 

 

 

4.5 

 

where LC50 stood for half deadly concentration (mg/L) for the fish, EC50 stood for 

half impact concentration (mg/L) for the algae and Daphnia, and AF was set at 100. 

4.5 Results 

4.5.1 Composition and geographic spread of the OCP phase 

In two separate stages, dissolved and particulate OCPs, seasonal sampling and 

concentration determination of 11 OCP species in SCS and ECS were conducted. The 

average particulate concentrations were 0.022, 0.089, and 0.322 ng/L, whereas the 

total mean dissolved concertation of HCB, HCH, and DDTs across seasons was 

1.001, 2.531, and 1.168 ng/L, respectively (Table 4.2). With significant seasonal 

fluctuations, dissolved OCPs have consistently kept much greater concentrations than 

the particulate phases for all three groups. In contrast to HCB and DDTs, dissolved 

HCH maintained a very high concentration throughout all the seasons. Except for 

summer DDTs, all three groups’ dissolved OCP concentrations stayed at least 10 

times greater than their particulate counterparts in all seasons. Seasonal and phase-

based sharp contrasts in dispersion have been seen. Particularly, particulate DDT 

concentrations in the summer were more than 10 times greater (1.196 ng/L) than in 

any of the other seasons and were generally higher than dissolved DDT 
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concentrations in the spring, fall, and winter, with the exception of summer (2.386 

ng/L). With the exception of the fall, when the concentration of HCB is lower than 

that of DDTs, dissolved OCPs consistently kept the order HCHs>HCB>DDTs 

throughout all the seasons. Contrary to this component order, particulate 

concentrations varied only slightly across all OCP groups and seasons, with summer 

elevated DDT sticking out as an exceptional exception. Additionally, we observed 

that the mean prevalence of dissolved HCHs increased with the seasons: winter 2.24 

ng/L (1.98-2.51 ng/L), autumn 3.26 ng/L (3.04-3.48 ng/L), summer 1.708 ng/L (95% 

CI: 1.46-1.96 ng/L), and summer 2.91 ng/L (2.20-3.62 ng/L). However, compared to 

dissolved forms, the mean concentrations of all OCPs in the particulate phase 

remained much lower, while the mean concertation of HCHs in the particulate phase 

was higher in the spring (0.033 ng/L, 0.025-0.041 ng/L), summer (0.247 ng/L, 0.196-

0.298 ng/L), and fall (0.067 ng/L, 0.056-0.078 ng/L). DDT concentrations remained 

greater due to winter particulates 
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Table 4.2 Seasonal and phase-wise occurrences and distribution of major OCPs 

Seasonal & 

Phase-separation effects 

Spring Summer Fall Winter 

Dissolved Particulate Dissolved Particulate Dissolved Particulate Dissolved Particulate 

Hexachlorobenzene (HCB)         

Mean concentration (ng/L) 0.619 0.028 2.417 - 0.351 0.032 0.617 0.005 

95% CI 0.464-0.774 0.024-0.033 2.018-2.816 - 0.293-0.409 0.027-0.037 0.502-0.732 0.002-0.008 

Mixture Risk Quotient 

(MRQ) 
0.062±0.076 0.003±0.002 0.242±0.219 - 0.035±0.026 0.003±0.002 0.062±0.054 0.001±0.001 

Hexachlorocyclohexane 

( )         

Mean concentration (ng/L) 1.708 0.033 2.910 0.247 3.261 0.067 2.243 0.009 

95% CI 1.457-1.959 0.025-0.041 2.198-3.622 0.196-0.298 3.041-3.481 0.056-0.078 1.979-2.506 0.004-0.014 

Mixture Risk Quotient 

(MRQ) 
0.003±0.002 0.000±0.000 0.005±0.007 0.000±0.000 0.005±0.002 0.000±0.000 0.004±0.002 0.000±0.000 

DDTs ( ) 
        

Mean concentration (ng/L) 0.330 0.026 2.386 1.196 1.112 0.029 0.843 0.036 

95% CI 0.236-0.423 0.022-0.030 1.747-3.025 0.874-1.518 0.814-1.411 0.024-0.034 0.527-1.160 0.023-0.048 

Mixture Risk Quotient 

(MRQ) 
0.013±0.022 0.001±0.001 0.172±0.283 0.057±0.089 0.030±0.043 0.001±0.001 0.077±0.075 0.001±0.003 

Major contributor (Along 

PC1) 

β-HCH 

(80%) 

α-HCH 

(85%) 
β-HCH (83%) 

o, p'-DDT 

(71%) 

p, p'-DDD 

(93%) 

α-HCH 

(81%) 
β-HCH (93%) 

p, p'-DDT 

(93%) 
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With the appropriate number of groups and distance measure, we used K-means 

clustering to investigate site-to-site spatial and seasonal variations (Figure 4.3). 

 

Figure 4.3 K-means clustering under L1 distance matric 

(A) dissolved phase and (B) particulate phase. It indicated large seasonal variation and phase 

partitioning effects on the OCP distributions. 

Interestingly, it revealed significantly less spatial variability of OCPs in both stages 

and all seasons. Since the centroid of two possible clusters were either extremely 

close to one another or exhibited layered collinearity of datapoints, no substantial 

grouping in particulate OCP sites occurred during the summer and winter seasons in 

particular. In comparison, dissolved OCP locations displayed superior clustering 

results. With total sums from the respective centre of cluster-1 and cluster-2 being 

(spring: 35.42, 94.81) and (fall: 93.09, 37.81), respectively, in the dissolved phase, 

spring and fall showed the almost non-overlapping clusters, showing greater 

resemblance among the sites. 
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We used HDM to measure the differences between the 30 overlapping locations over 

the four seasons. Overall, it revealed low HDMs that were mostly identical across all 

four seasons in both stages, with very few locations standing out from the rest (Figure 

4.4). Thus, it suggests less geographic variation in line with the findings of K-means 

clustering. In comparison to particulate phase, mean HDM in the dissolved phase 

reliably remained higher throughout all the seasons, indicating larger spatial variance 

in this phase. 

Hausdorff Distance map that measures the degree of dissimilarity among 30 

overlapping sites across seasons and between the two phases. Overall, it indicated 

lesser spatial heterogeneity. Relatively, the dissolved mean Hausdorff measure 

consistently remained greater across all the seasons than particulate phase, 

representing higher spatial variation in this phase. The greatest mean HDM and 

standard deviation were found to be maintained during the summer season (dissolved: 

2.1±2.16; particulate: 1.0±1.46), with approximately the same range of HDM 

variation. With the exception of the summer season, dissolved phase HDM long-range 

variance has been found to be at least three times greater than that of particulate 

phase. 

In conclusion, the clustering and HDM findings unequivocally show that the 

OCP distributions are affected by phase splitting and significant seasonal variance. 

While spatial variance in both phases has persisted at low levels, able to sustain a 

nearly homogeneous environment—an known typical feature of marginal seas—this 

has been the case in both phases. 
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Figure 4.4 Hausdorff Distance Map 

Using a Hausdorff Distance map, 30 overlapping locations are compared for similarity between 

seasons and between the two phases. It showed less spatial heterogeneity overall. In comparison 

to particulate phase, the dissolved mean Hausdorff measure consistently stayed higher during all 

the seasons, indicating larger spatial variance in this phase. 
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4.5.2 Different prevalent OCP species have distinct impacts. 

We were able to locate possible OCP sources in the SCS and ECS by using PCA to 

clarify prominent contributors and their seasonal and phase-wise variation. The 

findings indicated that the first four PCs accounted for more than 80% of all OCP 

variance in both stages and throughout all seasons. By performing the PCA separately 

for each season and phase, seasonal and phase-wise variance was caught in the 

analysis, producing domination patterns of OCPs with the underlying effects of 

seasons and phase partitioning (Figure 4.5). 

 

Figure 4.5 Principal component Analysis 

Principal component analysis of (A) the dissolved phase and (B)the particulate phase, 

respectively, demonstrating the proportional positive and negative loadings of each individual 

OCP species in PC1 and PC2. More than 80% of all OCP concentration changes were described 

by the first four PCs. The fact that any of the HCH, DDT species, and HCB favourably loaded 

either of the axis shows that there are numerous sources of OCP contamination in the SCS and 

ECS. 
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In the spring, summer, autumn, and winter, respectively, principal component 

1 (PC1) explained 63.19, 60.26, 62.83, and 35.37% of the overall variation in 

dissolved OCP. In spring, summer, and winter, it was reliably loaded by the HCH 

component with the greatest input (>0.8). In contrast to all other seasons, the 

contributions of p, p'-DDD contributed >0.9 in the fall, and almost equal contributions 

(~0.2) of different HCH species and HCB were seen. Across all the seasons, β-HCH 

made the largest contribution of all the HCH species. As opposed to this, PC1 of 

particulate OCPs explained 50.78, 42.97, 38.71, and 41.33% of the overall variation 

in the spring, summer, fall, and winter, respectively. There was no OCP species or 

class that consistently dominated. Instead, it was found that DDTs made very 

significant contributions in the summer and winter, while HCB and HCH species 

predominated in the spring and autumn. It’s interesting to note that high particulate α-

HCH input (>0.8) has been observed in the spring and fall. 

The difference between various OCP species contributions and consequently 

various pollution sources is described by principal component 2 (PC2). In the spring, 

summer, autumn, and winter, it described 11.72, 15.61, 18.93, and 27.03% of the 

overall variation in dissolved OCP, respectively. Across seasons, there were generally 

fewer positive loadings by different species, but the inventory was unusually enlarged 

in the summer. Furthermore, it was uncommon for a single species to reliably make 

significant contributions across seasons. There were very clear high summer loadings 

of PC2 by o, p'-DDE, o, p'-DDD, α -HCH, and HCB. PC2 accounted for 27.38, 29.11, 

25.36, and 25.56% of the overall variance in the particulate phase. Different species 

were observed to positively load PC2 in stark contrast to the dissolved phase. 

Particulate HCB (0.84) and β-HCH (0.16), p, p'-DDD (0.14) highly contributed in 
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spring; γ-HCH (0.55), HCB (0.46), β-HCH (0.41), p, p'-DDE (0.13) in fall; o, p'-DDD 

(0.9) in summer; and p, p'-DDE (0.68), o, p'-DDE (0.6), β-HCH (0.18), HCB (0.12) in 

the winter. Multiple sources of OCPs are indicated by the fact that various multiple 

species in each of the three OCP groups demonstrated strong positive contributions 

across seasons. 

4.5.3 Evaluation of the spatiotemporal ecological risk 

The spatial ecological risk evaluations used the MRM. Algae, daphnia, and fish are 

three exemplary trophic layers included in this. RQ values were used to rate the risk 

levels: low risk (-0.01<RQ<0.1); middle risk (-0.1<RQ<1); and high risk (RQ>1). 

The second layer of the MRM only functioned when RQ > 1, and the total of toxic 

units of the most vulnerable creature for each sample trophic level was used to 

compute RQSTU. Risk distribution maps were then created for each season and phase, 

taking into account the found seasonal and period petitioning impacts. Except for the 

summer season, (Figure 4.6) demonstrated that none of the OCP groups caused any 

high-risk zones during any of the seasons or phases. Only one location for dissolved 

HCB and two sites for dissolved DDTs had the RQ greater than one in the summer. 

Therefore, it demonstrated that the amounts of both dissolved and particulate OCP 

were much lower than the no-effect limits for causing the elevated risk. In addition, it 

was observed that the majority of particulate OCPs did not represent a risk throughout 

the seasons. In particular, particulate DDTs revealed low-risk at 52.29% of the 

locations and medium risk at 14.68% of sites during the summer. In contrast, there is 

little danger from particulate HCB (3.37% in spring and 3.95% in fall). In stark 

contrast, the danger presented by dissolved OCPs was low to moderate throughout the 

year. In the summer, dissolved HCB (81.90%) and DDTs (34.25%) were found to 
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pose the highest medium risk. Low level risk primarily caused by HCB and DDTs; in 

the fall and winter, HCH presented a much lower risk (~10 times). At 12% of 

locations during the summer, dissolved HCH showed a moderate degree of risk. 

RQSTU computed at uncommon sites in the second tier of the MRM (Table 4.3) 

revealed RQHCB and RQDDT >1. It revealed that RQDDT accounted for daphnia (0.25) 

and RQHCB for algae (1.046). 

In conclusion, it was found that the spatial ecological risk evaluation in the 

SCS and ECS was significantly influenced by seasonal and phase partitioning effects. 

The RQ computation revealed seasonal low-to-medium level hazards that were 

mainly caused by dissolved HCB and DDTs. Low-level DDT-posed hazards in the 

particle phase were only seen during the summer. Only a small number of locations 

showed elevated risk from HCB and DDTs, which are sensitive to algae and daphnia, 

respectively. 
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Figure 4.6 Mixture risk Model estimated ecological risk posed by major OCP 

classes 

Mixture risk model estimated ecological risk posed by major OCP classes: (A) dissolved OCPs 

and (B) particulate OCPs. It showed seasonal variation and the phase partition effects on the 

estimates. Dissolved HCB and DDTs posed higher risk across all the seasons. Whereas in 

particulate phase DDT-posed significant risk was noted in summer. 

 

 



 

87 

 

 

Table 4.3 Ecological mixture risk assessment across seasons and phase in South China Sea and East China Sea 

Season Risk levels 

RQ Summary (Dissolved) RQ Summary (Particulate) 

HCB HCH DDT HCB HCB HCH 

Spring 

No. High risk (>1) 0.000 0.000 0.000 0.000 0.000 0.000 

% Low risk (0.01-0.1) 36.667 0.000 29.688 3.371 0.000 0.000 

%Medium risk (0.1-1) 27.778 0.000 1.563 0.000 0.000 0.000 

summer 

No. High risk (>1) 1 (RQalgae=1.046) * 0.000 2 (RQdaphania=0.245) * 0.000 0.000 0.000 

% Low risk (0.01-0.1) 17.241 12.069 32.877 0.000 0.000 52.294 

% Medium risk (0.1-1) 81.897 0.000 34.247 0.000 0.000 14.679 

Fall 

No. High risk (>1) 0.000 0.000 0.000 0.000 0.000 0.000 

% Low risk (0.01-0.1) 89.744 1.282 27.632 3.947 0.000 0.000 

% Medium risk (0.1-1) 1.282 0.000 13.158 0.000 0.000 0.000 

Winter 

No. High risk (>1) 0.000 0.000 0.000 0.000 0.000 0.000 

% Low risk (0.01-0.1) 72.941 1.176 65.714 0.000 0.000 2.532 

% Medium risk (0.1-1) 24.706 0.000 22.857 0.000 0.000 0.000 

* when RQ>1, RQSTU was calculated by taking sum of toxic units of the most sensitive organism group. 
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4.6 Discussion 

4.6.1 OCPs’ spatiotemporal heterogeneity 

The marginal seas, which are located at the nexus of terrigenous and oceanic habitats, 

are busy year-round and are essential to sustaining the source-sink dynamics of OCPs. 

At the international level, the marginal China Sea, which is bordered by Southeast 

Asian Countries, plays a significant part as an OCP source-sink zone. Although OCP 

use has been outlawed in China for more than 30 years, the country has traditionally 

made extensive use of HCHs and DDTs, accounting for more than 20% of global 

usage in the decades prior to their outlaw [100-102]. OCPs that were caused by 

human activity are still widely distributed in the earth, water, air, sediments, and 

living things. This research demonstrated that, with the exception of the autumn and 

winter, mean concentrations of dissolved HCB, HCHs, and DDTs in the summer 

(>2.3 ng/L) were significantly greater than those in other seasons. The mean amounts 

of dissolved DDT were consistently greater in the summer (2.386 ng/L) and winter 

(0.843 ng/L). When compared to the published amounts of HCB (0.0021-0.0061 

ng/L), DDTs (0.002 ng/L), and HCHs (0.09-0.627 ng/L) in the subtropical North 

Atlantic Ocean, these observed concentrations in the SCS and ECS are still 

significantly higher (at least 10 times) [103]. Additionally, it is considerably greater 

than the HCH and DDT concentrations that have been observed in the open Pacific 

Ocean[69]. The monsoons dominate the climate in the China Sea’s peripheral region, 

which is equatorial. Typhoons are common in the summer, and south westerly winds 

dominate during the rainy season. Winter breezes, however, come from the northeast. 

The annual precipitation is between 2000 and 3000 millimetres[104] . The spread of 

OCPs is substantially impacted by this warm weather. The current research found that 
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all OCP amounts in the SCS and ECS had extremely high seasonal fluctuation. The 

study of phase separation between dissolved and particulate form increases this 

diversity even further. It can be ascribed to a variety of combinations of the OCPs’ 

seasonal changes in transport paths from different sources. Surface discharge, 

volatilization, biological mechanisms, diffusion, and ocean currents are examples of 

possible transport pathways [46, 105, 106]. Due to comparatively lower 

concentrations of prohibited OCPs in the oceans, a high-to-low concertation gradient 

can be anticipated at the land-sea boundary. Terrigenous OCPs may be diffusely 

transported into oceans as a result of this concertation gradient. Surface runoff has the 

potential to be a major OCP transport pathway during lengthy and strong monsoons in 

Southeast Asia [107]. A high-temperature-enhanced volatilization of OCPs, which 

results in their diffusion from soil to atmosphere and ultimate deposition into oceans, 

may be the cause of the relatively much higher summer OCP content found in the 

SCS and ECS. In addition, the summer’s typically low algae density can impede the 

degradation process, increasing the content of OCP. 

The distribution and destiny variations of various OCPs were significantly 

influenced by phase separation between dissolved and particulate forms. The SCS and 

ECS were significantly affected by such impacts. All of the dissolved OCPs in the 

current research revealed a comparatively greater content, whereas the particulate 

DDTs demonstrated their considerable amount in comparison to all other species. 

Since it could not be identified at a significant level when measured in combination, it 

indicated the significance of phase separation. The ecological risk maps showed this 

phase difference as well. It stood out from all other OCPs due to low water solubility 

of DDTs and its strong attraction for particulates in the water column, which affected 
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how widely it was distributed[108]. For instance, DDT linked with SPM found to be 

90% in the Peral River Estuary, 40% in the Yangtse River, China, and up to 54% in 

the coastal seas of Singapore [109, 110]. This research discovered that the mean 

particulate DDT levels in the summer were greater than those in the other seasons and 

similar to their dissolved content. It also discovered that these levels were observable 

in the winter and autumn. In comparison, HCH isomers (α, β, γ, δ)  were found to 

have a minimal SPM content and to be more strongly water soluble than the DDTs. 

The spread of HCH reflects this characteristic. We have observed that mean dissolved 

HCHs were significantly greater than its particulate form, as was to be anticipated. 

Even though the seasons with the highest concentrations of dissolved HCHs were 

summer and fall, their particulate content was at least ten times lower, causing a 

highly skewed distribution of HCHs in this period. 

4.6.2 OCP sources in the SCS and ECS 

As shown by the PCA findings (Figure 4.5), the dominance pattern varies greatly 

across seasons and stages. There was not a single species that loaded the main axis 

favourably. Rather, almost all of the HCB, HCH, and DDT species ascribed 

substantially to positive loadings of the first four axes explained more than 80% of the 

variance, suggesting numerous sources of OCPs in the SCS and ECS. 

Agriculture could be the primary source of HCB if it is still used in this 

industry, despite the fact that it was banned in most countries, including China, in 

2009[111]. It is currently released as a by-product or impurity in the production of 

chlorinated solvents (e.g., tetrachloroethylene, trichloroethylene, carbon 

tetrachloride), pesticides such as pentachloronitrobenzene, tetrachloroisophthalonitrile 
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(chlorothalonil), 4-amino-3,5,6-trichloropicolinic acid (picloram) [112-114]. It’s also 

used in the manufacturing of atrazine, propazine, simazine, and mirex. Because it 

typically reacts with hydroxyl radicals, HCB has a high potential for long-range 

atmospheric transport, and its half-life period in the atmosphere is 7.7-14 years[115]. 

Due to its frequent interactions with hydroxyl radicals and its 7.7–14-year 

atmospheric half-life, HCB has a high capacity for long-range atmospheric movement 

[115]. Aside from binding to dirt and suspended particulates, HCB also travels 

through water. In comparison, particulate HCB contributed 32.42, 0.0, 25.16, and 

10.04% of total particulate OCPs in the seasons of spring, summer, autumn, and 

winter, respectively. We observed that the total contribution of dissolved HCB was 

23.63, 35.40, 7.47, and 19.24% of total dissolved OCPs. These significant 

spatiotemporal variations suggest that atmospheric deposition, along with other 

possible agricultural sources and commercial chemical manufacturing by products, 

may be a major source of HCB. 

HCH contributions differed significantly between the stages and between the 

seasons. HCH contributed 37.68, 14.81, 52.28, and 18.16% of the total OCPs in the 

particulate phase, but accounted for 68.38, 42.61, 69.44, and 69.93% of the total 

OCPs in the dissolved phase in the spring, summer, autumn, and winter, respectively. 

Most HCH discharged into the atmosphere comes from lindane and technical HCH 

used in agriculture and medicine [116]. Technical HCH and lindane composition is 

usually represented by the isomers α, β, γ, δ-HCH. Technical HCH typically contains 

60 to 70% α-HCH, 5 to 12% β -HCH, 10-15% γ -HCH, and 3 to 4 % δ-HCH and 3 to 

4% other isomers, whereas lindane HCH contains more than 90% γ -HCH [117]. We 

discovered that α, β, γ, δ-HCH contributed differently depending on the season and 



 

92 

 

that their makeup significantly differed. Across seasons and stages, such suggestive 

compositional patterns have not been seen. However, the input pattern of the 

dissolved α-HCH (52.24%) >β -HCH (35.15%) > δ-HCH (7.0%) > γ -HCH (5.60%) 

hints at the use of technological HCH in the fall. The most common and stable variety 

of HCH is β-HCH, whereas α- and γ-HCH are readily converted to β-HCH [118, 

119]. Moreover, photoisomerization can change γ-HCH into α-HCH [120]. Therefore, 

α/γ-HCH values can be used to locate possible HCH sources: <4, 4-7, and >7, 

respectively, suggest the use of lindane currently, technically HCH currently, and 

technically HCH historically[121]. It was observed that, in the spring, summer, 

autumn, and winter, respectively, dissolved α/γ-HCH ranged between 0.04-46.06, 

0.11-33.49, 0.82-39.25, and 0.22-46.12. In the spring, summer, and winter, its levels 

stayed <4 in >75% of sampling sites; only in the autumn did it exhibit >7 in >75% of 

all sites. As a result, it suggested potential HCH sources for lindane's present or past 

expert HCH use. Parallel to this, particulate α/γ-HCH varied from 0.11 to 19.56 and 

displayed <4 in more than 80% of locations throughout all seasons. We computed the 

fraction β/(α+γ)-HCH to assess the degree of degradation. Over the course of the four 

seasons, this ratio varied between 0.11-29.75 and >1 in at least >31% of dissolved 

phase sites and 0.11-14.16 and >1 only in 40% of particulate phase sites, suggesting 

that HCH has not been severely deteriorated. This, along with the comparatively low 

α/γ-HCH ratio (<4) in all phases and seasons, suggested potential HCH sources from 

lindane use currently or from technical HCH use in the past. 

In the spring, summer, autumn, and winter, respectively, DDTs made up 8.95, 

21.99, 23.08, and 9.53% of all dissolved OCPs and 29.9, 83, 22.57, and 71.80% of all 

particle OCPs (Table 4.4) (Table 4.5). Individual DDT contributions varied greatly 
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between seasons and stages, and there was no clear season-wide supremacy of any 

one DDT species. We computed the ratio of DDE/DDD and (DDE+DDD)/DDT 

because DDTs frequently deteriorated into DDE and DDD, including p, p' and o, p' 

isomers. In the dissolved and particulate phases, DDE/DDD ranged between 0.11-

18.35 and 0.11-35.23, and (DDE+DDD)/DDT between 0.23-527.32 and 0.11-238.46. 

The first ratio is <1 at least 25% sites and the second ratio is <1 at least 10% sites, 

which may suggest that DDTs in the majority of sites were not highly degraded. 

Additionally, the majority of the locations had modest ratios of, p'-DDT/p, р'-DDT 

(<0.25), suggesting that technical DDTs rather than dicofol may have been use. 

Table 4.4 Source Analysis of Particulate OCPs 

(A) 

SUMMER-

HCH 

α-

HCH/ 

β-

HCH 

γ-

HCH 

δ-

HCH total 

alpha/gam

ma 

beta/(alpha+ga

mma) 

% OF 

OCPS 

Total sum 6.9242 

6.017

63 

1.115

77 

9.199

16 

23.25

68 NA NA 

14.805579

3                        

% 

29.772

9 

25.87

47 

4.797

62 

39.55

48 100 NA NA  

max      

11.416891

13 14.16125477  

min      

0.1196153

12 0.127489369  

% <4      

80.952380

95 NA  

% 4-7      

9.5238095

24 NA  

% > 7      

9.5238095

24 NA  
>1      NA 37.87878788  

 

(B) 

SPRING-HCH 

α-

HCH/ β-HCH γ-HCH δ-HCH total 

alpha/gamm

a 

beta/(alpha+g

amma) 

% OF 

OCPS 

Total sum 1.08934 0.76933 0.9709 0.10894 2.93851 NA NA 37.6797894 

% 37.0712 26.1811 33.0405 3.70716 100 NA NA  

max      19.558899 1.749132389  

min      0.123323579 0.111336535  

% <4      95.40229885 NA  

% 4-7      2.298850575 NA  

% > 7      2.298850575 NA  

>1      NA 11.62790698  
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FALL-

HCH 

α-

HCH/ 

β-

HCH 

γ-

HCH 

δ-

HCH total 

alpha/gam

ma 

beta/(alpha+gam

ma) 

% OF 

OCPS 

Total sum 

1.6070

4 

1.141

65 

1.520

21 

0.800

41 

5.069

31 NA NA 

52.275983

6 

% 

31.701

4 

22.52

08 

29.98

85 

15.78

93 100 NA NA  

max      

16.2922184

2 2.632554578  

min      0.16112894 0.112756916  

% <4      

93.4210526

3 NA  

% 4-7      

5.26315789

5 NA  

% > 7      

1.31578947

4 NA  

>1      NA 12.5  
 

(C) 

WINTER-

HCH 

α-

HCH/ 

β-

HCH 

γ-

HCH 

δ-

HCH 

total alpha/gam

ma 

beta/(alpha+gam

ma) 

% OF 

OCPS 

-Total sum 0.1888

2 

0.121

86 

0.199

46 

0.203

29 

0.713

43 

NA NA 18.159207

9 

% 26.466

8 

17.08

12 

27.95

73 

28.49

47 

100 NA NA 
 

max 
     

21.7123687

6 

7.612774878 
 

min 
     

0.12417641

2 

0.397658329 
 

% <4 
     

89.1891891

9 

NA 
 

% 4-7 
     

2.70270270

3 

NA 
 

% > 7 
     

8.10810810

8 

NA 
 

>1 
     

NA 40 
 

(D) 
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(E) 

 

(F) 
SUMMER-DDTs o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD (DDE+DDD)/DDT op'DDT/pp'DDT % OF OCPS 

Total sum 31.5285 22.7126 23.1754 6.7196 29.3232 16.91718277 130.3765372 NA NA NA 82.99953354 

% 24.1827 17.4208 17.7757 5.154 22.4912 12.97563807 100 NA- NA NA 
 

max 
       

5.71861772 24.13969713 3.613593937 
 

min 
       

0.32166825 0.119891842 0.135661343 
 

% <1 
       

32.8571429 NA NA 
 

% <1 
       

NA 41.46341463 NA 
 

%< 0.25 
       

NA NA 10.41666667 
 

 

(G) 

SPRING-DDTs o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD (DDE+DDD)/DDT op'DDT/pp'DDT % OF OCPS 

Total sum 0.57976 0.49342 0.15266 0.88335 0.07803 0.144514902 2.331738659 NA NA NA 29.89931974 

% 24.8638 21.161 6.54721 37.8839 3.34638 6.197731509 100 NA NA NA  
max        35.2314746 238.4581128 0.563465989  
min        0.11639885 0.319657487 0.121549198  
% <1        53.6585366 NA NA  
% <1        NA 10.25641026 NA  
%< 0.25        NA NA 61.53846154  

FALL-DDTs o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD (DDE+DDD)/DDT op'DDT/pp'DDT % OF OCPS 

Total sum 0.60188 0.65254 0.03326 0.7538 0.14698 0 2.188461164 NA NA NA 22.56793397 

% 27.5026 29.8175 1.51964 34.4443 6.71608 0 100 NA NA NA  

max        4.28464582 35.66151629 0  

min        0.25129673 1.474181486 0  

% <1        45.7627119 NA NA  

% <1        NA 0 NA  

%< 0.25        NA NA 0  
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WINTER-

DDTs 

o,p'-

DDE 

p,p'-

DDE 

o,p'-

DDD 

p,p'-

DDD 

o,p'-

DDT p,p'-DDT total DDE/DDD 

(DDE+DDD)/DD

T 

op'DDT/pp'DD

T 

% OF 

OCPS 

Total sum 0.34228 0.73575 0.02364 0.31794 0.25385 

1.14727654

7 

2.82073462

7 NA NA NA 71.79712845 

% 12.1343 26.0836 0.83818 11.2717 8.99928 

40.6729645

7 100 NA NA NA  

max        

5.5759838

2 61.47537829 2.185137847  

min        

0.2887273

8 0.111613782 0.115664433  

% <1        

38.461538

5 NA NA  

% <1        NA 79.6875 NA  

%< 0.25        NA NA 46.875  
 

(H) 

HCB Spring Summer Fall Winter 

Particulate (ng/L) HCB HCB HCB HCB 

Total 2.52839 0 2.43944 0.39459 

% 32.4209 0 25.1561 10.0437 
 

Total OCPs    

Spring Summer Fall Winter 

7.798634481 157.0810481 9.69721538 3.928756885 
 

(I) 
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Table 4.5 Source Analysis of Dissolved OCPs 

Spring-HCH         

 α-HCH β-HCH γ-HCH δ-HCH total alpha/gamma beta/(alpha+gamma) % of total OCPs 

Total sum 27.12941011 77.67002297 27.28571672 29.04413304 161.1292828 NA NA 68.37968645 

% 16.83707471 48.20362751 16.93408184 18.02539148 100 NA NA  

max      46.05558328 29.74791639  

min      0.040988362 0.118133393  

% <4      82.66666667 NA  

% 4-7      6.666666667 NA  

% > 7      10.66666667 NA  

%>1       58.13953488  

(A) 

 

(B) 

Summer-HCH 
        

 
α-HCH/ β-HCH γ-HCH δ-HCH total alpha/gamma beta/(alpha+gamma) % of total OCPs 

Total sum 117.7751893 149.6394129 63.01162026 7.112197494 337.53842 NA NA 42.61010238 

% 34.89238242 44.33255977 18.66798571 2.107078037 100 NA NA 
 

max 
     

33.48652377 19.91815111 
 

min 
     

0.111478245 0.118812476 
 

% <4 
     

75.67567568 NA 
 

% 4-7 
     

8.108108108 NA 
 

% > 7 
     

16.21621622 NA 
 

>1 
      

31.91489362 
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 (C) 

 

 

Winter-HCH         

 α-HCH/ β-HCH γ-HCH δ-HCH total alpha/gamma beta/(alpha+gamma) % of total OCPs 

Total HCH 42.42624593 111.3582222 15.92887135 20.92348812 190.6368276 NA NA 69.9346089 

% 22.25501368 58.41381214 8.355612006 10.97557666 100.0000145 NA NA  

max      46.12142439 19.65736553  

min      0.219457648 0.253648437  

% <4      79.74683544 NA  

% 4-7      7.594936709 NA  

% > 7      12.65822785 NA  

>1      NA 82.27848101  

(D) 

Fall-HCH         

 α-HCH/ β-HCH γ-HCH δ-HCH total alpha/gamma beta/(alpha+gamma) % of total OCPs 

Total HCH 132.8747757 89.41735328 14.25179699 17.81314293 254.3570689 NA NA 69.44363118 

% 52.23946008 35.15425883 5.603066315 7.003202557 100 NA NA  

max      39.25235043 2.883127325  

min      0.821297148 0.336631624  

% <4      8.974358974 NA  

% 4-7      15.38461538 NA  

% > 7      75.64102564 NA  

>1      NA 11.53846154  
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Spring-

DDTs            

 o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD 

(DDE+DDD)/DD

T 

op'DDT/pp'DD

T 

% of total 

OCPs 

Total DDTs 

3.79567325

8 

3.53733897

5 4.08830575 

2.81264083

6 2.01194461 

4.84644697

9 

21.0923504

1 NA NA NA 8.951124724 

% 

17.9954972

2 

16.7707200

7 

19.3828840

8 

13.3348860

4 

9.53874087

2 

22.9772736

5 100 NA NA NA  

max        

8.72579515

5 28.52187967 3.222224448  

min        

0.11228682

4 0.216475613 0.125487843  

% <1        

52.3809523

8 NA NA  
% <1        NA 44.82758621 NA  
%< 0.25        NA NA 50  

(E) 

Summer-

DDTs            

 o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD 

(DDE+DDD)/D

DT 

op'DDT/pp'D

DT 

% of total 

OCPs 

Total DDTs 

76.6763956

2 

13.0706351

6 

72.5899373

2 

5.66416083

6 

0.50901828

7 

5.70183271

6 

174.211979

9 NA NA NA 21.99213441 

% 

44.0132686

7 

7.50271804

7 

41.6675873

8 3.25130349 

0.29218325

2 

3.27292764

9 100 NA NA NA  

max        

8.94923862

2 4.316996255 0.221758866  

min        

0.11321629

5 0.23745414 0.124425467  

% <1        60 NA NA  

% <1        NA 42.85714286 NA  

%< 0.25        NA NA 100  
 

(F) 
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Fall-

DDTs            

 o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD o,p'-DDT p,p'-DDT total DDE/DDD 

(DDE+DDD)/DD

T 

op'DDT/pp'DD

T 

% of total 

OCPs 

Total 

DDTs 

10.0011795

5 

18.7106240

1 

13.0172352

5 

40.9137571

4 

0.81339751

9 

1.09030694

9 

84.5465004

1 NA NA NA 23.0825745 

% 

11.8292058

2 

22.1305718

3 15.3965394 

48.3920173

4 

0.96207118

6 

1.28959441

7 100 NA NA NA  

max        18.3586759 527.3159993 4.463335166  

min        

0.13222753

2 1.722148293 0.155452978  

% <1        

37.7049180

3 NA NA  

% <1        NA 0 NA  

%< 0.25        NA NA 5.882352941  
 

(G) 

Winter-

DDTs            

 o,p'-DDE p,p'-DDE o,p'-DDD p,p'-DDD 

o,p'-

DDT p,p'-DDT total DDE/DDD 

(DDE+DDD)/DD

T 

op'DDT/pp'DD

T 

% of total 

OCPs 

Total DDTs 

17.4818763

1 

3.67804602

2 

0.31964038

4 

1.19547980

9 0 3.31155394 

25.9865964

6 NA NA NA 9.533113212 

% 

67.2726570

9 

14.1536254

1 

1.23002002

4 

4.60037022

4 0 

12.7433136

3 100 NA NA NA  

max        

7.23581165

3 4.118678327 0  

min        0.46844143 0.552324923 0  

% <1        25 NA NA  

% <1        NA 50 NA  

%< 0.25        NA NA 0  
 

(H) 
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HCB     

Dissolved (ng/L) Spring summer fall Winter 

sites HCB HCB HCB HCB 

Total 55.68259204 280.4054531 27.37489942 52.4389418 

% 23.63045524 35.39776321 7.473794327 19.23708515 
 

(I) 

Total OCPs    

Spring summer fall winter 

235.6391075 792.1558531 366.2784688 272.5929702 
 

(J) 

4.6.3 Maps of ecological risk 

MRM successfully assessed the danger presented to an ecosystem by a chemical 

mixture rather than a single substance. In the current research, a two-tier MRM was 

used to evaluate the ecological risk of all 11 OCPs in the SCS and ECS. Risk profiles 

in dissolved and particulate stages were created for each of the OCP groups in four 

seasons based on its production. A similar model was used to evaluate the risk of 15 

OCPs in the surface water of the Qingshitan reservoir in Southwest China and 

discovered a high potential risk to the aquatic ecosystem [91]. However, seasonal and 

phase-partitioning impacts were not taken into account in this evaluation. 

The current research specifically examined the impacts of season and phase 

partitioning by creating separate maps (Figure 4.7) for each season and phase. Such 

analysis revealed that dissolved HCB and DDTs presented low-to-medium levels of 

possible risk throughout the seasons, whereas only particulate DDTs posed a 

comparable risk during the summer season. Only a few locations indicated high-risk 

potential for HCB and DDTs during the summer. Notably, HCH presented a minimal 

degree of risk in all seasons in a few locations. Similarly, a comprehensive study of 
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OCPs in South American settings found that the majority of locations are risk-free for 

biota [122]; however, some OCPs may be of concern for possible harm to ecosystem 

structure and functioning. 

 .
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Figure 4.7 Spatiotemporal ecological risk maps 

 



 

104 

 

Spatiotemporal ecological risk maps: It showed that spatiotemporal variation of the risks posed 

by three primary OCP classes, HCB, HCH, and DDTs in SCS and ECS. Dissolved HCB and 

DDTs posed low-to medium levels of potential risk widely spread across the seasons; whereas 

only particulate DDTs displayed similar risk in summer season. Very few spots showed high-risk 

potential for HCB and DDTs in summer only. Notably, HCH posed low-level of risk in all the 

seasons in few sites (Low risk: 0.01-0.1; Medium risk: 0.1-1.0; High risk: >1.0). 

4.7 Summary 

5. In this chapter I have conducted a spatial temporal data analysis of OCPs 

concentration of South China Sea (SCS) and East China sea (ECS). This research 

concentrated on the ecological risk evaluation of OCPs (organochlorine 

pesticides) seasonal and phase-petitioning effects in SCS and ECS, which are 

important source-sink zones. 

6. The findings revealed significant temporal heterogeneity in OCP distribution, with 

significant differences between the dissolved and particulate phases. PCA analysis 

indicated numerous OCP sources, including present and past use of HCH and 

DDT, atmospheric transport, and HCB deposition from terrestrial surfaces. 

7. The spatiotemporal ecological risk analyses revealed no high-risk zones, but did 

identify one or two high-risk regions for HCB and DDTs. Dissolved and 

particulate OCPs presented low-to-medium amounts of risk, with summer posing 

a slightly greater risk. 

8. Overall, the research emphasises the significance of taking spatiotemporal 

variation into account when assessing ecological risk. 
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“Time series analysis is like a microscope through which we can see the hidden 

properties of data”. … George Box 

Chapter 5 

5. Time series data modelling and analysis 

5.1 Introduction 

Malaria, a vector-borne and one of the most lethal Plasmodium species-caused illness, 

kills one person every minute worldwide and has a devastating effect on people's 

health and income [123]; [124];[125]. It is estimated that 4 billion people are at risk in 

87 countries, with 229 million cases, killing nearly 409,000 people, mostly children 

under the age of five, in Sub-Saharan Africa in 2019 [126]; [127]),and Southeast Asia 

has a large percentage of young teenagers at danger [128];[129];[130]. The West and 

African regions have recorded a huge load of malaria morbidity, accounting for 95% 

of all malaria cases worldwide, particularly in one of the world's lowest geographic 

regions, followed by Southeast Asia with 5 million cases and 9,000 fatalities [131]; 

[132].  

 

Wang, C., Thakuri, B.*, Roy, A. K., Mondal, N., Qi, Y., Chakraborty, A. (2023). Changes in the 

associations between malaria incidence and climatic factors across malaria endemic countries in Africa 

and Asia-Pacific region. Journal of Environmental Management, 331, 117264  
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Significant differences in malaria morbidity are reported within and between 

the African and Asia-Pacific regions, with Nigeria (31.9%), the Democratic Republic 

of the Congo (13.2%), the United Republic of Tanzania (4.1%), and Mozambique 

(3.8%) accounting for the highest prevalence of malaria deaths in the African region, 

and India alone accounting for 82.5%, Indonesia (15.6%), and Myanmar (1.6%) in 

Southeast Asia ([133]; [134].  

This variety in malaria prevalence and mortality has stayed crucial in the 

WHO's global malaria control and eradication efforts, which resulted in the audacious 

Global Malaria Program (GMP) with the goal of eradicating 90% of the world malaria 

load by 2030 ([135]; [136]. The duties of the GMP are guided by the global technical 

strategy for malaria 2016-2030, which was approved by the 66th World Health 

Assembly in May 2015 and was recently revised in 2021 to address the shifting 

malaria environment. The most current WHO World Malaria Report 2021 included 

projections of the effect of the COVID-19 pandemic on critical malaria services. 

According to the study, malaria deaths rose by 12% in 2020 compared to 2019, to an 

estimated 627,000 worldwide. During the COVID-19 pandemic, malaria service 

delays were responsible for an estimated 47,000 (68%) of the extra 69,000 fatalities. 

Malaria is extremely susceptible to climatic variables such as temperature, 

precipitation, and humidity[137-139], which influence the sporogony cycle of 

Plasmodium species directly and indirectly through mosquito-human interactions. 

Several studies have verified that temperature changes have a significant impact on 

malaria spread[140-142]. As a result, it has become a major worry as global 

temperatures have risen considerably over the last 100 years. A simple modelling 

research concludes that rising temperatures will increase malaria transmission and 
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broaden its regional dispersal [143]. Furthermore, the rise in malaria prevalence is 

favourably linked to the quantity of rainfall, owing to an increase in mosquito 

breeding locations, and thus the volume grows with rainfall[144, 145]. Multiple 

studies have also found that the illness has resurfaced as a result of global warming, 

climate change, and human activities in an area where it has previously been 

effectively managed or eradicated[146-148]. Furthermore, several recent studies have 

found a close relationship between  global warming and climate change and malaria 

incidence [149-151], demonstrating that rising temperatures can have opposing effects 

on malaria dynamics in both highland and lowland regions[152-155]. Improvements 

in socioeconomic conditions, improved irrigation and living conditions, contemporary 

agricultural techniques, house screening, technical development, and access to better 

healthcare facilities, on the other hand, played critical roles in containing the malaria 

prevalent in impacted[156-158]. Because of large intra- and inter-regional differences 

in malaria incidence and a lack of empirical evidence, the link between  malaria 

incidence  and climatic factors across countries has remained controversial, as 

socioeconomic development has frequently been found to outweigh the climatic 

effects at the country level [159] raising questions about the extent of the relationship 

in the presence of various other confounding factors. The current research aimed to 

assess the relationships between malaria incidence and climatic factors across nations 

and measure the impacts of intrinsic large variations in climatic factors. 

5.2 Methods 

5.2.1 Data collection 

Malaria incidence data were gathered from the World Health Organization’s Global 

Health Observatory Data Repository for the years 2000-2020 (https://ourworldindata. 

https://ourworldindata/
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org/malaria). The amount of new instances of malaria per 1000 people at risk is 

referred to as the incidence. The two most malaria-endemic areas, Africa and the 

Asia-Pacific zone, were chosen. To address our specific research question of how the 

type and breadth of the correlations between malaria prevalence and climatic factors 

(temperature and precipitation) vary across nations The current research took into 

account malaria-affected 42 African countries and 20 Asia-Pacific countries as stated 

by WHO. Only malaria-endemic nations with comparatively modest variation in 

mean annual temperature over the last two decades were considered. Particularly, all 

of the nations studied showed a narrow temperature range of 12-30°C with a standard 

deviation (SD) of < 0.5. Few outliers that had been considered are “China” and 

“North Korea”, which revealed the average yearly temperature of 7.56 ± 0.27℃, and 

7.02 ± 0.48℃ respectively, due to their broad regional influence and high cases of 

malaria frequency in the past. This exception, in particular, of China, has been clearly 

represented in our study, which shows a totally distinct magnitude of the link between 

peers. Few malaria-affected nations from either area were excluded due to very high 

variability in mean-annual temperature (i.e., SD > 0.5) or because they were not 

mentioned in the WHO malaria report. The dataset's African malaria endemic region, 

Few malaria-affected nations from either area were excluded due to very high 

variability in mean-annual temperature (i.e., SD > 0.5) or because they were not 

mentioned in the WHO malaria report. 

The African malaria endemic region of the dataset includes Angola (AGO), 

Burundi (BDI), Benin (BEN), Burkina Faso (BFA), Botswana (BWA), Central 

African Republic (CAF), Cote d’Ivoire (CIV), Cameroon (CMR), Cape Verde (CPV), 

Chad (TCD), Republic of the Congo (COG), Democratic Republic of Congo (COD), 
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Comoros (COM), Ethiopia (ETH), Equatorial Guinea (GNQ), Gabon (GAB), Ghana 

(GHA), Guinea (GIN), The Gambia (GMB), Guinea-Bissau (GNB), Kenya (KEN), 

Liberia (LBR), Madagascar (MDG), Mali (MLI), Mozambique (MOZ), Mauritania 

(MRT), Malawi (MWI), Namibia (NAM), Niger (NER), Nigeria (NGA), Rwanda 

(RWA), Sudan (SDN), Senegal (SEN), Sierra Leone (SLE), Somalia (SOM), South 

Sudan (SSD), Sao Tome and Principe (STP), Togo (TGO), United Republic of 

Tanzania (TZA),  Uganda (UGA), South Africa (ZAF), and Zambia (ZMB). Among 

these nations, NGA has the most people (206,139,587) and the largest territory 

(9,23,768 km2), while STP has the smallest area (964 km2) and the fewest people 

(2,23,107). Malaria-impacted countries of Asia-Pacific region are Afghanistan (AFG), 

Bangladesh (BGD), Bhutan (BTN), China (CHN), Indonesia (IDN), India (IND), 

South Korea (KOR), Sri Lanka (LKA), Myanmar (MMR), Malaysia (MYS), Nepal 

(NPL), Pakistan (PAK), Philippines (PHL), Papua New Guinea (PNG), North Korea 

(PRK), Solomon Islands (SLB), Thailand (THA), Timor-Leste (TLS), Vietnam 

(VNM), and Vanuatu (VUT). There is a significant difference in area and population 

number, while China and India together account for about 36% of total global 

population and 67% of Asia population, respectively. 

According to the WHO World Malaria Report 2021, three distinct techniques 

were used for country-by-country estimation of malaria cases from 2000 to 2020, 

which properly accounted for the unavoidable uncertainties surrounding the number 

of cases. Method 1 was used for nations and regions outside of the WHO African 

zone with minimal malaria transmission. It contains AFG, BGD, BWA, ETH, GNB, 

IND, IDN, MDG, MRT, MMR, NAM, NPL, PAK, PNG, PHL, RWA, SEN, SLB, 

TLS, VUT, and VNM, with estimates adjusted for completeness of reporting, the 
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probability of parasite positive cases, and the amount of health care use. Method 2 

was used because high transmission countries in the WHO African and Eastern 

Mediterranean regions lacked quality surveillance data; these countries include AGO, 

BEN, BFA, BDI, CMR, CAF, TCD, COG, COD, GNQ, GAB, GHA, GIN, GNB, 

KEN, LBR, MWR, MLI, MOZ, NER, NGA, SLE, SOM, SSD, TGO, UGA, TZA, 

and ZMB. Method 2 calculates the number of malaria cases using parasite prevalence 

data from community questionnaires. It employed a spatiotemporal Bayesian 

geostatistical model, as well as environmental and socioeconomic variables, as well as 

intervention data such as antimalarial medicines, residual sprinkling, and insecticide-

treated mosquito nets. Method 3 was used for nations in the protection stage of 

reintroduction, and it used local cases recorded by the National Malaria Program. It 

consists of the following countries: BTN, CPV, CHN, COM, PRK, MYS, KOR, STP, 

ZAF, LKA, and THA. 

To link malaria incidence to climatic variables, statistics on yearly min, max, 

mean temperature (°C/year/country), and precipitation (mm/year/country) were 

obtained from the World Bank group’s Climate Change Knowledge Portal (CCKP) 

(https://climateknowledgeportal.worldbank.org). For the same time span of 2000-

2020, it used the data source CRU TS v4.05 (Climatic Research Centre Gridded Time 

Series). Except for Antarctica, this is the most commonly used observational climate 

record produced on a 0.5° latitude by 0.5° longitude grid. CRU TS climate data were 

generated by interpolating monthly temperature anomalies from large networks of 

weather station records. 
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5.2.2 Generalized linear model and mixed effects model 

A linear connection between malaria frequency, weather, and precipitation is 

investigated using the Generalized linear model (GLM). The fundamental connection 

between the response (malaria incidence) and predictors (temperature and 

precipitation) may not be linear, as demonstrated by the use of a link function that 

links the response variable to a linear model. GLM was initially run independently for 

the two areas, without categorising temperature and precipitation data. The GLM-G 

(generalised linear model with group data) was then performed for each nation as a 

category. 

Before providing inputs to the models, appropriate scaling of response and 

predictor variables is selected to deal with inherent heterogeneities in the dataset 

effectively and build up a comparable level. Because malaria incidences vary greatly 

across nations and between areas, standard log transforms of malaria incidence are 

used to decrease all values by <10 and the absolute deviation by 1.15. Malaria 

incidence, yearly *minimum temperature, and precipitation have shown a strong 

correlation between years, which may influence the statistical significance of model 

fitting. To prevent these possible connections, the annual lowest temperature and 

precipitation are adjusted by dividing the annual values by the country-wide 

maximum and then subtracting the mean values. The models are fitted using these 

scaled predictor factors to determine intercepts, slopes, standard errors (SEs), and p-

values (distribution: Gamma). Because a recent study found that minimum 

temperatures (usually measured around sunrise) increase quicker over time than 

maximum (daytime) temperatures [160] we used annual minimum temperature rather 

than mean temperature to successfully fit the data into the models: 
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GLM:  = α0 +α1 (scale  min. temperat re) +α2 (scaled 

precipitation) 

5.1 

 

GLM-G:   =α0 +α1 (co ntry: scale  min. temperat re) +α2 

(country:scaled precipitation) 

5.2 

The Generalized Linear Mixed-Effects model (GLME) is a GLM modification with 

category or group dataset inputs. It distinguishes between fixed and random impacts. 

The fixed-effects term typically refers to the traditional linear regression component 

of the model, whereas the random-effects term is linked with experimental units 

chosen at random from a population, allowing for differences between groups that 

influence model performance. In order to suit the GLME, the fitglme inbuilt function 

in MATLAB R2021a is used: 

Log (106 × inci ence) =β0 + β1 (scale  min. temperat re) +β2 (scaled 

precipitation) + (α0 + α1 scale  min. temperat re + α2 scaled 

precipitation | country). 

5.3 

 

5.2.3 Agglomerative clustering 

This is the most common clustering method, in which numerous items are grouped 

into clusters based on their similarity. It employs a bottom-up strategy. Initially, every 

object is regarded as a singleton collection or a cluster. At each recursive stage, the 

two most similar clusters are grouped to create a new larger cluster. This process is 

repeated until all of the data points form a single big cluster. For the country-wise 

GLM-G fixed values of temperature and precipitation coefficients, we used the 

agglomerative clustering algorithm in Scikit-learn 1.2.0 with the “Euclidian” distance 
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measure. To reduce the variance of the groups being combined, a linkage function 

called “ward” was used. 

5.3 Results 

5.3.1 Malaria prevalence and climatic variables vary intra- 

and inter-regionally. 

Malaria incidence per 1000 people varied greatly across nations and between Africa 

and the Asia-Pacific area (Figure 5.1). RWA had the greatest incidence of 724.57 (in 

2017) with a yearly mean of 222.44 and the largest deviation of 161.82 in Africa 

between 2000 and 2020. In the last two decades, BFA had the greatest mean incidence 

of 502.54± 85.97, while 27 nations out of 42 had more than 200 mean incidence, 

including MOZ, UGA, and BDI. From 2006 to 2020, STP was the only nation that 

continuously demonstrated a <100 incidence rate, with an annual mean of 91.91± 

114.27. Furthermore, only three African nations, BWA, ZAF, and CPV, had a mean 

incidence of <5. Across all African nations, substantial yearly deviations in the range 

0.67-161.82 were found between 2000 and 2020, suggesting significant inter-country 

variation in malaria incidence. Except for SLB (310.30± 238.27), PNG (183.31 4± 

3.39), TLS (83.56 ± 78.08), VUT (76.30 ± 68.16), MMR (33.33 ± 21.50), AFG (29.62 

± 24.17), and IND (14.10 ± 5.92), Asia-Pacific nations had at least ten times lower 

mean annual incidence over the same era. SLB constantly had an annual malaria 

incidence of more than 50 cases, with the maximum number of 744.16 in 2004, 

whereas PNG consistently had more than 100 cases of malaria incidence. While TLS, 

VUT, MMR, and AFG had yearly incidences greater than 25 from 2000 to 2005, IND 

had reliably had incidences less than 25 for the previous two decades. IND observed a 
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strict downward pattern from 19.91 in 2000 to 3.33 in 2020. LKA and AFG both had 

large yearly deviations (i.e., >10) over the last two decades, though LKA had a much 

lower mean incidence number of 5.97. The box plots depicted the spread of malaria 

incidence over the last two decades in Africa and Asia-Pacific nations (Figure 5.2). 

There is rare overlapping of confidence intervals, suggesting inherent malaria 

heterogeneity within and between areas. To assess decadal changes in each nation, the 

5-year average malaria incidence over the last 20 years was computed. Malaria 

prevalence revealed significant intra- and inter-regional variations, with almost purely 

decadal declining patterns in Asia-Pacific and a kind of mixed trend in Africa (Figure 

5.1). 
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(A) 
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(B) 
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(C) 
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(D) 

Figure 5.1 Two most Malaria -affected global areas, Asia Pacific and Africa 
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Figure 5.1 depicts the two regions of the world most impacted by malaria: Asia-Pacific (Figure 

5.1 A, B) and Africa (Figure 5.1 C, D). Twenty countries in Asia and the Pacific and 42 countries 

in Africa are both affected by malaria. Over the past two decades (2000-2020), all of the malaria-

affected countries in both areas showed very minor variations in mean annual temperature, with 

a range of 12-300 C and a standard deviation (SD) of 0.5. Significant intra- and inter-regional 

variation in malaria incidence during the past 20 years was found, with almost exclusively 

decadal lowering patterns in Asia-Pacific and a somewhat mixed trend in Africa. 

 

Figure 5.2 Distribution of Malaria incidence 

The distribution of malaria incidence during the past 20 years, with 42 and 20 countries, 

respectively, in the African and Asia-Pacific regions: It showed a rare overlap of confidence 

intervals, pointing to inherent regional and intra-regional malaria heterogeneity. 

Several climatic variables, including temperature and precipitation, are 

frequently linked to malaria incidence. During the period 2000-2020, yearly mean air 

temperatures in Africa fluctuated in a very narrow range of 18°C to 30°C, with a 

deviation of <0.4°C. Nations with mean yearly temperatures greater than 28°C 
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included BEN, BFA, GMB, GNB, MLI, MRT, NER, SEN, SSD, and SDN. Annual 

precipitation, on the other hand, varied greatly across all African nations during the 

same time period, with the inter-annual deviation of mean precipitation ranging from 

14 -319 millimetres. COG, COD, GNQ, GAB, STP, CMR, COM, GNB, GIN, LBR, 

MDG, and SLE had recorded annual precipitation of more than 1500 mm almost 

every year during that time frame. Both annual air temperature and precipitation 

revealed comparatively significant variance in Asia-Pacific among countries with 

high annual deviations, suggesting greater inter-country climatic heterogeneity. 

Annual mean temperatures ranged from 7.51-27.36°C over a 20-year span, with 

deviations ranging from 0.04-0.48°C. During that time, the annual mean weather in 

BGD, IND, LKA, IDN, MYS, THA, PHL, VNM, and SLB was regularly above 25°C. 

North Korea and China had the lowest mean yearly weather over the last 20 years 

(~7°C). In comparison to African nations, Asia-Pacific countries had a significant 

variance in yearly precipitation, with a deviation of more than 32 millimetres. Except 

for AFG, IND, PAK, CHN, THA, TLS, PRK, and KOR, all nations experienced 

annual precipitation totalling more than 1500 millimetres. Annual precipitation in 

IDN, MYS, PHL, PNG, SLB, and VUT was frequently greater than 2500 millimetres. 

The Asia-Pacific region had a significant country-wise variation in yearly 

precipitation ranging from ±32.73 to 280.95 mm. 
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5.3.2 Modelling the relationships between malaria 

prevalence and climatic influences 

The scatter graphs of scaled malaria incidence versus temperature and precipitation in 

(Figure 5.7) demonstrate the randomness in the dataset. However, it was discovered 

that by classifying both predictor factors by nation, this randomness can be greatly 

decreased. The values of intercept and coefficients of both predictor variables were 

obtained by fitting the non-categorized merged data into a single GLM model. In 

Africa, the 95% confidence intervals for the intercept and lowest temperature are 

0.053 to 0.054 and -0.065 to -0.027, respectively, with a p-value of <0.001, but values 

for the precipitation coefficient (95% CI: -0.018, -0.012) have much lower p-values. 

The AIC and BIC numbers are comparatively high, 3498.3 and 3512.6, respectively 

(Table 5.1). 
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Table 5.1 Model fit statistics 

Models 

AIC BIC Log Likelihood Intercept p-value 

Cook’s distance threshold 

value 

M-CA M-APAC M-CA M-APAC M-CA M-APAC M-CA M-APAC M-CA M-APAC 

GLM 542.90 1170.7 553.22 1180.8 -268.45 -582.33 5.43 ×10-322 1.20×10-162 0.017 0.019 

GLM-G 350.99 1067.5 464.59 1178.9 -143.49 -500.76 8.93 ×10-77 3.07×10-61 0.018 0.027 

GLME -2349.1 -1292.3 -2314.7 -1258.5 1184.6 656.15 3.06 ×10-259 3.19×10-51 -- -- 

Model fit statistics indicating that consideration of abrupt regional- and country wise variations of the climatic factors have significantly been improved the 

relationship with the malaria incidence 

Note: M-CA: Malaria endemic part of Central Africa; M-APAC: Malaria endemic part of Asia-Pacific region. 
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Table 5.2  GLM estimates of association coefficients for temperature and 

precipitation 

Region Country name Code Temperature estimates Precipitation estimates 

Africa 

Angola AGO -0.035 -0.012 

Burundi BDI 0.012 0.013 

Benin BEN 0.040 0.011 

Burkina Faso BFA 0.048 0.014 

Botswana BWA 0.097 -0.012 

Central African Republic CAF 0.031 0.018 

Cote d'Ivoire CIV 0.071 0.009 

Cameroon CMR 0.072 0.009 

Democratic Republic of Congo COD 0.025 0.020 

Congo COG 0.058 0.014 

Comoros COM 0.119 0.007 

Cape Verde CPV -0.500 -0.033 

Ethiopia ETH 0.043 0.030 

Gabon GAB 0.047 0.014 

Ghana GHA 0.078 0.015 

Guinea GIN 0.048 0.012 

Gambia, The GMB 0.063 0.011 

Guinea-Bissau GNB 0.065 0.015 

Equatorial Guinea GNQ 0.064 0.012 

Kenya KEN 0.041 0.017 

Liberia LBR 0.039 0.011 

Madagascar MDG -0.016 0.015 

Mali MLI 0.033 0.013 

Mozambique MOZ 0.050 0.012 

Mauritania MRT -0.033 0.021 

Malawi MWI 0.060 0.015 

Namibia NAM 0.108 0.014 

Niger NER 0.027 0.013 

Nigeria NGA 0.052 0.011 

Rwanda RWA -0.034 0.014 

Sudan SDN 0.070 0.012 

Senegal SEN 0.030 0.018 

Sierra Leone SLE 0.053 0.011 

Somalia SOM 0.101 0.012 

South Sudan SSD 0.037 0.012 

Sao Tome and Principe STP 0.377 0.005 

Chad TCD 0.036 0.014 

Togo TGO 0.062 0.014 

United Republic of Tanzania TZA 0.049 0.014 

Uganda UGA 0.024 0.016 

South Africa ZAF 0.088 0.005 

Zambia ZMB 0.021 0.010 

Region Country name Code Temperature estimates Precipitation estimates 

Asia-Pacific Afghanistan AFG 0.005 0.013 
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Bangladesh BGD -0.110 -0.014 

Bhutan BTN 0.007 -0.067 

China CHN 0.045 0.457 

Indonesia IDN 0.076 -0.020 

India IND 0.000 0.001 

South Korea KOR 0.025 -0.011 

Sri Lanka LKA 1.045 0.039 

Myanmar MMR 0.020 -0.018 

Malaysia MYS 0.674 0.008 

Nepal NPL -0.030 -0.025 

Pakistan PAK 0.002 -0.011 

Philippines PHL 0.250 -0.005 

Papua New Guinea PNG 0.015 -0.007 

North Korea PRK 0.017 -0.002 

Solomon Islands SLB -0.578 0.000 

Thailand THA 0.209 -0.015 

Timor TLS 0.428 -0.015 

Vietnam VNM 0.316 -0.009 

Vanuatu VUT -0.113 0.002 

 

Cook’s distances were also calculated to illustrate how each measurement affected the 

fitted response values. The expected threshold value of the cook distance is 0.005, and 

numerous data were discovered at anomalies beyond the threshold limit (Figure 5.3 

A). In contrast, the Asia-Pacific region exhibits statistically significant temperature 

impacts ranging from -0.063 to -0.030, with a significant estimate of the intercept 

(0.066, 0.069) (p <0.001). The estimate of the precipitation coefficient stays 

significant, with comparatively larger p-values. Model estimates are noticeably bad, 

as evidenced by extremely high AIC and BIC values (>2100). With several 

anomalies, Cook’s threshold stays nearly the same (0.012). The country-based 

categorization of the dataset enhanced GLM-G fitting, as evidenced by reduced AIC 

and BIC values. Notably, model sizes are much better in Africa than in Asia-Pacific, 

where there was only a small increase (Table 5.1). After categorising the data, the 
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Cook’s threshold estimates (Africa: 0.007; Asia-Pacific: 0.480) revealed a lower 

number of anomalies (Figure 5.3, Table 5.1). 

 

Figure 5.3 Cook’s distance 

To show how each measurement, shown by the red cross, affected the projected response values, 

Cook’s distance was determined. The predicted cutoff value (dotted line) of the cook distance for 

Africa is 0.005 and for Asia-Pacific is 0.012. (A) GLM findings without nation classification. 

Cook’s cutoff estimates (Africa: 0.007; Asia-Pacific: 0.480) showed a decreased number of 

outliers following data categorization in the GLM-G findings (B). 

Fitting GLME to a country-by-country classified dataset improved the findings for 

both areas, as evidenced by AIC and BIC values that are more than 100 times lower 

than the other two models (Table 5.1). However, there are significant differences in 

intercepts and slopes for both lowest temperature and precipitation across nations. 
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Estimation of random effect coefficients at 95% confidence intervals reveals a 

significant variation in SEs across nations and between two areas. In contrast, Africa 

had a projected SE that was at least ten times lower than Asia-Pacific. Estimated fixed 

effect estimates at 95% confidence intervals revealed SEs of <0.08 in Africa and 

<0.28 in Asia-Pacific (Table 5.2, Table 5.3). The normal probability plot of residuals 

with mixed effects revealed significant variations in the impacts of two areas. It 

revealed that error terms are not ordinarily distributed in both areas, with Asia-Pacific 

errors being more skewed than Africa (Figure 5.4), and both regions exhibiting broad 

dispersions. (Figure 5.5) and (Figure 5.6) show the significant variations in the fixed 

and random effects of both predictor variables across nations and between two areas. 

The 95% CI of temperature fixed effects revealed much greater variance in Asia-

Pacific, where LKA, MYS, IDN, PNG, and SLB have CI lengths greater than 1.0. 

Table 5.3  GLME estimates of random effect coefficients (Alpha 0.05) 

 

Region Country name Code Temperature estimates Precipitation estimates 

Asia-Pacific 

Afghanistan AFG -0.008 0.002 

Bangladesh BGD -0.003 -0.009 

Bhutan BTN 0.007 -0.022 

China CHN 0.031 0.199 

Indonesia IDN -0.004 -0.015 

India IND -0.007 -0.006 

South Korea KOR 0.009 -0.001 

Sri Lanka LKA 0.007 0.019 

Myanmar MMR -0.008 -0.020 

Malaysia MYS -0.001 -0.015 

Nepal NPL 0.000 -0.013 

Pakistan PAK -0.004 -0.005 

Philippines PHL 0.003 0.002 

Papua New Guinea PNG -0.009 -0.044 

North Korea PRK 0.006 0.008 

Solomon Islands SLB -0.008 -0.045 

Thailand THA 0.000 -0.013 

Timor TLS -0.006 -0.028 

Vietnam VNM 0.005 0.009 

Vanuatu VUT -0.010 -0.004 
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Region Country name Code 

Temperature 

estimates 

Precipitation 

estimates 

Africa 

Angola AGO -0.006 0.002 

Burundi BDI -0.006 0.001 

Benin BEN -0.008 0.003 

Burkina Faso BFA -0.005 0.004 

Botswana BWA 0.016 -0.021 

Central African Republic CAF -0.004 0.004 

Cote d'Ivoire CIV -0.005 0.003 

Cameroon CMR -0.002 0.004 

Democratic Republic of Congo COD -0.003 0.004 

Congo COG -0.001 0.003 

Comoros COM 0.007 -0.005 

Cape Verde CPV -0.004 -0.029 

Ethiopia ETH 0.008 0.002 

Gabon GAB -0.001 0.002 

Ghana GHA 0.001 0.004 

Guinea GIN -0.004 0.004 

Gambia GMB -0.003 0.002 

Guinea-Bissau GNB 0.005 0.001 

Equatorial Guinea GNQ -0.005 0.002 

Kenya KEN 0.010 0.001 

Liberia LBR -0.005 0.004 

Madagascar MDG 0.002 -0.003 

Mali MLI -0.006 0.003 

Mozambique MOZ -0.005 0.003 

Mauritania MRT 0.008 -0.001 

Malawi MWI 0.000 0.003 

Namibia NAM 0.015 -0.005 

Niger NER -0.007 0.002 

Nigeria NGA -0.004 0.004 

Rwanda RWA -0.009 0.000 

Sudan SDN 0.008 -0.002 

Senegal SEN 0.009 0.001 

Sierra Leone SLE -0.004 0.004 

Somalia SOM 0.005 -0.001 

South Sudan SSD -0.004 0.003 

Sao Tome and Principe STP 0.000 -0.004 

Chad TCD -0.002 0.002 

Togo TGO -0.002 0.004 

United Republic of Tanzania TZA 0.001 0.002 

Uganda UGA -0.005 0.003 

South Africa ZAF 0.017 -0.016 

Zambia ZMB -0.005 0.001 
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Figure 5.4 The normal probability plot of residual results 

The residual findings from generalised mixed effect models were shown using a normal 

probability distribution, which indicated notable differences in the affects between Africa and the 

Asia-Pacific region. It showed that errors are not typically distributed in both regions, with 

errors being more skewed in the Asia-Pacific region compared to Africa. 

In Africa, all nations had nearly identical fixed temperature impacts, with STP (0.38) having a 

slightly higher number (Figure 5.5 A). Precipitation fixed effects have maintained a similar 

pattern for Africa, with nearly the same degree of variance across nations as demonstrated by the 

95% CI ranges (Figure 5.5 B). However, Asia-Pacific nations revealed different fixed effects of 

precipitation, with CHN having at least twice the value of CI length and PAK and AFG having ten 

times the value. Surprisingly, the random impacts of temperature and precipitation variance 

revealed opposing trends. While random temperature impacts in Africa vary greatly across 

nations, the Asia-Pacific region stays very similar (Figure 5.6 A). 
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Figure 5.5 The forest Plot showing fixed effects. 

The forest plot shows the substantial variations in both predictor variables' fixed effects across 

the countries and regions of Asia-Pacific and Africa. (A) The Asia-Pacific region showed 

substantially larger heterogeneity in the 95% CI of temperature fixed effects. A slightly larger 

value was reported in STP (0.377), COM (0.119), NAM (0.108), and SOM (0.101). (B) Fixed 

impacts of precipitation have maintained the similar pattern for Africa, with virtually the same 

degree of variance among nations as seen in the 95%CI ranges. However, Asia-Pacific countries 

showed significant fixed impacts of precipitation, with PAK and AFG showing at least five times 

lower CI values while CHN and PNG showing at least two times higher CI values. 
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Figure 5.6 The forest plot showing random effects 

A forest plot illustrating the unpredictable effects of changing precipitation and weather. (A) The 

Asia-Pacific region is mostly unaffected by random temperature changes, but the effects in 

Africa vary substantially between nations. (B) In contrast, the impacts of random precipitation in 

Africa were quite similar, but the Asia-Pacific region showed notable regional variations. The 

predicted range length of random temperature impacts (95% CI) in Africa is 0.03-0.04, whereas 

in Asia-Pacific it is 0.01-0.015. The estimated range length for random precipitation impacts, 

however, is 0.063-0.111 in Asia-Pacific and 0.007-0.012 in Africa. 
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Random precipitation impacts in Africa, on the other hand, have stayed very similar, whereas 

Asia-Pacific has shown substantial variations across nations (Figure 5.6 B). CHN and SLB 

stood out as notable exceptions to this trend. The calculated length of the range of random 

temperature impacts (95% CI) in Africa is 0.033-0.040, while it is 0.010-0.015 in Asia-Pacific. 

However, projections of the CI length for the random precipitation impact in Africa range from 

0.007 to 0.012, while in Asia-Pacific it ranges from 0.064-0.111 (Table 5.3). 

Spatial patterns of malaria correlations with annual lowest temperature and precipitation are 

created across all 62 countries by grouping or clustering countries with comparable associations 

(Figure 5.7). 

 

Figure 5.7 Scatter graphs of GLM-G estimates of temperature and precipitation 

factors 

GLM-G estimations of the effects of temperature and precipitation on the frequency of malaria 

are plotted in scatter graphs. The arrow points to the regions that have distinct connection 

associations. 
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For the country-wise GLM-G fixed values of temperature and precipitation factors, 

we used an agglomerative clustering algorithm with a “Euclidian” distance measure. 

This approach iteratively combines clusters along the bottom-up structure (Figure 

5.8) using a linking function “ward” that reduces cluster variance. Outlier nations are 

plainly visible in this spatial pattern (Figure 5.9). MYS and LKA are in cluster “0”, 

CPV and SLB are in cluster “2”, STP, PHL, THA, TLS, and VNM are in cluster “3”, 

and CHN is the only one in cluster “4”. Cluster “1” includes all other nations. It also 

shows that, with very few instances, African nations have a very similar malaria 

association. 

 

Figure 5.8 Agglomerative clustering 

The “Euclidian” distance metric was utilised in conjunction with the agglomerative clustering 

approach to determine the country-level GLM-G fixed values of the temperature and 

precipitation coefficients. This method use an iterati e linking f nction calle  “war ” to unite the 

clusters along the bottom-up structure (i.e., dendrogram) while lowering the variance of the 

individual clusters. 
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Figure 5.9 Agglomerative clustering 

 

All 62 countries (42 in Africa and 20 in Asia-Pacific) are grouped together into five geographical 

zones (i.e., 0, 1, 2, 3, and 4) that have malarial association correlations with the yearly lowest 

temperatures and precipitation that are quite similar to one another. It unmistakably shows how 

similar African nations are to those in the Asia-Pacific. STP and CPV have distinctive linkages in 

Africa, whereas CHN, MYS, and LKA have unique associations in the Asia-Pacific area. 
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5.4 Discussion 

Malaria has had a significant impact on global health by raising the huge health 

burden, and has been found to be substantially higher in tropical and temperate 

regions, but very few attempts have been made to measure and describe the region-

specific differential patterns in malaria burden. The total incidence and health burden 

of malaria have decreased considerably in malaria-endemic areas as a result of large-

scale adoption and successful application of disease-related intervention initiatives. 

The current study revealed intra- and inter-regional variations in malaria incidences in 

Africa and Asia-Pacific from 2001 to 2020. (Figure 5.1). The variance was noted at 

both the regional and national levels, and the findings revealed a remarkable decrease 

in malaria prevalence in Asia-Pacific, but the amount was found to be overlapping 

and considerably greater in Africa. Several studies have found that favourable climate 

conditions, landscape utilisation, drug resistance, and deliberate malaria intervention 

strategies (e.g., interruption of residual insecticides application) are the primary 

factors influencing malaria spread and transmission, posing serious challenges to 

effective control and elimination in endemic[161-164]. According to the WHO World 

Malaria Report 2021, malaria incidence per 1000 people at risk decreased from 81 in 

2000 to 59 in 2015 and 56 in 2019, but rose to 59 in 2020. This rise in 2020 has been 

linked to the interruption of critical malaria services during the COVID-19 pandemic. 

During the COVID-19 period, malaria services in high-burden to high-impact 

countries (HBHI) experienced a slew of disruptions, including a shattered supply 

chain for health commodities and increased costs for purchasing, shipping, and 

distribution, which fluctuated over time as COVID-19 regulations changed. Because 

of the high fluctuating effect, quantifying the degrees of disruption to malaria 
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networks has proven challenging. To deal with such circumstances and uncertainty 

about the number of cases, WHO developed three distinct techniques for estimating 

malaria cases based on area and degree of malaria transmission.  Based on this high-

quality dataset, the current study aimed to assess the relationships between annual 

temperature and precipitation variability and the incidence of malaria in two regions 

(Figure 5.3, Figure 5.4, Figure 5.5). Such an assessment will undoubtedly aid in 

determining intra- and inter-regional differences and disease risk stratification, and it 

is critical to identify the magnitude that provides opportunities to control the 

responsible factors, particularly in malaria-endemic areas. 

According to recent research, the total threat of malaria in afflicted areas is 

largely limited due to favourable climatic variables, vector and parasite behaviour, 

and transmission levels [165, 166]. Temperature and rainfall variability are major 

determinants of malaria spread and transmission, significantly increasing overall 

malaria incidence and disease burden risks in affected regions due to the linkage with 

key climate change factors[167-172]. Thus, the current research found that 

temperature changes are the primary causes of such overlapping malaria prevalence, 

favouring high local transmissions in the impacted areas. According to the calculated 

association coefficients, both yearly lowest temperature and precipitation variations 

can have a beneficial impact on malaria prevalence in Africa (Figure 5.6, Figure 

5.9). The GLME-estimated random effect factors represent the intrinsic randomness 

in temperature and precipitation variance. These results, however, may be attributed 

to the beneficial impact of good climate conditions, increases in temperature and 

rainfall, and physiological suitability in the spatiotemporal patterns in malaria-

affected areas. According to [173], the trend of malaria has increased with rising 
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temperature, and transmission declines with precipitation and rises during the arid 

seasons in China. Similarly, several Asia-Pacific nations, including BGD, IND, IDN, 

MMR, MYS, PAK, PNG, SLB, THA, TLS, and VUT, demonstrated comparatively 

significant unfavourable random impacts of temperature and precipitation changes. 

However, in general, African nations exhibited a mixed form of random effect; while 

annual temperature variation primarily caused negative random effects, annual 

precipitation variation primarily caused positive random effects. It suggests that 

temperature has a significant impact on disease spread in both areas. Similar to this 

finding, newer studies have found a positive correlation between malaria prevalence 

and temperature and precipitation, with the exception of a few years in which a 

negative association with rainfall was noted in African areas [174] Agglomerative 

clustering of all 62 nations results in five spatial zones, each with a very comparable 

malarial association relationship with yearly temperature and precipitation. It 

definitely demonstrates that African nations are extremely similar to Asia-Pacific 

countries. While CHN and SLB have unique associations in Asia-Pacific, STP and 

CPV have distinct associations in Africa (Figure 5.9). Such unique correlations in 

outlier countries can be explained by yearly malaria rates that have stayed relatively 

low or high over the last two decades or have shifted dramatically in consecutive 

years. For example, except in 2000 (1.293) and 2017 (3.027), CPV in Africa regularly 

demonstrated comparatively low malaria incidence (<1). In parallel, SLB in the Asia-

Pacific showed comparatively high malaria prevalence (>100) until 2011, with the 

maximum level of 681.26 in 2001, and then it suddenly decreased to 52.39 and 66.67 

in 2014 and 2015, respectively, before increasing in following years to 167.67 in 

2020. In comparison to Africa, Asia-Pacific nations showed a wide range of 

correlations between malaria incidence, yearly minimum temperature, and 
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precipitation. These variations could be related to interannual variations in 

precipitation caused by shifts in the Asian monsoon circulation. The Asia-Pacific 

region has a normal monsoon environment, with heavy rain in the summer and little 

rain in the winter. In most areas of the region, the summer monsoon accounts for 

nearly 75% of total yearly rainfall. However, significant differences in the start and 

length of the summer monsoon across nations are obvious and important for disease 

dynamics and epidemiology. Such variations are mirrored in our findings, with 

temperature and precipitation having varying impacts on malaria prevalence across 

Asia-Pacific countries (Figure 5.5). The determination of random factors is also 

influenced by the precipitation’s inherent randomness (Figure 5.6). This thought has 

increased the importance of the links between malaria incidence and climatic 

variables. According to other studies, climate change with rising temperature can raise 

the possibility for a malaria outbreak in both areas of nations that are extremely prone 

to the illness[175-177]. In nations where malaria has been eliminated or managed, 

rising temperatures can impact the reintroduction or raise the incidence of the disease. 

As a result, it is clear that monitoring and preparation in those emerging nations must 

be prioritised, as they must balance several conflicting interests for limited resources, 

many of which are related to healthcare services. 

Despite the fact that numerous studies have been conducted to investigate the 

relationship between malaria incidence, climatic factors, and potential climate change 

scenarios[178-181], it is noted to be highly complex due to its interdependence on 

spatiotemporal scales, socioeconomic factors, access to health services, variable 

measures of interventions, and mosquito biology. Disentangling the relationships 

between malaria incidence and climatic variables by excluding the impacts of all 
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possible covariates is extremely challenging in terms of developing a suitable 

approach, model, and scale, as well as interpreting the findings. The sensitivity of 

malaria to climate, on the other hand, continues to generate significant worry about 

the consequences of climate change on future disease dynamics. The issue of malaria 

vectors migrating from their native habitats to infiltrate new zones is of special worry. 

As a result, model-based studies incorporating rainfall, temperature, and other 

climatic variables remain important for methodically addressing these issues and 

providing critical inputs for developing and executing successful intervention 

strategies. 

5.5 Summary 

1. In this chapter Time Series data analysis of Malaria Incidence in Asia-Pacific 

region and Africa was conducted. 

2. The present study showed high intra-and inter regional differences in malaria 

incidence, with almost strictly decadal decreasing trends in the Asia-Pacific 

region and a kind of mixed trends in Africa. 

3. Furthermore, it showed that malaria incidences are significantly associated 

with the annual minimum temperature and precipitation, although there are 

high variations across the countries in Africa and Asia-Pacific region. 

4. In contrast, most Asia-Pacific countries showed negative precipitation effects. 

5. It found that most Asia-Pacific countries hold negative random effects caused 

by the both temperature and precipitation variations. In Africa, while 
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temperature variation frequently caused negative random effects, precipitation 

variation caused positive effects. 

6. This study signifies the association between malaria incidence and climatic 

factors and its intra-and inter regional differences at large spatial scale. 
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“Data analysis is the bottleneck for making progress in proteomics” … Ruedi 

Aebersold 

Chapter 6 

6.  Protein data analysis and applications 
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6.1 Introduction 

Global attempts are being made to create vaccines and antiviral medications that are 

more effective in order to combat the continuing COVID-19 pandemic, which has 

killed 4,170,155 people as of July 2021. The fast rise of numerous SARS-CoV-2 

variants, the cause of COVID-19, is severely impeding these efforts[182-184]. There 

is mounting evidence that SARS-CoV-2 variants that altered the antigenic profile can 

subvert immune responses and lessen the antigen-neutralizing effects of 

antibodies[185-187]. Recent research also suggests that convalescent plasma and 

mAb therapies may be exerting a selective impact on the evolution of novel 

variants[188-190]. Long-term viral shedders may aid in the random appearance of 

more severely mutated variants under such selective pressure. The WHO technical 

advisory group has identified a number of variations of concerns (VOC) or variations 

of interests (VOI) that are in circulation worldwide (Table 6.1). These variations call 

for immediate consideration in order to better define control measures. These variants 

are known to cause substantial community transmission or numerous COVID-19 

clusters in various nations, with rising relative frequency and rising case numbers 

over time, with the mentioned suite of mutations. Here, we have focused on the 

important Spike RBD mutations E484K, K417N, L452Q, L452R, N501Y, and T478K 

that are frequently found in the VOI/VOC forms (Table 6.1). These RBD mutations 

are known to distinguish and define a number of new variants. Changes in several 

viral traits, such as transmissibility, illness severity, immune escape, and diagnostic or 

therapeutic escape, help identify VOC/VOIs with these mutations[184, 185, 191, 

192].  One such widely used VOC that first emerged in India in late 2020 is the delta 

variant, which has a very high transmissibility. Lineage B.1.617.2 is the name given 
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to this variant, which is distinguished by a number of spike changes. Of these, the 

spike protein's T478K, K417N changes set it apart from other VOIs in a distinctive 

way. Although new studies have documented comparative evaluations of variant 

characteristics, it is still unknown how such mutations impact virus characteristics 

with apparently unrelated sporadic mutations. By attaching its prefusion-form spike 

protein (S) to the human angiotensin converting enzyme-2 (ACE2), which is highly 

expressed on the surface of lungs, heart, kidney, and intestine cells, coronaviruses 

(CoVs) can identify and penetrate into human host cells. Most vaccine research and 

therapeutic efforts centre on the S-protein to prevent this crucial entry mechanism and 

following infection[193]. Each protomer of the trimerized S-protein consists of two 

subunits: the amino (N)-terminal S1 and the carboxyl (C)-terminal S2[194]. Cellular 

protease furin cleaves the S1/S2 junctions at Arg685-Ser686 during proteolytic 

processing and subsequent membrane union. The prefusion interactions between the 

component S1 and the human target protein ACE2 are its primary function[195]. It is 

made up of the receptor-binding domain (RBD), two highly conserved segments (SD1 

and SD2), and an N-terminal domain (NTD). A variety of RBD conformational 

configurations have been shown in various investigations, varying between the RBD-

up position that is favourable for ACE2 binding and the RBD-down position that is 

comparatively refractory to receptor binding[196-198].  The majority of RBD and 

NTD-based VOC/VOI variants that distinguish one from the others have an impact on 

interactions with ACE2[185]. For instance, the L18F, T20N, P26S, D138Y, R190S, 

K417T, E484K, N501Y, H655Y, and T1027I amino-acid changes, which are shown 

to decrease antibody neutralisation, are characteristic of the P.1 lineage, which was 

first discovered in Brazil. The impact of the NTD mutations on the associations with 

the ACE2 that attaches to the RBD is unclear, though. Here, we investigate whether 
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any grouped or partial NTD forms interact allosterically with the six RBD mutational 

sites identified as VOC/VOI[199]. 

In addition to structural modifications, kinetics are also affected by effector 

dependence, which can cause long-range allosteric disturbances to spread. 

Experiments using statistical thermodynamics demonstrate that ligand binding can 

produce free energies through beneficial interactions. Potential changes in 

macromolecular thermal variations brought on by ligand binding encompass a variety 

of dynamic interactions, from randomly occurring local anharmonic movements of 

molecular regions to highly correlated, low-frequency normal mode vibrations. The 

entropy effect is mainly responsible for this type of dynamic allostery. [200-202]. 

When long-range allosteric disturbances spread, structural alterations are not required 

because of the effector dependent modulations of structural dynamics. Comparative 

studies of the apo- and effector-bound states help identify the endpoints of this long-

range allostery. The distal dynamic region of the protein structure is connected by a 

network of AA residues that carry out such allosteric propagations of 

disruptions[203]. Understanding and forecasting the various effects of the VOIs 

depend on the discovery of this AA residue network, which supports mutation-

induced dynamic allosteric modulation. In this study, we investigated a variety of 

VOC/VOI mutation networks differentially connecting NTD and RBD of the SARS-

CoV-2 spike protein using computationally predicted chemical shifts data of 1H and 

15N, calculated based on SHIFTX2[204] that combines ensemble machine learning 

methods with sequence alignment-based methods. We have developed an integrated 

approach using sequence, structure, and chemical shift data to deduce such long-range 

allosteric connections modulated by SARS-CoV-2 VOC/VOI RBD mutations, in 
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addition to the well-studied chemical shift covariance analysis (CHESCA)[205]. 

Cytoscape plugins[206] were used to derive highly linked sub-graphs of susceptible 

mutation sites discovered from AA sequences of Spike variants using the Molecular 

Complex Detection (MCODE) technique[207]. To determine the impacts of the 

identified RBD mutations, the chemical shift projection analysis (CHESPA)[208] was 

applied to spike chemical shift data from both mutant and non-mutated samples. 

Then, using the Protein Binding Energy Prediction (PRODIGY)[209] and PDBePISA 

webservers[210], the binding affinity for RBD and ACE2, the dissociation constant, 

the H-bond, and the salt-bridges were calculated. It demonstrates that highly linked 

mutation sites at NTD are divided into distinct groups using various combinations of 

secondary structural elements, and that this creates a potent allosteric connection with 

the mutational site at RBD. The delta variant with the RBD mutation K417N in 

particular exhibits a powerful long-range modulated allostery, leading to increased 

interactions with ACE2. These findings offer crucial information for the anticipated 

creation of allosteric modulators that prevent interactions with ACE2 and thereby 

prevent viral entry. 
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Table 6.1 SARS-CoV-2 variant of concern (VOC) and variant of interest (VOI)

 WHO level Pango linage spike protein substitutions Name (next 

strain 

First Detected Remarks 

A) Variant of Concern 

 α B.1.1.7 Spike: 69del, 70del, 144del, 

(E484Ka), (S494Pa), N501Y, 

A570D, D614G, P681H, 

T716I, S982A, D1118H 

(K1191Na) 

20I/501Y.V1 United Kingdom, 

Sep 2020 

 

 

 

 

 

increase in transmissibility or detrimental change in COVID-19 

epidemiology; OR increase in virulence or change in clinical disease 

presentation; OR decrease in effectiveness of public health and social 

measures or available diagnostics, vaccines, therapeutics 

 ß B.1.351 Spike: D80A, D215G, 241del, 

242del, 243del, E417K, 

E484K, N501Y, D614G, 

A701V 

20H/501.V2 South Africa, 

May 2020 

 Deltab B.1.617.2 Spike: T19R, (G142D), 

156del, 157del, R158G, 

(K417Na) L452R, T478K, 

D614G, P681R, D950N 

20A/S:478K India, Oct 2020 

 γ P.1 Spike: L18F, T20N, P26S, 

D138Y, R190S, K417T, 

E484K, N501Y, D614G, 

H655Y, T1027I 

20J/501Y.V3 Japan/Brazil, 

Nov 2020 

(B) Variant of Interest 

 

 

 

 

 

Iota B.1.526 L5F, (D80Ga), T95I, (Y144-a), 

(F157Sa), D253G, (L452Ra), 

(S477Na), E484K, D614G, 

A701V, (T859Na), (D950Ha), 

(Q957Ra) 

20C/S:484K USA, Nov 2020  

 

 

 

 

SARS-CoV-2 with genetic changes that are predicted or known to affect virus 

characteristics such as transmissibility, disease severity, immune escape, 

diagnostic or therapeutic escape; AND identified to cause significant 

community transmission or multiple COVID-19 clusters, in multiple countries 

with increasing relative prevalence alongside increasing numbers of cases 

over time, or other apparent epidemiological impacts to suggest an emerging 

risk to global public health 

 

 Kappa B.1.617.1 Spike: (T95I), G142D, 

E154K, L452R, E484Q, 

D614G, P681R, Q1071H 

20A/S:154K India, Dec 2020 

 Eta B.1.525 A67V, 69del, 70del, 

144del, E484K, D614G, 

Q677H, F888L 

20A/S:484K UK and Nigeria, 

Dec 2020 

 Lambda C.37 G75V, T76I, δ246-252, 

L452Q, F490S, D614G, and 

T859N 

21G Peru, Dec 2020 
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6.2 Results and Discussion 

6.2.1 Network of compensatory mutations in SARS-CoV-2 

spike types 

In the context of a deleterious mutation, compensatory mutation improves survival; 

otherwise, it is neutral or detrimental. It typically occurs over gene sequences non-

randomly and is more likely than predicted by chance close to the location of the real 

harmful mutation. We gathered SARS-CoV-2 spike (S) protein sequence variations 

from NCBI database in order to find a group of such compensatory mutations that are 

frequently added after a single mutation in biological sequences and are in charge of 

preserving conformational and functional stability. For the purpose of the upcoming 

alignment study, we have collected a total of about 91 thousand sequence samples, 

with each sequence variant of length 1273 being noticed in at least three distinct 

samples (n 3). (Table S1) https://pubs.acs.org/doi/full/10.1021/acsomega.1c05155. 

Among all the SARS-CoV-2 spike protein sequence samples, we discovered 1784 

distinct sequences (N = 1784) that were grouped together. We analysed all 

conceivable pair-wise sequence variants in each location of the sequence as opposed 

to reference-based comparison. As a result, a population of binary sequence variants 

of size M  (=1590436 sequences) is created, with 0 denoting no substitution 

and 1 denoting a single AA substitution. (Figure 6.1) 

 

https://pubs.acs.org/doi/full/10.1021/acsomega.1c05155
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Figure 6.1 A probability scheme for identifying compensatory changes based on 

amino-acid (AA) sequences 

All SARS-CoV-2 variants’ mixed AA unique sequences of the S protein are listed in the left 

panel. These sequences were then compared pairwise to produce the binary population of the 

sequence seen in the middle panel (N=1784, L=1273, M=1590436); “1” denotes an AA 

substitution an  “0” denotes an absence. The right column illustrates how conditional 

probability was used to evaluate two mutation sites across the S-binary population (BP). If both 

the conditional chance P (si|sj) and P (sj|si) are 1, then the mutation site i is compensating for the 

site j, or vice versa. 

In the spike protein, this resulted in a cumulative tally of 618 mutation sites 

(about 50% locations). With these residual sites found, we calculated pair-wise joint 

and conditional probabilities over the binary population to look at compensatory links 

between these locations (Methods). We chose all the couples with the greatest equal 

conditional probability of 1, inferring their powerful compensatory effects, in a pair-

wise analysis of the mutation positions. Out of a total of  (=190653) pair-wise 
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mutation sites, only 152 nucleotide sites and 2671 pair-wise links were found (Table 

S2).https://pubs.acs.org/doi/full/10.1021/acsomega.1c05155. So, it offered an 

undirected, unweighted network with each 152 mutation site serving as a network 

node and each 2671 paired link serving as an edge. By eliminating all isolated nodes, 

we have created a component (i.e., a maximally connected network), which ultimately 

refers to a compensatory mutation network of SARS-CoV-2 spike protein (Figure 6.2 

A). We have observed that the complete network is contained within the NTD (resi 

13-305) of the spike protein, which is similar to the typical feature of compensatory 

mutations that tend to appear more frequently in specific regions of the protein. With 

a multimodal degree distribution, it is a fully linked mutation network with 90% of 

mutation sites (136 nodes out of 152 and 2660 edges out of 2671) (Figure 6.8). 

The SARS-CoV-2 Spike compensatory mutation network (Figure 6.2 B) 

exhibited aggregation of several network nodes (used MCODE[207]) around the 

selected multimodal degree distributions of the entire network. We have identified 

three of these groups, denoted by the subnetworks C1, C2, and C3, each of which has 

distinctive network characteristics (Figure 6.2 C). Furthermore, the only three 

nodes—resi 149, 179, and 180—that link these three subnetworks to the rest of the 

compensating mutation network are deleted, completely severing their connections. 

Nearly straight spike protein basic structure sites are present in each of the clusters 

(C1: resi 74-140; C2: resi 159-172; C3: 186-212) (Table S2). https://pubs.acs.org/ 

doi/full/10.1021/acsomega.1c05155. These nodes indicated beta strands in the NTD 

of the S protein when they were projected onto the 3D structure of the S protein 

(Figure 6.3 A) (Figure 6.3 B). A beta sheet with three strands makes up C1, a beta 

sheet with one strand makes up C2, and a beta sheet with two strands makes up C3. 

https://pubs.acs.org/
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Despite being relatively near to one another in 3D space, they spread allosteric effects 

to various RBD sites differently depending on the RBD mutation, which affects how 

well they attach to the human receptor ACE2 (described in the following sections). 

Considering the high degree of structural plasticity of the NTD and RBD domains 

(Figure 6.3 C), there may be a large number of additional mutational combos that call 

for compensatory changes, are consistent with high viral fitness, and may help the 

immune system flee effectively. For instance, a recent investigation revealed that 

N439K compensated for the RBM mutation K417V, which would otherwise reduce 

receptor binding affinity, and that several mAbs were more susceptible to these 

mutations when combined than when they were present separately. 
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Figure 6.2 The “AA compensatory mutation network (CMN)” for the SARS-CoV-2 

spike protein 

Colored nodes indicate the tightly linked mutation sites, and edges signify compensatory 

connections. (A) Visual depiction of the CMN-a connected, undirected network fully present in 

the N-terminal domain of the S1-unit of a spike protomer, which is divided into three parts 

visually and connected by nodes 141, 179, and 180; (B) Three network clusters: C1 (yellow), C2 

(pink), and C3 (blue); produced by Cytoscape’s molecular complex discovery (MCODE) method; 

(C) a list of various quantitative traits that set the groups C1, C2, and C3 apart from one 

another. 
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Figure 6.3 The mapping of compensating mutation regions onto the protomer of 

the spike(S) protein in three dimensions using RBD-up form. 

(A) Different domains and subdomains belong to the S1 (upper part) and S2 (lower or base part) 

units of the S-protomer; (B) structural segments C1, C2, and C3 on the N-terminal domain 

(NTD) (pink) have been mapped and involve variously composed beta strands; and (C) a 

schematic presentation of the functional significance of C1, C2, and C3 that differently establish 

a long-range allosteric. 



 

152 

 

6.2.2 Long-range dynamic allostery is the driving force 

behind mutational spots in the receptor-binding 

domain (RBD). 

We have investigated whether there are any allosteric interactions between the 

compensatory mutations and the various VOI-specific RBD mutations in the spike 

protein in order to comprehend the functional implications of the compensatory 

mutation network. The chemical shift changes of the diamagnetic 1H, 13C, and 15N of 

protein residues can successfully be used to identify such a long-range allosteric 

perturbation (> 20 A0 ), which is triggered by mutations or chemical modifications of 

the ligand effector and transmitted to a remote end. SHIFTX226 is a computer 

algorithm that can successfully forecast 1H, 13C, and 15N chemical shifts from protein 

coordinate data (Table S3) https://pubs.acs.org/doi/full/10.1021/acsomega.1c05155.  

SHIFTX2 combined sequence-based and structure-based chemical shift prediction 

techniques to achieve high accuracy using a large, high quality database of training 

proteins (> 190). These advanced machine learning techniques included many more 

features (χ2 and χ3 angles, solvent accessibility, H-bond geometry, pH, and 

temperature). Along with the well-known NMR chemical shift covariance analysis, 

this chemical shift-based forecast of long-range allostery has also been investigated in 

Ohm-a numerically effective network-based technique[211, 212]. which resembles 

the popular NMR chemical shift correlation analysis (CHESCA)[205].  Based on a 

perturbation propagation method that repeatedly repeats the stochastic process of 

perturbation spreading on a network of interacting residues in a given protein, “Ohm” 

automatically finds the allosteric network topology and identifies allosterically 

coupled residues. An allosteric coupling intensity (ACI), which represents the 
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frequency with which each residue is impacted by a disturbance, is used to quantify 

this residue-residue allosteric coupling. We have computed ACI for each of the 

VOC/VOI-specific RBD mutation sites and compared the findings to the chemical 

shift-based results by designating the C1, C2, and C3 residue positions in the NTD as 

active sites. We have tested whether the paired inter residue correlation remains linear 

in various conformational states of the RBD with/without ACE2 bound and further 

noticed if there is any departure from this linear relationship under various RBD 

mutations using combined 1H and 15N chemical shifts. Such an inter residue allosteric 

coupling is indicated by the linear association in the various states of the same 

protein. This analysis revealed that several residues from the C1, C2, or C3 cluster of 

the compensating mutation network still exhibited a significant linear association with 

the VOC/VOI-specific RBD mutation sites in all of the specified RBD conformational 

states. Although the RBD mutated- and non-mutated states also exhibit this linearity, 

there are irregular variations between the mutated and non-mutated states in the C1, 

C2, and C3 regions (Table 6.2). When compared among the different RBD- mutated 

states (i.e., E484K, K417N, L452Q, L452R, N501Y, and T478K), it showed strong 

allosteric signals activated by suite of residues in C1, C2, and C3 with overall 

correlation ≥ 0.7 (Figure 6.4 A) that are differently allosterically linked with the RBD 

mutation, suggesting the possibility of long-range allosteric communication between 

the compensatory mutation sites in the NTD and the RBD mutation site (Figure 6.4 

B). 
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Figure 6.4 The allosteric interaction between VOI/VOC- specified RBD mutant site 

I and j in C1 C2 and C3 

(a) Pearson association using the total chemical shift of 1H and 15N ppm values in the S protein’s 

five conformational shapes,  enote  by the letter “k’: S-protein with various particular RBD 

variants, as well as RBD-down, RBD-up, bound with ACE2, and clockwise and anticlockwise 

motion of RBD bound with ACE2 (δik), and (b) The best correlation sites, also known as j-

residues, in the compensating mutation segments C1, C2, and C3 that exhibit an allosteric 

link with the particular RBD site that is affected by VOI/VOC-specific RBD mutations. 
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Table 6.2 The percentage of residues in the compensatory mutation regions C1,C2 

and C3 with the total chemical shift-based association |r|≥0.7 and an allosteric link 

to the RBD site 

RBD mutation Class Mutated con. (%) Reference con. (%) 

E484K C1 23.53  11.76  

K417N C1 8.82  17.65  

L452Q C1 26.47  2.94  

L452R C1 17.65  2.94  

N501Y C1 20.59  11.76  

T478K C1 29.41  20.59  

E484K C2 44.44  55.56  

K417N C2 33.33  44.44  

L452Q C2 11.11  11.11  

L452R C2 22.22  11.11  

N501Y C2 11.11  33.33  

T478K C2 11.11  NA  

E484K C3 37.50  25.00  

K417N C3 18.75  18.75  

L452Q C3 18.75  12.50  

L452R C3 6.25  12.50  

N501Y C3 18.75  25.00  

T478K C3 18.75  25.00  

 

Number of residues among the compensatory mutation clusters that allosterically 

coupled with the RBD mutation sites vary significantly, referring to differential 

effects of RBD mutation sites. For example, spike K417N and the non-mutated states 

involves 33.33% and 44.44% residues of the C2 cluster respectively (Table 6.2) that 

allosterically coupled with the RBD site 417 with the absolute correlation greater than 

0.7. Whereas S E484K involves 44.44% residues of the C2 cluster which is 10% less 

than its non-mutated form, having allosteric coupling with RBD mutation site 484. 

Further evidence of the existence of such coupling was found in the recorded 

allosteric coupling intensity (ACI) in the “Ohm” webserver. We determined the 
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allosteric coupling intensity (ACI) for the RBD mutation sites using the inputs of the 

compensatory mutation sites of C1, C2, and C3 as active sites in Ohm independently 

(Table S4) https://pubs.acs.org/doi/full/10.1021/acsomega.1c05155. It was discovered 

that ACIs are greater than 0.2 with and without ACE2 bound; however, ACE2 bound 

reduces and the RBD mutation with ACE2 bound improves the ACI in comparison to 

its original RBD-up form. These Ohm results concur with a correlation study of the 

residues based on chemical changes. When C3, C2, and C1 are taken into account as 

the active sites, S K417N has the ACI 0.35, 0.31, and 0.28, respectively. This is 

greater than 40% when compared to its native RBD-up conformational shape, 

showing strong allosteric connections for the K417N S conformation (Figure 6.5). 

The K417 and N501 residues function as effector centres of allosteric interactions and 

hold remote sites that facilitate long-range allosteric communications in the complex, 

according to a recent research. This finding is in line with the findings made 

above[213]. Chemical shifts projection analysis was used to assess how RBD-specific 

alterations affected allosteric signalling and, ultimately, interactions with ACE2 

(CHESPA)[208]. In CHESPA, one of the vectors A is projected onto the other vector 

B to quantify the shift along B, where A stands for the total residue-wise chemical 

shift differences between the RBD-up S and the non-mutated ACE2-bound S. The 

study gives the fractional shift (X) and the cosθ value as two important residue-

specific descriptors of the perturbation produced by the mutations (Methods). When S 

protein is attached to ACE2, the only residues with absolute cosθ values close to 1 are 

appropriate sensors of allosteric activity. The RBD-mutation impacts towards an 

allosterically more active state are indicated by a positive fractional change X, 

whereas the opposite is true if X is negative. The results of CHESPA reveal that many 

NTD residues have positive X values with absolute cos larger than 0.9 (Figure 6.6), 
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which indicates robust allosteric activity of compensatory mutation sites in NTD and 

coupling with VOI-specific RBD mutation sites. All of the mutations have noticeable 

impacts, but K417N has revealed a large number of residues with extremely high 

positive X values. In addition, a significant number of mutation sites in the 

compensatory mutation segments C1, C2, and C3 are common and highly active 

(X>1.0 and cos(θ)>0.9) across all the RBD-mutations sites: 87,89,91,114, 115,123, 

128 of C1; 159 of C2; and 187,196 of C3, indicating their crucial role in maintaining 

the allosteric communications. The RBD mutation sites K417, E484, and N501 

correspond to a group of adaptable allosteric centres, in which small perturbations can 

modulate collective motions, alter the global allosteric response, and induce binding 

resistance, according to a recent study of dynamic profiling of binding and allosteric 

propensities of SARS-CoV-2 spike protein with different classes of antibodies[213]. 
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Figure 6.5 The regularity with which each residue is impacted by a change as a 

result of VOI/VOC- specified RBD mutations. 

The residues in the compensatory mutation regions C1, C2, and C3 were used as activator sites in 

the “OHM webser er” to compute ACIs. It demonstrated that under the mutation K417N, the 

RBD mutation modifies the ACIs with a notable rise. 
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(a) 

 

 

(b) 

Figure 6.6 The chemical shift projection study demonstrating the consequences of 

particular RBD mutations for VOI/VOC 

(a) The fractional shift (X) variance caused by the RBD mutations E484K, K417N, L452Q, 

L452R, N501Y, and T478K in the compensating mutation segments C1, C2, and C3. When 

cos θ ≥0.9, there are a few residues for which X is negative in each section, and (b) the 
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projection angle, cosθ, which indicates whether the chemical shift is moving in a direction 

that favours (+ve values) or opposes (-ve values) the allosteric activity 

6.2.3 Spike protein associations with ACE2 are modified by 

mutations through a dynamic allosteric network. 

The interaction of the S-protein RBD with the human receptor ACE2 and consequent 

modulation of the proteolytic processing of the S1 unit for membrane fusion 

determines whether SARS-CoV-2 is successfully introduced into the human host cell. 

Here, we investigate the impact of the VOC/VOI-specific RBD mutation on this 

association with ACE2. In order to forecast the binding affinity from their 3D 

structures based on intermolecular contacts and characteristics obtained from non-

interface surface, we used PROtein Binding Energy Prediction (PRODIGY)[209], a 

web server. Individual mutant structures are created for each of the VOI-specific RBD 

mutations before being entered into PRODIGY, with the standard pdb 7a94 

containing one up-RBD bound to ACE2. The most abundant pose for the substitution 

was chosen using the Rotamer collection in UCSF-Chimera[214], and this mutated 

structure was then improved using the 3Drefine program[215], which maximises the 

hydrogen bonding network and minimises energy using all atom force fields. These 

energy-minimized structures were used to dock with ACE2 in the Frodock2.0 protein-

docking potential docking server, selecting a dock with minimal energy and an ACE2 

coupled with the up-RBD posture. Ultimately, PRODIGY used this resulting 

compound. 

We employed PISA software to determine the molecular and chemistry 

characteristics of ACE2-bound RBD non-mutant- and mutant S-proteins[210]. 
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Comparing the interface interactions reveals that all VOI-specific mutations have 

noticeable impacts there, with the mutated structure having a roughly 2-fold higher 

solvent accessible area (SAA) at the interface (Table 6.3), indicating a greater 

possibility for ACE2 and RBD interactions. Particularly, RBD mutations unique to 

the delta and lambda atoms (K417N, T478K, and L452Q) displayed significantly 

greater SAA than the active S protein bound to ACE2. The H-bond network at the 

junction had particular mutation-related changes, and the H-bonds were distributed 

unevenly. A number of salt bridges were formed at the contact in addition to the H-

bond by T417N, L452Q, L452R, N501Y, and T478K. Different binding energies 

(∆G) and dissociation coefficients (Kd) under various RBD mutations may be 

explained by this unequal distribution of H-bonding and salt-bridges. All of the RBD 

mutations have decreased ∆G and Kd when compared to the ACE2-bound non-

mutated S-protein, suggesting greater interface interactions and binding affinity 

brought on by the mutations. It was discovered that K417N, out of all the changes 

taken into consideration, has the greatest impact on ∆G and Kd (-17.2 kcal/mol, 2.50 

10-13 M). Notably, the K417N S protein maintains close contacts with ACE2 by 

holding 5 H-bonds with a distance cutoff of 3.00 A0 and 4 salt bridges. Additionally, 

it demonstrates that K417N S, which is the biggest mutation among all mutations, is 

bound to ACE2 and occupies 7.7% and 3.3% of the solvent-accessible surface area at 

the interfaces of ACE2 and Spike, respectively. The dominant polar hydrophilic 

residue SER appears on the RBD 24 times out of all the interface residues, while the 

dominant hydrophilic residues GLU that interact with ACE2 occur 39 times, allowing 

for the creation of numerous H-bonds and slat bridges at the interface. We also 

investigated the impacts of various flexible RBD orientations, such as clockwise and 

anticlockwise movement of RBD, which can be caused by a number of mutations at 
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hinge residues close to the S1/S2 juncture, in addition to the VOC/VOI-specific 

mutations (e.g.,D614G)[216]. According to (Figure 6.7 A), such variable RBD 

orientations have noticeable decreasing effects that change the binding affinity to 

ACE2. Contrary to their lowest readings for the K417N S protein, we noticed a 

significant rise in G and Kd under the variable RBD orientations (Figure 6.7 B). In 

addition to mutations, N-glycosylation of the SARS-CoV-2 S protein is crucial for 

viral entrance into human cell models because viruses without N-glycans penetrate 

the host cell less efficiently. In a recent research, the glycosylation profile and 

alterations that occurred throughout the worldwide transmission of the SARS-CoV 

were described and contrasted. It listed 3 O-glycosylation sites that are specific to 

SARS-CoV-2 and 9 anticipated N-glycosylation sites, but there hasn’t been any 

evidence of glycan site diversity thus far[217]. Further investigation revealed that the 

existence of glycans at sites N165 and N234 influences the RBD’s conformational 

flexibility because they maintain the RBD’s “up” shape, enabling effective binding to 

the human angiotensin-converting enzyme 2 (hACE2) receptor. A conformational 

change of the RBD towards the “down” state, which weakens accessibility to ACE2, 

caused by the deletion of these glycan residues through the N165A and N234A 

alterations, resulted in a substantial reduction in S protein binding to ACE2.  
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Figure 6.7 Impact of SARS-CoV-2 RBD and ACE2 interactions with various RBD 

angles and VOI/VOC-specified RBD mutations. 

(A) Screenshots of the RBD mutations N501Y, T478K, and K417N; interface interactions and its 

spread between ACE2 (red) and the RBD (blue) varied among the mutated states with distinct 

RBD motions, resulting in various dissociation constant Kd; The K417N mutation had the lowest 

Kd of the six RBD mutations that were taken into consideration, as seen in (B) zoomed images of 

the K417N mutation’s contacts with H-bonds and Salt bridges. It has the most surface contact 

residues (182) of the six variants and holds 5 H-bonds with a distance cut-off of 3.00 A0. It also 

holds 4 salt bridges. 
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Figure 6.8 Multimodal degree distribution 
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Table 6.3  Interface characteristics of the S-RBD and ACE2 interactions under Six 

RBD variants with various RBD orientations that are unique to VOI/VOC 

 

 Interface Interaction 

Properties 

Wild E484K K417N L452Q L452R N501Y T478K 

Kd (M) at 250C 2.50E-

09 

1.90E-

11 

2.50E-

13 

1.90E-

10 

4.60E-

11 

1.20E-

11 

4.40E-

11 

∆ G (kcal/mol) -11.7 -14.6 -17.2 -13.3 -14.1 -14.9 -14.1 

SAA at 

interface 

(%) 

ACE2 3.1 4.7 7.7 6.3 5.1 4.9 5.2 

  SARS-

CoV-2 

S 

1.4 2.1 3.6 2.8 2.4 2.4 2.4 

ACE2-bound stable 

RBD 

No. of intermolecular 

contacts 

72 105 182 162 109 124 111 

 No.  H-bonds  (dist.  

cut-off:  3  ̊ A) 

6 2 5 5 2 5 2 

 No. of salt bridges 0 0 4 5 1 4 1 

ACE2 bound-RBD 

moved clockwise 

Kd 3.30E-

09 

6.70E-

09 

2.50E-

08 

1.20E-

09 

1.70E-

09 

2.60E-

10 

2.80E-

09 

 ∆ G -11.6 -11.1 -10.4 -12.1 -11.9 -13.1 -11.7 

ACE2 bound-RBD 

moved anticlockwise 

Kd 3.50E-

09 

2.10E-

08 

1.60E-

07 

3.30E-

08 

1.60E-

08 

4.60E-

11 

1.10E-

09 

 ∆ G -11.5 -10.5 -9.3 -10.2 -10.6 -14.1 -12.2 
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6.3 Methods 

6.3.1 Detecting mutational sites that are susceptible across 

SARS-CoV-2 spike types 

To find susceptible mutation sites that are subject to frequent changes in the known 

SARS-CoV-2 variants, we depend on differential sequence comparison among the 

mutated sequences rather than traditional reference-based sequence analysis. With the 

idea that SARS-CoV-2 would change physically for a tighter bond with the host, we 

only focused on the spots that are extremely prone to mutation. For the convenience 

of computation for such extremely susceptible sites, we used a binary vector-based 

comparison. For each amino acid, two alleles are examined. A match receives a score 

of 0 and is removed from the final vector. Mismatch, on the other hand, is awarded 

with 1 to show that there is alternation in a specific location. The same procedure was 

used to create N binary vectors from every combination of  potential sequences. 

Next, we determine each site’s probability of exposure. 

Suppose that there are M =   binary vectors, each of which has L leftover sites. In 

this case, S = {s1, s2,…,sL}; where  si ={ b1, b2,…, bM} and so on. The following 

formula can be used to determine how vulnerable a mutant site si is. 

 

 

6.1 
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If P (si) >τ, a user-defined cutoff, a site si is regarded as possibly susceptible to 

mutation. By taking into account all of these possibly susceptible sites, we create a 

network of vulnerable sites that coexist. 

6.3.2 The extraction of cohesive mutant sites. 

In relation to all potential variants, we determined concurrent vulnerable sites that 

show specific cooccurrence of alternation. To determine coexisting susceptible 

locations, we used the conditional probability score. The following formula can be 

used to calculate the probability that two locations, si and sj (si, …, sj), will cohabit. 

si, …, sj  if P(si|sj)= θ or P(sj|si)= θ (0 ≤ θ ≤ 1), 

 

 

6.2 

As shown below, an adjacency matrix A is created by combining all pairs of si, ..., sj. 

 

After that, we used Cytoscape plugins[206] and the well-known molecular complex 

detection (MCODE) technique[207] to select highly linked subgraphs of vulnerable 

sites from the aforementioned network. In fact, MCODE is made to find 

interconnected areas in sizable protein–protein interaction networks that could be 

molecular complexes. The technique relies on vertex weighting by local 

neighbourhood density and uses an outer traversal from a seed protein that is locally 

dense to separate the dense areas according to predetermined parameters. 
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6.3.3 Residues between RBD and NTD undergo chemical 

shift changes and allosteric coupling 

Determining a network of residues that mediates the cross-talk between distant 

locations is still frequently a difficult experimental task. As in this case, the allosteric 

signal propagation depends on subtle but crucial conformational and side-chain 

packing rearrangements that frequently fall below the resolution of conventional X-

ray or NMR structure determination methods, such clusters of coupled residues are 

particularly difficult to identify. It was mentioned that chemical shift (CS) data can be 

investigated to look at long-range allosteric interactions in order to deal with this 

scenario. It was discovered that CS data exploration was very successful because 

allosterically linked residues show coordinated and correlated chemical shift changes 

for a given collection of disturbances. Such correlations can be seen in a group of 

allosteric changes that, while requiring only minor covalent modifications, cause 

varying levels of activation and are spatially colocalized within a single area of the 

protein structure. For a specific collection of disturbances, allosterically linked 

residues show coordinated and correlated chemical shift changes. These associations 

can be seen in a collection of allosteric perturbations that colocalize physically within 

a single area of the protein structure and cause various levels of activation with only 

minor covalent modifications. Chemical changes for various residues suitably far 

from the effector binding site 56 that detects the same perturbed equilibrium are 

linearly linked in a two-state activation model with a fast exchange regime. Because 

the spots that correlate to the same active ligands were partially rearranged in the 

multistate model, linearity was still preserved. These assumptions allow for the 

effective implementation of chemical shift covariance analysis, which allows for the 
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probing of the presence of long-range allosteric communication by observing the 

linear coupling of distant residues by their chemical shifts (CHESCA)[205]. Long-

range allosteric signal transmission depends critically on both structural modifications 

and effector-dependent dynamics modulations. The terminal receptor sites of these 

allosteric signals can be successfully identified using comparative studies of the 

structural and dynamic characteristics of apo and effector-bound states. Technical 

challenges still exist in delineating a network of residues that mediates this cross-talk 

between distant locations. Finding such groups of coupled residues is particularly 

difficult when the allosteric signal propagation depends mainly on conformational and 

side-chain packing rearrangements. Chemical shifts have been shown to be very 

efficient for determining long-range allostery larger than 20 angstrom because they 

are extremely sensitive to both structural changes and the effector-dependent 

modulations. Residues that are part of the same effector-dependent allosteric network 

show a coordinated reaction to the perturbation set when using a chemical-shift-based 

method, whereas this may not be the case when the network was simply identified 

based on the 3D protein structure. We separately examined whether there was a linear 

correlation between the residues in segments C1, C2, and C3 of the compensatory 

mutation network in the NTD and the VOC-/VOI-specific RBD mutation sites away 

from the ACE2- bound residues given the five conformational states of the spike 

protein with active/inactive RBD, RBD bound with ACE2, and clockwise and 

anticlockwise poses of ACE2-bound RBD. 

Chemical shifts that are computed for each residue individually are calculated 

as the weighted total of the amide proton 1H and 15N nitrogen ppm values. 
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6.3 

where WN and WH are the weights for the chemical shifts  and , respectively, 

and  indicates the total chemical shift of residue i at the kth perturbed state. The 

perturbation-dependent chemical shift variations of two residues (or sites) i and j 

show a linear correlation if they are members of the same allosteric network, 

independent of their size. As a result, residues i and j that are allosterically linked 

create the following linear equation. 

 

 

6.4 

Based on the finding that a small RBD reorientation causes correlated perturbation in 

the immediate environment of residues i and j, nonlinear components in eq. 6.4 are 

disregarded. The maintained correlation |rij| ≥0.7 illustrates such correlated 

disturbances (Pearson correlation (rij)) as computed in eq. 6.5, showing a coordinated 

group reaction to perturbed states. 

 

 

6.5 

 

where  and  are two vectors of identical length and    are the 

corresponding means of   and . 
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We used chemical shift projection analysis to determine how the particular 

RBD mutation impacts the allosteric active states (CHESPA)[208].  Commonly used 

compounded ppm changes, calculated as ,[218-223], only take 

into account the size of chemical shift differences brought on by a mutation, not how 

the mutation specifically impacts the dynamic equilibrium. The magnitude of vector 

A, which connects the apo-S and S-mutant ACE2-bound peaks and is specified in the 

plane of the 1H and scaled 15N ppm coordinates, was used to determine the cumulative 

chemical shift difference between the apo-S and the S-mutant. The 15N ppm readings 

have a scaling factor of 0.2. The magnitude of vector B, the activation vector 

connecting the apo/inactive to the allosterically active state, is used to calculate the 

compounded chemical-shift differential between the apo-S and the ACE2-bound S. 

The change along the activation vector brought on by a specific mutation is measured 

by the projection of vector A onto vector B. The fractional shift (X), which is 

computed as the ratio of the component of vector A along vector B and the amplitude 

of vector B (i.e., |B|), is used to determine the degree of activation (or inactivation) 

brought about by a mutation. The cos θ number is a counterpart to the scalar fractional 

shift (X). It is founded on the angular relationship between vectors A and B. As a 

consequence, two important residue-specific markers of the perturbation induced by 

the mutation—the fractional shift (X) and the cos θ are produced by the projection 

analysis of the chemical shifts. The fractional shift, X, is either positive or negative 

depending on whether the mutation moves the balance towards the allosterically 

active state. When the mutation causes ppm changes of similar size and direction, 

|X|~ 1, the absolute value of X approaches 0 if the ppm variations produced by the 

mutation are minimal. With the powerful allosteric impact of the mutation, the |cos θ| 
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values get closer to unity (i.e., |cos θ| ~1). As opposed to long-range allostery, |cos 

θ |< 1 for residues is more substantially impacted by the mutation through nearest-

neighbour effects or other structural changes brought on by the mutation. 

The ratio of the component of vector A along vector B to the magnitude of 

vector B, or |B|, is used to compute the fractional shift (X)[208], 

 

 

6.6 

Where, A=[0.2 ] , B=[0.2 ] and m and r denotes 

mutated and reference conditions, respectively, in kth (or k’th ) state.  measures 

angle between Vector A and B, 

 

 

6.7 

 

 

 

6.8 

 

6.3.4 Utilizing 3D protein structures for interface analysis 

Using the PROtein binDIng enerGY Prediction (PRODIGY)[209] and 

PDBePISA[210] online services, RBD and ACE2 binding affinity, dissociation 

constant, H-bond and salt-bridge calculations were performed. With the quantity and 

type of intermolecular contacts within the 5.5 A0 distance limit, PRODIGYe forecasts 

binding affinity and identifies the interfaces from 3D protein structures. Based on a 

straightforward linear regression of interface contacts (ICs) and a few characteristics 
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of non-interacting surfaces (NIS), which have been shown to affect the binding 

affinity. 

∆Gpredicted = −0.09459 × ICscharged/charged 

− 0.10007 × ICscharged/apolar 

+ 0.19577 ×ICspolar/polar − 0.22671 

× ICspolar/apolar + 0.18681× % 

NISapolar + 0.3810 × %NIScharged − 15.9433. 

The sort of contacts within a radius of 5.5 A0 are used to categorise ICs, and 

the number of interfacial contacts (ICs) discovered at the interface between 

Interactor1 and Interactor2 is represented by the ratio ICsxxx/yyy. Using the equation: 

ΔG = RT ln Kd, where R is the ideal gas constant (in kcal K-1 mol-1), T is the 

temperature (in K), and ΔG is the expected free energy, one can determine the 

dissociation constant (Kd). The setting for the temperature in our estimate is 25.0 °C. 

We used the PDBePISA website to derive interactions between salt bridges and H-

bonds at the interface. If the spacing between the heavy elements in the donor and 

acceptor is less than 3.89 A0, PISA takes this into account when determining the 

presence of a H bond. For a salt bridge, the pertinent distance is 4 A0. In FRODOCK 

webserver[224], ACE2 docking with the RBD-mutated spike was performed. It 

employs a fast-rotational binding technique using the 3D coordinates of two 

cooperating proteins. It employs a quick circular docking technique using the three-

dimensional coordinates of two binding proteins. It carried out a six-dimensional (6D) 
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rigid-body comprehensive search of the orientations of a stationary molecule about a 

mobile receptor (3D rotations + 3D translations) in order to optimise global energy. 

Each energy term was computed using a correlation function specified by the 

interplay of potential receptor and ligand components, only taking into account the 

rotational component. An implied translational scan was used in conjunction with this 

quick comprehensive rotational search. By evenly sampling the space with a matrix of 

set step sizes, the translational search was performed tacitly. 

6.4 Summary 

• The SARS-CoV-2 spike protein has several variant-specific mutations, 

including E484K, K417N, L452Q, L452R, N501Y, and T478K, that affect its 

structure and function. 

• These mutations are not random, but are part of an allosteric network that 

affects interactions between the spike protein and human receptor ACE2, 

leading to higher transmissibility and infectivity. 

• Compensatory mutations in the N-terminal domain (NTD) are also involved in 

this network, and are allosterically coupled with specific RBD-mutation sites. 

• Mutations in the RBD increase interactions with ACE2 to varying extents, 

depending on their allosteric connections with compensatory mutation clusters 

in the NTD. 

• K417N has the largest effect on allostery and the highest binding affinity with 

ACE2, which may explain why the delta variant is highly transmissible. 
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• Understanding the significance of these mutations can aid in targeted control 

measures, laboratory characterization, and therapeutic efforts. 



 

176 

 

Future direction 

Future aim is to explore highly heterogeneous and high throughput molecular 

data and apply this knowledge in the context of cancer, autoimmune diseases, 

and other areas. 

Here, I want to learn more about the molecular processes at play in complicated 

illnesses like cancer. Utilizing cutting-edge technologies, this strategy generates 

significant quantities of molecular data from a variety of sources, including genomics, 

transcriptomics, proteomics, and metabolomics. Another area of focus would be 

Autoimmune disorders, which are defined by an abnormal immune reaction that 

targets healthy cells in the body, are a different field of emphasis. We intend to find 

important molecular mechanisms that add to the onset and progression of illness by 

examining molecular data from individuals with autoimmune disorders. 

Further, I would also like to extend my research using different machine ML 

and AI tools. 

When examining molecular data, machine learning (ML) and artificial intelligence 

(AI) tools can be very useful because they can spot trends and connections that might 

not be apparent to people. 
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Appendix A 

List of program Codes 

All the codes and data which I have developed is uploaded at a development platform 

GitHub. I have attached my account Id https:// https://github.com/Bikash2426/RAS 

MATLAB code: Parameters estimation 

% RAS program for estimating unknown 3-parameters 

% three unknown parameters: k, k2 and gamma 

% setting these three parameters such that the RAS is always 

% remain positive, reach to a stady-state 

clc 

close all 

clear 

CAT1=1.4*10^(-2); %s-1; 

CAT2= 1.2*10^(-2) ; %s-1; 

kMAP=(3*10^(10))/60;  %mmHG M-1 s-1 

%reading the PARAMETERS file generated using optimization and model 

fit 

%teachniques 

[NUM,TXT,RAW]=xlsread('parestimate_hypertension1_MAPrange.xls'); 

%change the file name as per requirement 

par=NUM; 

steady_state=zeros(20,7);%output files of steady states corresponding 

to k, k2 and gamma. 

%................................ 

exp_no=20; 

tspan=0:0.01:10000; 

L=length(tspan); 

https://github.com/Bikash2426/RAS
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y0=[1.7*10^(-2),2.06*10^(-4),2.7*10^(-7),2.1*10^(-8),4.1*10^(-

8),2.1*10^(-6),100];% initial conditions of differential equations 

%ensuring solution in the positive quadrant 

for n=1:exp_no 

k=par(n,3);%reading from the estimated values of k's from the input 

file 

k2=par(n,4);%reading from the estimated values of k's from the input 

file 

pos=0;%positivity index in the program 

gamma=par(n,5);%reading from the estimated values of k's from the 

input file 

[t,y]=ode45(@(t,y) 

simul_diffRAS(t,y,CAT1,CAT2,k,k2,kMAP,gamma),tspan, y0); 

for i=1:L 

for j=1:7 

if (y(i,j)>0) 

pos=pos+1; 

else 

pos=0; 

end 

end 

end 

if pos==L*7 

disp('system is in +ve quad') 

else 

disp('continue experiment to ensure the system in +ve quad:') 

n 

end 

 

%%.................................................................. 
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%taking the system to a steady state 

if pos==L*7 

esp=0.5;%staedy errors 

state_ind=0; 

for i=1:7 

for m=1:10 % it is for testing 10 consequitive numbers of each col 

if abs(y(L-11+m,i)-y(L-11+m+1,i))< esp 

%if y(k,7)>69 && y(k,7)<101 

state_ind=(state_ind+1); 

else 

state_ind=0; 

%end 

end 

end 

end 

if state_ind==70 

disp('system is in steady state') 

%disp('MAP is in the reqired range 70-100\n') 

steady_state(n,1)=y(L,1);steady_state(n,2)=y(L,2); 

steady_state(n,3)=y(L,3);steady_state(n,4)=y(L,4); 

steady_state(n,5)=y(L,5);steady_state(n,6)=y(L,6); 

steady_state(n,7)=y(L,7); 

 

else 

disp('system in NOT in steady state:') 

n 

break 

end 

 

end 
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end 

xlswrite('SteadyState_hypertension1.xls',steady_state); 

MATLAB code: Ordinary differential equation 

function f = simul_diffRAS(t,y,CAT1,CAT2,k,k2,kMAP,gamma ) 

%parameters known 

KAGT=6.3*10^(-7);   % mol/L/s 

hAGT=10*3600;            % s 

Renin0=2.06*10^(-13);  % mol/L 

hRenin=0.25*3600  ;         % s 

sRenin=(log(2)/hRenin)*Renin0; 

kRenin=(6.44*10^(4)/3600);  % s-1 

cRenin=1.7*10^(-14);        %s-1; 

CAItoll= 6.7*10^(-3) ; %s-1; 

Kf=(4.91*10^(-5))/(3600);  % s^-1 

fa=5.04*10^(2-9);   % mol/L 

 

hANGI=0.62;    % s 

hANGII= 18 ;    %s 

hAT1R_ANGII=1.5; % s 

hAT2R_ANGII=1.5 ; % s 

 

ANGII0=21*10^(-9);  % mol/L 

 

% dAGT/DT 

 

f(1,1)=KAGT-cRenin*y(1)-(log(2)/hAGT)*y(1);   %y(1)=AGT 

 

% dRenin/dt 
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f(2,1)=sRenin+Kf*(ANGII0-y(4))*(1-(ANGII0-y(4))/fa)-

(log(2)/hRenin)*y(2)-k2*[y(5)*y(6)];  % y(2)=Renin 

% d_ANGI/dt 

f(3,1)= cRenin*y(1)+kRenin*(y(2)-Renin0)-[CAItoll+log(2)/hANGI]*y(3);    

%y(3)= ANGI 

 

%dANGII/DT 

f(4,1)=[CAItoll]*y(3)-[CAT1+CAT2+log(2)/hANGII]*y(4);    % y(4)=ANGII 

 

% d(AT1R-ANGII)/dt 

 

f(5,1)=CAT1*y(4)-(log(2)/hAT1R_ANGII)*y(5)-k*y(6);    % y(5)= AT1R-

ANGII 

 

% d(AT2R-ANGII) 

 

f(6,1)=CAT2*y(4)-(log(2)/hAT2R_ANGII)*y(6);     % y(6)=AT2R-ANGII 

 

 

% dMAP/Dt 

f(7,1)=kMAP*y(4)-gamma*y(7);   %y(7)=MAP 

 

 

 

end 
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MATLAB code: Parameter Estimation 

clc 

close all 

clear 

% Model will be fitted against y(7)(MAP-variable in the ODE) only 

%we need to estimate r= k, k2, and gamma 

y0=[1.7*10^(-2),2.06*10^(-4),2.7*10^(-7),2.1*10^(-8),4.1*10^(-

8),2.1*10^(-6),100];% initial conditions 

tspan = 0:0.01:10000;% discritze time 

L = length(tspan); 

out=zeros(20,5); 

%............................................... 

% generating MAP values: normal 20 pts: 70-100; hypertension: 100-

170; 

% low-pressure: 40-70; 

for i=1:20 

%map = linspace(70,100,20);%normal 

map=  linspace(101,190,20);%hyper-tension 

%map = linspace(40,69,20);%low blood pressure 

xx= 0.01*rand(1,51)+map(i);%generating only 50 pts for model fitting 

mentioned in "RtoODE" 

yvals2=xx; 

%................................................. 

r = optimvar('r',3,'LowerBound',0.0001,'UpperBound',25);% general 

range of all r's 

myfcn2 = fcn2optimexpr(@RtoODE,r,tspan,y0); 

obj2 = sum(sum((myfcn2 - yvals2).^2)); 

prob2 = optimproblem('Objective',obj2); 
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r0.r = [0.0110 0.5519 0.0039]; %initial guess of r0 that takes the 

system at a +ve steady state 

[rsol2,sumsq2] = solve(prob2,r0); 

disp('Sr.No. map sumsq2 k k2 gamma') 

%printing the optimization outcome in a excel file 

dd = [i map(i) sumsq2 rsol2.r(1) rsol2.r(2) rsol2.r(3)] 

out(i,1)=map(i);out(i,2)=sumsq2;out(i,3)=rsol2.r(1); 

out(i,4)=rsol2.r(2);out(i,5)=rsol2.r(3); 

end 

%..................................................... 

xlswrite('parestimate_hypertension1_MAPrange.xls',out); % store 

estimate values 

MATLAB code: Solution of differential equation 

n%%% Here we solve the system of differential equations 

function f = diffun(~,y,r) 

%parameters values 

KAGT=6.3*10^(-7);   % mol/L/s 

hAGT=10*3600;            % s 

Renin0=2.06*10^(-13);  % mol/L 

hRenin=900 ;         % s 

sRenin=(log(2)/hRenin)*Renin0; 

kRenin=(6.44*10^(4)/3600);  % s-1 

cRenin=1.7*10^(-14);        %s-1; 

CAItoll= 6.7*10^(-3) ; %s-1; 

Kf=(4.91*10^(-5))/(3600);  % s^-1 

fa=5.04*10^(-7);   % mol/L 

hANGI=0.62;    % s 

hANGII= 18 ;    %s 
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hAT1R_ANGII=1.5; % s 

hAT2R_ANGII=1.5 ; % s 

ANGII0=21*10^(-9);  % mol/L 

kMAP=(3*10^(10))/60;  %mmHG M-1 s-1 

CAT1=1.4*10^(-2); %s-1; 

CAT2= 1.2*10^(-2) ; %s-1; 

% d[AGT]/DT 

f(1,1)=KAGT-cRenin*y(1)-(log(2)/hAGT)*y(1);   %y(1)=AGT 

% d[Renin]/dt 

 

f(2,1)=sRenin+Kf*(ANGII0-y(4))*(1-(ANGII0-y(4))/fa)-

(log(2)/hRenin)*y(2)-r(2)*[y(5)*y(6)];  % y(2)=Renin 

% d[ANGI]/dt 

f(3,1)= cRenin*y(1)+kRenin*(y(2)-Renin0)-[CAItoll+log(2)/hANGI]*y(3);    

%y(3)= ANGI 

 

%[dANGII]/dT 

f(4,1)=[CAItoll]*y(3)-[CAT1+CAT2+log(2)/hANGII]*y(4);    % y(4)=ANGII 

 

% d[AT1R-ANGII]/dt 

f(5,1)=CAT1*y(4)-(log(2)/hAT1R_ANGII)*y(5)-r(1)*y(6);    % y(5)= 

AT1R-ANGII 

% d[AT2R-ANGII]/dt 

f(6,1)=CAT2*y(4)-(log(2)/hAT2R_ANGII)*y(6);     % y(6)=AT2R-ANGII 

% dMAP/dt 

f(7,1)=kMAP*y(4)-r(3)*y(7);   %y(7)=MAP 

 

 

 

end 
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MATLAB code: Transient Analysis 

% Transient Analysis of RAS system 

% We considered all the estimated paramerts k,k2 and gamma as inputs 

to 

% this program that take the system to a non-zero steady state. 

% We calculated numerical solutions for each parameter input 

% Then calulated stadard devation among renin and angII solution at 

each time point 

% All the remaining parameters and intial condition remain same that 

set in 

% all previous code. 

clc 

close all 

clear 

CAT1=1.4*10^(-2); %s-1; 

CAT2= 1.2*10^(-2) ; %s-1; 

kMAP=(3*10^(10))/60;  %mmHG M-1 s-1 

%input excel sheet of parameters 

[NUM,TXT,RAW]=xlsread('parestimate_hypertension1_MAPrange.xls'); 

%change the file name as per requirement 

par=NUM; 

%................................ 

exp_no=length(par); 

tspan=0:0.01:10000; 

L=length(tspan); 

y0=[1.7*10^(-2),2.06*10^(-13),2.7*10^(-7),2.1*10^(-8),4.1*10^(-

8),2.1*10^(-6),100];% Initial conditions 

%ensuring solution in the positive quadrant 

for n=1:exp_no 
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k=par(n,3);%reading from the estimated values of k's from the input 

file 

k2=par(n,4);%reading from the estimated values of k's from the input 

file 

gamma=par(n,5);%reading from the estimated values of k's from the 

input file 

%%%%%%%% 

[t,y]=ode45(@(t,y) 

simul_diffRAS(t,y,CAT1,CAT2,k,k2,kMAP,gamma),tspan, y0); 

sol{n}=y; 

%xlswrite([strcat('normal_transol',num2str(n)),'.xlsx'],y); 

end 

renin=zeros(L,exp_no);angII=zeros(L,exp_no); 

for n=1:exp_no 

renin(:,n)=sol{n}(:,2); 

angII(:,n)=sol{n}(:,4); 

end 

std_renin=zeros(L,1);std_angII=zeros(L,1); 

for i=1:L 

std_renin(i)= std(renin(i,:)); 

std_angII(i)=std(angII(i,:)); 

end 

xlswrite('std_renin_hypertension.xlsx',std_renin); 

xlswrite('std_angII_hypertension.xlsx',std_angII); 

mean_renin=zeros(L,1);mean_angII=zeros(L,1); 

for i=1:L 

mean_renin(i)= mean(renin(i,:)); 

mean_angII(i)=mean(angII(i,:)); 

end 

xlswrite('mean_renin_hypertension.xlsx',mean_renin); 
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xlswrite('mean_angII_hypertension.xlsx',mean_angII); 

 

MATLAB code: RtoODE Function 

function solpts = RtoODE(r,tspan,y0) 

L = length(tspan); 

sol = ode45(@(t,y)diffun(t,y,r),tspan,y0); 

solpts = deval(sol,tspan); 

solpts = solpts(7,L-50:L); %just consider y(7)with last 50 points 

end 

 

 

 

 

 

 

 

 



 

206 

 

Appendix B 
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in the Spike Protein Determine the Infectivity of SARS-CoV-2 

Emerging Variants. ACS Omega. 2021 Nov 10;6(46):31312-31327. 

doi: 10.1021/acsomega.1c05155. PMID: 34805715; PMCID: 

PMC8592041. 

ii) Wang, C., Thakuri, B., Roy, A. K., Mondal, N., Chakraborty, A. 
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distributions of terrigenous polycyclic aromatic hydrocarbons along 

the South China Sea and East China Sea. Science of The Total 

Environment, 828, 154430. 

iii) Wang, C., Feng, L., Thakuri, B., Chakraborty, A. (2022). Ecological 

risk assessment of organochlorine pesticide mixture in South China 
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iv) Wang, C., Thakuri, B.*, Roy, A. K., Mondal, N., Qi, Y., Chakraborty, 
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Pacific region. Journal of Environmental Management, 331, 117264. 
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at International Conference on Nonlinear Dynamics and Applications 

organised By SMIT during 9-11 March 2022. 

III. Presented a paper entitled “A Radial Basis Function Method for the 
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University, Kokrajhar Assam during 21-22 February ,2020. 

IV. Presented a paper entitled “Mean arterial Pressure (MAP) regulation 

through the interacting component of Renin-angiotensin System(RAS)” 

organised by IMBIC at 16th  International Conference MSAST 2022 during 
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V. Workshop on “Techniques for Mathematical Optimization” organized by 

Department of Mathematics Sikkim University in Collaboration with SQC & 

OR unit ISI, Kolkata during 29-30 march of 2016. 
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Sikkim organized by Indian National Mathematics Olympiad (Sikkim 

Chapter) in collaboration with Department of Mathematics, SGC Tadong 
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