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Chapter 1  

Introduction       

 

1.1 Introduction 

Topographic sheets (TS) neatly organize various morphological features of a landscape 

as superimposed thematic layers. It represents the Earth’s morphological features, both 

natural and man-made, on the earth’s surface accurately on a two-dimensional plane 

using distinguishable color codes and standard symbolism. The different features 

include network and landmarks (roads, railways, landmarks, etc.), hydrography (lakes, 

rivers, streams, etc.), relief (mountains, depressions, valleys, etc.), and land use. The 

morphological features represented on the TS may be categorized as points, lines, or 

polygons, as shown in table 1.1 (page no 2). A point may be used to represent 

landmarks, etc. Likewise, roads, rivers, etc. are of type line, whereas boundaries, 

reservoirs, contours, etc. are of type polygon. 

 

The method of extracting these morphological features along with the associated 

attributes from the map is known as digitization. The process of selecting a feature of 

interest from a layer is referred to as vectorization, as shown in figure 1.2 (page no 3). 

These extracted features, along with their associated attributes, are used for various 

types of morphological analyses.  

 

The vectorization process may be manual, semi-automatic, or fully automatic. The 

traditional approach, which adopts a manual process for creating vectors for the 

reference map, calls for increased participation of the digitizer in the digitization 
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process as every aspect of the feature must be manually selected and inducted into the 

respective vector. This expensive approach not only demands greater time but is also 

highly susceptible to human-induced errors; such an error-prone scientific basis may 

adversely hamper the research findings. 

 

 

Figure 1.1: Sample Topographic Sheet [1] 

 

Table 1.1: Examples of Point, Line, and Polygon Features in Topographic Sheet [2] 

Feature Symbolism Examples 

Point 

 

• Landmark 

• Cities/ Towns 

• Point of Interest 

Line 

 

• Road 

• Railway 
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• River 

• Contour 

Polygon 

 

• Watershed 

• Contour 

• Reservoir 

• Boundary 

 

 

Figure 1.2: Sample Raster and Vector Layers in Geographic Information System 

(GIS) [3] 
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Even the semi-automatic computational GIS-based application calls for increased 

human participation, making it relatively ineffective, and the accuracy of digitization 

done through such platforms depends on the experience of the digitizer. 

 

 The inherent lag of both manual and semi-automatic digitization approaches 

consequently presents an opportunity to explore the avenue of conceptualizing and 

realizing a reliable, cost-effective, and self-learning computational system that 

generates a high-speed, high-quality digitized feature set and can be pursued as a 

suitable alternative for existing techniques. The creation of such a computational 

system would, to a great extent, elevate the ability and efficiency of the GIS-based 

application.  

 

These automatic techniques can be further advanced in order to transform digitized 

dataset in 2D (Two dimensional) representation to 3D (Three dimensional) by 

incorporating additional features as the representation of a 2D TS in 3D space eases 

visualization, understanding, and analysis of any morphological features.  

 

A TS is superimposed representation of various morphological features that can be 

broadly categorized into points, lines, polygons, and text as shown in figure 1.1 (page 

no 2). Landmarks is an example of point feature, contour lines, river network, and 

roadways are examples of line features whereas boundary, and lakes are examples of 

polygon features.  

 

Contour line is a prominent feature in a TS which is a 2D representation of a 3D isoline. 

Further, contour lines are the imaginary lines that connect the points at an equal 
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elevation from a reference level. Contour lines are crucial components of a TS, as these 

lines along with associated elevation values are used for constructing Digital Elevation 

Model (DEM). There are different 3D representations of the earth's surface: DEM, the 

Digital Surface Model (DSM), and the Digital Terrain Model (DTM).  

  

A DEM represents an elevated surface as represented in figure 1.3 (page no 5). The 

construction of DEMs from a TS with the desired accuracy is still a challenge in the 

studies related to GIS. This calls for conception and realizing of an able computational 

system that aids the researcher in generating quality and reliable DEM which may be 

used as scientific basis for GIS-based research initiatives. DEM has applications 

ranging from urban planning such as transport networks and hydrological management 

to emergency operations such as mapping landslides and the creation of relief maps, to 

name a few. 

 

 

Figure 1.3: Sample Digital Elevation Model from TS [4] [5] 

 

The river network is another important feature represented in the TS, which is 

extensively used in GIS based research initiatives. It is a networked collection of a wide 
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variety of streams, confluences, and bifurcations as shown in figure 1.4 (page no 6). 

Computationally, a river network may be perceived as a non-linear organisation of 

streams. Stream order is a numeric value associated with a stream that reflects its 

significance to the river network and ranges from 1 to 12. Based on stream order, 

streams are classified as headstreams, medium streams, and rivers, where headstreams 

feed the medium streams and the rivers. The shape of the river network may be either 

dendritic, sub-dendritic, trellied or lattice, radial or concentric, parallel, sub-parallel, 

rectangular, deranged, centripetal, centrifugal, annular, or violent, depending on the 

geological and geomorphological characteristics of the landscape.  

 

  

Figure 1.4: Sample River Network 

 

Automatic techniques may be conceived for digitization of river networks and may be 

advanced further for associating attributes such as stream order, stream number, 

bifurcation ratio, streams participating in bifurcation ratio, weighted mean bifurcation 

ratio, stream length, mean stream length, streams participating in length ratio, weighted 

mean length ratio, and length of the main channel. 

 

With every identifiable morphological feature, contextual annotation is adequately 

incorporated in the TS for elevating the significance of the feature or for associating 
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attributional values with the features. For example, with contours the elevation values 

are incorporated either in singular or in intervals. Likewise, names are associated with 

rivers, transportation networks, and landmarks as shown in figure 1.5 (page no 7). Since 

the volume of the information content is tremendous, traditional manual approach of 

extracting the relevant content may be time consuming, expensive, and un-effective. 

Alternatively, a knowledge enabled (learning based) automatic computational process 

may be conceived for performing the same. The performance of such automatic 

processes may be further refined with extensive learning and perfective advancements. 

 

 

Figure 1.5: Sample Topographic Sheet [1] 

 

1.2  Research Gap 

On the basis of a review of related articles, it can be stated that the proposed research 

initiative should take into account the following crucial aspects while designing a 

suitable framework for the research objective: 

a) The resolution of the TS contributes to a great extent to the complexity of the 

problem.  
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b) Feature selection and representation depend greatly on the integrity and 

effectiveness of computational processes designed for the digitation process.  

c) A need-based preprocessing technique deployed in the digitization of various 

morphological features may lead to a loss of valuable information. Therefore, 

integrity-preserving restoration mechanisms need to be carefully planned and 

conceived in such a manner that it does not add significantly to the overall 

complexity.  

d) A TS explicitly portrays some of the important morphological features that are 

crucial to GIS-based applications. Some of the prominent features are river 

networks, annotations (including elevation and text), and contours.  

e) A river network is a collection of streams with varying significance, confluences, 

and bifurcations. Computational processes planned and conceived for efficiently 

characterizing river networks should be capable of identifying various network 

characteristics as well as generating associated attributes.  

f) Annotations in the form of elevation values associated with contours and names 

associated with other morphological features add necessary semantics. Therefore, its 

effective localization and recognition through effective computational processes are 

crucial for associating qualitative and quantitative values with the morphological 

features.  

g) The morphological landscaping of a terrain is expressed using contour lines. 

Elevation values are associated with contour lines (individual or at intervals), which 

are used for transforming the contours into an elevation model in 3D space. 

Computational processes need to be suitably crafted for identifying contours, 

maintaining their continuity, and regenerating shape while preserving contour lines 

wherever deemed necessary.  
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h) A need-based accuracy assessment is deemed necessary for quantitatively justifying 

the ability of the conceived computational processes. 

 

1.3  Problem Definition 

"A traditional approach to digitization incurs greater effort, time, and cost investment 

with a probability of compromise on quality and integrity, which will definitely have 

an adverse impact on its reliability." 

 

1.4  Research Objectives 

With light on the above-stated issues of concern, the research initiative should be 

motivated towards the achievement of the following articulated goals: 

a) Conceptualize and realize a knowledge-based computational process for 

digitization of certain morphological features from a TS preserving it structural 

integrity and its need-based enhancement. 

b) Identify morphological features such as river network, annotations, and contours 

along with their qualitative and quantitative attributes. 

c) An integrity preserving, low-cost, and computationally effective interpolation 

technique for projecting the features in the 3D space for effective visualization. 

 

1.5  Proposed Solution Framework 

In order to realize the aforementioned objectives, the research initiative implements the 

following module, as represented in figure 1.6 (page no 11): 

a) Colour segmentation-based feature selection mechanism is deployed for digitizing 

features of interest from the TS. Further, purpose specific filters are deployed for 
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eradicating insignificant elements as well as for incorporating significant elements 

omitted as a consequence of imprecise segmentation. 

b) Devise supervised learning-based approaches for feature selection and the 

generation of basic attributes. 

c) Devise methods for thresholding, noise removal, thinning, elimination of multiple 

paths, and traversal mechanism based on the demand of the feature under 

consideration. In situations where the loss of information is inevitable, a need-based 

automated process for restoration is mandated. 

d) This research initiative is motivated towards digitization and processing of 

geomorphological features, namely, river networks, elevation values, and contours 

from a TS. 

e) Conceive and realize knowledge-based automated process for identifying river 

patterns and their associated attributes, such as stream order, stream number, 

bifurcation ratio, streams participating in bifurcation ratio, weighted mean 

bifurcation ratio, stream length, mean stream length, streams participating in length 

ratio, weighted mean length ratio, and length of the main channel. 

f) Conceive and realize learning-based automated process for localizing annotations in 

a TS and associating aligned semantics with the same. 

g) Deploy a cost-effective and efficient traversal mechanism for the identification and 

segmentation of contour lines. In addition, conceive methods for restoring missing 

information as well as for generating additional information necessary for feature 

refinement. Further, devise a method for transforming digitized contours into 3D 

space. 

h) Correlate the results obtained through the various conceived modules with the 

existential ground truth reality, considering selective samples. 
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Representation of research objectives in modules 

Module 1  Module 2  Module 3  Module 4  Module 5 

Image 

Interpretation  and  

Preprocessing 

 Analysis of River 

Pattern 

 Analysis of Contour 

Line 

 Analysis of Text  Contour Line 

generation and 3D 

Visualization 

Interpretation  Extraction using 

Segmentation 

 Extraction using 

Segmentation 

 Text Localization  Interpolation of 

contours 

Skeletonization  Vector Generation  Morphological 

Correction 

 Detection  3D visualization 

Noise Removal  Traversal  Reconnection  Recognition   

  Identification of 

river segments 

      

  Generation of 

associated attributes 

      

  Accuracy Assessment 

 

Figure 1.6: Block diagram representing different modules for proposed research 
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1.6  Thesis Contribution 

The following are the valuable contributions made by this research work in the design 

and development of a fully automated computational system for facilitating digitization 

of features in TS and creation of DEM: 

a) Identification, extraction, and representation of morphological features  

b) Classification of river pattern and generation of associated attributes 

c) Identification of contour lines, its tracing, reconstruction, and representation  

d) Localization, detection, and recognition of text from a TS 

e) Generation of intermediate contour lines, and its 3D visualization 

 

1.7  Potential for Applications 

The objectives and the abilities of the algorithmic procedures proposed in this research 

initiative has been conceived to address requirements of variety of geo-morphological 

studies such as: 

a) Automatic extraction of contour lines, their refinement, and subsequent generation 

of shape preserving morphological elements are necessary for preserving the 

integrity and continuity of the feature of interest. Such procedures would prove 

effective in studies related to landscaping, land use planning, and the generation of 

elevation models for terrain analysis. 

b) Automatic extraction of river networks, their refinement, and subsequent 

generation of attributes such as stream order, stream number, bifurcation ratio, 

streams participating in bifurcation ratio, weighted mean bifurcation ratio, stream 

length, mean stream length, streams participating in length ratio, weighted mean 

length ratio, and length of the main channel, which are crucial for hydrological 

analysis. Such procedures combined with elevation models would help in 
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hydrological modeling, and when combined with satellite data, they would also 

help in effective flood mapping and its zonation.   

c) Automatic extraction of texts and their refinement would prove crucial for 

associating semantics with morphological features such as elevation with contours 

and name with other morphological features. If accurately identified, then the 

elevation values may be put to use for the generation of an elevation model. 

d) The product of DEM has wide applications stretching from scientific, commercial, 

industrial, and operational. Hydrological modeling, morphological analysis, 

climatic impact behavior, etc. are some examples of scientific applications. In the 

commercial sector, geological exploration, planning, construction, etc. are a few 

examples. From the perspective of industrial applications, aviation, telecom, 

tourism, mining, etc. are a few examples. The DEM can also be used to extract 

terrain parameters for planning highways, modelling water flow or mass movement 

(for example, landslides), creating relief maps, etc., and many more. A precisely 

constructed DEM can be further transformed into a DSM and DTM for better 

visualization and representation. 

 

1.8  Organization of the Thesis 

  a)  Chapter 1: Introduction: It presents different morphological features represented 

by TS. It highlights the importance of developing a fully automated computational 

system for the extraction, refinement, and generation of attributes associated with 

various morphological features represented in the TS. Here, the motivations behind 

these research initiatives have been categorically expressed. The methodological 

framework adopted for the proposed research initiative has been highlighted in this 

section. Further, various scopes for the use of such a process have been discussed. 
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 b)  Chapter 2: Literature Survey: It highlights various achievements made by 

researchers globally in the field of automatic digitization. The different techniques 

and methodologies adopted by researchers and scholars for feature extraction, 

refinement, and representation of regions of interest (ROI) have been critically 

reviewed with regards to methodology used, achievements made, advantages, 

disadvantages, challenges encountered, and scope for future advancements. This 

cross-sectional analysis greatly helped and assisted in building the research 

initiatives. 

 

c) Chapter 3: Extraction of River Pattern, its Refinement and Attribute 

Generation: In this section, an effort has been made to understand various types 

of river patterns and the significance of the attributes related to them. This section 

aims at digitizing river segments, their refinement, and implementing eight river 

ordering techniques: Classic Stream Order, Strahler Stream Order, Horton Stream 

Order, Shreve Stream Order, Scheidegger Stream Order, Order by Path Length, 

Consistent Stream Order and Cumulative Stream Order. Associated with each of 

these ordering techniques is the generation of attributes, namely stream order, 

stream number, bifurcation ratio, streams participating in bifurcation ratio, 

weighted mean bifurcation ratio, stream length, mean stream length, streams 

participating in length ratio, weighted mean length ratio, and length of the main 

channel. 

 

d) Chapter 4: Extraction of Contour Lines, its Refinement and Attribute 

Generation: In this section, an effort has been made to understand the 

morphological significance of contour lines and their role in the generation of 3D 
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visualizations of a given geographical landscape. Here, the contour lines are 

digitized and refined to ensure connectivity arising from an inaccurate 

segmentation process. 

 

e) Chapter 5: Extraction of Associated Text, its Refinement and Attribute 

Generation: The TS contains different types of text, namely, elevation values and 

names of features. Moreover, these text features intersect or overlap with other 

geographical features, making their recognition challenging. This section discusses 

a machine learning model used for recognizing text present in the TS in an efficient 

way. 

 

f) Chapter 6: Generation of Digital Elevation Model from Refined and 

Generated Contour Lines: This section presents the morphological operation 

adopted for interpolating shape-preserving points between the existing contour 

lines. It deploys an unsupervised technique for identifying all possible structural 

operators present in a set of sizable samples. These structural operators were then 

closely analyzed to assign an appropriate angular direction for traversal based on 

some feature-specific reference points. Eventually, the distance values of the 

directional movements were appropriately portioned to place suitable operators for 

the generation of the interpolated contour lines. Finally, the contours are plotted in 

3D space to generate an elevation model.  

 

g) Chapter 7: Summary and Conclusion: This section highlights the achievements 

of the research initiative, and it’s the scope for seamless integration to GIS based 

applications. It also presents the pertinent challenges and possible extensions for 

future research initiatives. 
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1.9  Conclusion 

This chapter of the thesis illustrates the distinct characteristics of different 

morphological features represented on typical topological sheets and emerging need for 

the conception and realization of an algorithmic approach for their automatic 

digitization for use in GIS-based applications. It highlights the pertinent research gap 

in cognition, to which the problem definition has been articulated. With the problem 

definition in sight, the achievable research objectives have been suitably framed. This 

chapter also presents the proposed solution framework adopted for the attainment of 

the research objectives. Subsequently, some notable contributions achieved through the 

research initiative are also presented, with potential for applications in the allied 

domain. 
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Chapter 2 

Literature Survey  

 

2.1 Types of morphological features and the need for extraction, 

identification, and categorization 

A TS is a scale governed representation that highlights various geomorphological land 

features with the help of distinctive color codes. These maps are produced in a manner that 

the features are superimposed for ease of representations which can be distinguished 

through visual inspection.  These land features can be categorically partitioned into either 

of the following shapes: point, line, or polygon. A landmark can be considered as a typical 

example of a point feature whereas road network, river network, contour lines and 

boundaries represent line feature. Likewise, lakes, islands and demarcated enclosures are 

examples of polygon features.  

 

Inferential studies relating to these morphological features mandates extraction of land 

features. This activity is termed as Digitization. The digitization of a scanned TS can be 

performed either using manual, semi-automatic or fully automatic techniques. Manual and 

semi-automatic techniques mandate human intervention. Whereas a fully automatic 

technique mandates establishment of comprehensive knowledge pertaining to the features 

before the initiation of digitization process. The integrity of the result from such technique 

greatly correlates with the integrity of the knowledge basis. In addition, such techniques 

leverages on computational capabilities of the hardware system generating outcome within 
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limited time in contrast to manual or semi-automatic techniques. Induction of such 

knowledge based computational approaches into geomorphological studies has opened 

numerous opportunities for conceptualization and realization of automatic feature 

extraction processes minimizing effort and time requirement further elevating the quality 

and accuracy of the research findings. 

 

These geomorphological features can be further explored and analyze to derive crucial 

attributes for studies. These attributes can be categorized into either basic attributes or 

derived attributes. Some of the crucial geomorphological features considered for study in 

this research initiative are river networks, contour lines, and textual contents embedded in 

the TS. 

 

River Network is an integral part of TS that highlights streams, confluences and 

bifurcations. Digitization of the same greatly helps in acquiring valuable information 

related to the basic attributes related to the river network such as network types, stream 

length, its coordinate orientation, bifurcations and confluences. These basic attributes can 

be further analyzed to derive attributes such as stream number, stream order, bifurcation 

ratio, streams participating in bifurcation ratio, weighted mean bifurcation ratio, mean 

stream length, streams participating in length ratio, weighted mean length ratio, and length 

of the main channel. These feature aids in understanding and analysis of river patterns, the 

source and tributaries thus helps in hydrological analysis.  
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Contour lines are isolines created by connecting points that are located at same elevation 

from a given reference point. Contour lines are non-intersecting lines that may take any of 

the following forms based on the morphological orientation of the landscape: lines, 

enclosures, and island. These contour lines are labeled with elevation values (in intervals), 

interpolation can be performed for deriving elevation values for contour lines that does not 

have an explicit elevation value associated with it.  These lines are crucial for creating 

elevation model often referred to as DEM, which forms the basis of many 

geomorphological studies related to terrain. The construction of a DEM from a topographic 

sheet is not a trivial task because of various inherent processes involved in it, such as 

segmentation of features due to false color, reconstruction of lost features due to the 

segmentation process, elevation value localization associated with a specific contour for 

mapping into 3D space, complex elevation feature recognition like overlapped elevation 

values, and interpolation of projected features in a 3D space, to name a few.  

 

With every identifiable feature represented in the TS, textual annotations are incorporated 

in order to elevate or associate meaningful semantics. This includes names with features 

such as, landmarks, rivers, and enclosures, elevation values with contours, etc. These 

annotations are represented with the help of uniform font type and size in a given 

representation. Detection and recognition of the same is crucial for adding qualitative and 

quantitative values to the digitized features. Very little research has been initiated towards 

development of fully automated digitization of river networks and generation of associated 

attributes, digitization of contours, its refinement and its automatic projection enabled 

through localization of elevation values and its recognition. 
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2.2 Extraction of River Pattern, its Refinement, and Attribute Generation 

In nature, a river network is a hierarchical, heterogeneous arrangement of streams and 

confluences [6] which are often found to be anastomosing or wandering [7] [8]. Wandering 

networks are seen in braided morphological environments, whereas anastomosed networks 

are seen in flood plains that are divided by islands [9]. River network has in it river 

segments, confluences and bifurcations. 

 

 The river segments in a river network are assigned a positive whole number called the 

Stream Order [10] that marks the relevance of the segments to the river network. The 

process of associating order with the segment in the drainage network is referred to as 

stream ordering [11]. River ordering is greatly influenced by the various mechanisms 

(stream ordering concepts) adopted for achieving the same. It may be done either by the 

processing of satellite images, TS, through the analysis of DEM, or through physical 

observation of the river network [12] [13]. 

  

Some of the notable stream ordering techniques used are Classic Stream Order (Hack's 

Stream Order or Gravelius' Stream Order) [14], Strahler Stream Order [15], Horton Stream 

Order [16], Shreve Stream Order [17] [18], Scheidegger Stream Order [19] [20],and Order 

by Path Length [21] [22], 

  

These techniques can be broadly categorized into three categories based on the traversal 

strategy adopted: bottom-up, top-down, or both. It has been observed that Classic Stream 

Order and Order by Path Length perform backward traversal, Strahler Stream Order, 
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Shreve Stream Order, and Scheidegger Stream Order perform forward traversal, whereas 

Horton Stream Order performs both. A set of well-defined ordering criteria makes Strahler 

Stream Order relatively stable and applicable over other ordering techniques. 

Computationally, Horton Stream Order is relatively complex and time-consuming 

compared to the other techniques, but it performs ordering that closely resembles natural 

occurrences. One of the procedural lags in the cases of Classic Stream Order and Horton 

Stream Order is uncertainty in reaching the true source, which mandates human 

intervention to guide the selection of the true source from the mainstream. 

  

Stream order plays a pivotal role in the determination of other network parameters such as 

Bifurcation Ratio (Rb), Stream Number (Nω), Stream Length (Lω), Mean Stream Length 

(Lωmean), Stream Length Ratio (RL), Area Ratio(RL), Weighted Mean Bifurcation Ratio 

(Rbwmean) and Length of Main Channel (Cl) [23] [24] [25]. 

  

As per Hortons, the bifurcation ratio varies depending on the landscape, with values 

ranging between 2 to 3 or 4 on the contrary Strahler stated that the bifurcation ratio is highly 

stable, with very little variation from region to region with an average value of about 3.5. 

According to Horton, the number of segments with a given order geometrically decreases 

with stream order, whereas the mean length of the segments with a given order 

geometrically increases with stream order. Schumm [26] further added that the drainage 

basin area geometrically increases with stream order. 
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The River Continuum Concept (RCC) [27] [28] and process domains [29] in regard to the 

gradient [30] [6] play a significant role in describing the longitudinal variations in 

morphological, ecological, physical, biological, and geomorphic characteristics and basin 

variability [31] [32] that occur along the network. Ecological status is used for tracking the 

ecological health of rivers and is represented with the help of these categorical values [33] 

[34] [35]. Buttner et al [21] established relationships between various river parameters such 

as urban wastewater-river discharge fraction (UDF), agricultural land use fraction (ALF), 

and ecological status with the stream order. 

  

Some of the most comprehensive river datasets under the regime of the European Union 

Water Framework Directive (EU-WFD) have been established for accessing the ecological 

status of various water bodies along with the network with the aid of physicochemical and 

hydro-morphological characteristics [36] [37]. 

 

 Natural or anthropological causes greatly influence the shape of the river network and the 

hydrology [38]. Some of the crucial aspects influencing river networks are ecoregion-

dependent susceptibility [39], land use and land cover [40] [41], demographic distribution, 

sprawling [42] [43] [44], carry-over effects [45], convolution of loadings from upstream to 

downstream [46], flow splitting [47], bank capacity, and flow capacity [48] [49]. Temporal 

analysis suggests that geology and tectonics have significantly contributed to the structure 

and orientation of river networks [50] [51].  

  



Page 23 of 329 

 

With due regard to the above-mentioned facts, it can be inferred that understanding river 

networks and deriving their associated characteristics is extremely essential for studies 

related to hydrological and geological analysis. Michael et al [52] have proposed an 

automated river network processing technique for assuring consistent river network 

representation in topographic data to address the demand for accurate high-resolution flood 

hazard mapping for assessing rising river floods and determining suitability for 

infrastructure development. This work also expresses the disability of the automatic 

processes, especially in regard to lengthy underground river segments. The methods were 

applied to a case study in Austria for improving the data quality for flood danger mapping 

and hydraulic modeling. 

  

Muthusamy et al [53] evaluated the effectiveness of the Digital Elevation Model (DEM) in 

urban flood modeling using data from a flood occurrence in the region of interest. The 

proposed technique merged DEMs by combining a higher-resolution DEM for the river 

channel with coarser-resolution DEMs for surrounding areas for flood modeling. 

  

The crucial process of river capture has an impact on drainage patterns, which in turn 

influences sediment dispersal and biotic evolution. However, identifying river capture 

events currently relies on manual observations by geomorphologists, which can be time-

consuming and costly. Q. Ma et al [54] introduced an innovative technique for automatic 

river capture detection based on planform morphology. Huang et al [55] emphasized the 

importance of topographic data and geomorphological factors in the hydrological response 

of river basins. It proposes a machine learning approach to forecasting water depth and 
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discharge. The stream network's structure and distribution are taken into account, and a 

data classification method is used to give the model sufficient performance in predicting 

hydraulic variables.  

  

Gasnier et al [56] highlighted the importance of river monitoring for both societal and 

scientific purposes, taking into account the resources rivers provide and the risks that 

flooding events bring. In order to solve this issue, the author provides a novel river 

segmentation approach for SAR (Synthetic Aperture Rader) images using a priori datasets 

like Global River Widths from Landsat (GRWL). The approach combines a conditional 

random field methodology, historical river centerline data, and a linear structure detector 

to precisely determine river borders.  

 

 River classification is one of the inherent steps involved in understanding a river network. 

These techniques can be either descriptive or based on a well-defined process. It is often 

seen that descriptive approaches are quantitative [57] in nature, whereas process-based 

approaches are qualitative or conceptual [58]. Integration of descriptive approaches with 

GIS applications aided by aerial photography [59] would greatly aid in the characterization 

of river networks [60] [6]. 

  

Process-based approaches may be combined with the DEM models to facilitate the 

interpretation of the spatial and temporal patterns of river networks. Classification of the 

river network has tremendous potential in monitoring the condition of the ecosystem, 

measuring and monitoring physical and biological parameters, and planning developmental 
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initiatives along with the river network [61] [62] [10] and is largely dictated by the pattern 

of the river network [29] [63]. It has been observed that most of the research initiatives 

motivated by the identification of river networks and their characterization either use the 

DEM or satellite imagery. 

 

Dai, Z., et al [64] proposed a novel automated bottom-up method for stream classification 

and hydrologic modeling. The suggested method automatically generates the hierarchical 

structure of dendritic river systems and their related hydrological characteristics by 

combining digital elevation models, hydrological measurements, and a series of 

algorithms. The proposed technique efficiently classifies stream segments into different 

orders and precisely predicts hydrological characteristics like discharge, flow velocity, and 

travel time. The author also compares the outcomes of the automated system with those of 

conventional manual approaches and suggests the automated method is quicker, more 

reliable, and capable of handling large datasets. The suggested automated bottom-up 

hydrologic coding system can increase the accuracy and efficiency of stream categorization 

and hydrologic modeling, which has significant implications for environmental 

management, water resource planning, and assessing the impact of climate change. One of 

the major limitations is that the system relies heavily on digital elevation models and 

hydrological observations, which may have errors or inaccuracies. The proposed system is 

designed for dendritic river systems, which have a hierarchical structure and may not be 

suitable for all types of river systems, like braided or meandering rivers, which may require 

different classification approaches. It may also not fully capture the complex physical 
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processes that occur in river systems, such as sediment transport, erosion, and bank 

stability. 

 

 Rieger, W. [65] proposed a two-step algorithm for automatically extracting river networks 

and catchment areas from the DEM. The algorithm works by analyzing the slope and 

direction of the terrain, which is represented by the DEM. The river network is identified 

by tracing flow paths from the highest points in the terrain to the lowest points. The 

catchment areas are computed by determining the drainage basins for each point on the 

river network. A comprehensive assessment of the algorithm was performed using DEM 

from several real-world examples, including a large river basin in China and a mountainous 

region in the United States, and compared the results with manually delineated river 

networks and catchment areas, demonstrating that the automated approach achieves high 

accuracy and efficiency. 

  

The proposed methodology assumes that the DEM data used to model the topography 

accurately, that the river network is well-connected, and that it can be followed from the 

highest to the lowest places. It also depends on a particular set of standards and 

characteristics, which may need to be modified for various terrains and hydrological 

circumstances. The effects of manmade elements, such as dams, levees, or changes in land 

use, which can drastically alter the natural river network and catchment areas, are also not 

considered. 
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Xue, Y. et al [66] and Ciaburri, C. et al [67] proposed a new technique for extracting 

information pertaining to mountain river surface and width using high-resolution satellite 

pictures for managing water resources and hydrological modeling in mountainous regions. 

The proposed methodology adopts image processing techniques, machine learning 

algorithms, and river network information to identify and extract river boundaries. It also 

integrates river network information and digital elevation models to estimate river widths 

and adjust for terrain slope and relief. The authors admit that seasonal variations in water 

flow and sediment transport might cause changes in river shape over time and propose that 

future research could investigate techniques for monitoring these changes. 

  

In the past, several initiatives have been proposed for extracting morphological features of 

river networks based on automated computer-based extraction procedures [68] [69], DEM 

[70] [71] [72], reduced scale maps [73] and LiDAR [72]. 

  

Most of the research initiatives highlighted above have either used DEM or satellite 

imagery to extract river networks and associated attributes. These approaches are efficient 

but greatly rely on the accuracy of the DEM and the resolution of the satellite imagery. 

Further, such initiatives are realizable only in situations where the researchers have access 

to corresponding DEM or satellite imagery. 

 

Table 2.1 (page no 28) presented below compares the various river ordering techniques 

based on approach, number of passes required, advantages and disadvantages, and the need 

for human intervention. 
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Table 2.1: Comparison of the various ordering techniques 

Sl. Technique Approach Passes 

Required/ 

Computation 

Cost 

Advantage Disadvantage Human 

Intervention 

a) Classic 

Stream 

Order 

Backward/ 

Bottom-

Up 

Two/ 

Low 

Simple to use, easy to 

understand, and intuitive. 

• Determination of the true 

source of the river calls for 

the assistance of an 

intelligent decision support 

system. 

• Computationally, it requires 

two passes. 1st pass for 

determining the order of the 

mainstream and 2nd pass for 

assigning the order. 

Yes 
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b) Strahler 

Stream 

Order 

Forward/ 

Top-

Down 

One/ 

Low 

• It is consistent and has a 

sound mathematical 

basis. 

• Systematic and cost-

effective.  

• Traversal criteria are 

well-defined, reliable, 

easy to understand, and 

easy to use. 

 

• In a situation, if there are 

streams with different orders 

arriving at a confluence, it 

considers the influence of 

only the highest order stream 

for deciding on the order of 

the resulting stream, while it 

ignores the lower order 

streams.  

• It does not allow for 

distinguishing the 

mainstream from another 

stream which in turn will 

hamper the statistical and 

analytical processes. 

No 
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c) Horton 

Stream 

Order 

Forward/ 

Top-

Down 

Backward/ 

Bottom-up 

Two/ 

High 

It prioritises the river 

segments in a manner that 

closely resembles natural 

occurrences. 

• The network should satisfy 

“Horton Net”. 

•  An effective decision is to 

be made at each confluence 

to determine the true source 

of the river. 

• Computationally complex as 

it is executed over 2 passes. 

In the 1st pass, Strahler 

Stream Order is used to 

order the stream and then the 

network is backtracked for 

assigning Horton order. 

Yes 

d) Shreve 

Stream 

Order 

Forward/ 

Top-

Down 

One/ 

Low 

• It is intuitively simple. 

• It considers the influence 

of all the streams for 

• The network should satisfy 

“Horton Net." An effective 

decision is to be made at 

No 
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determining the order of 

the resulting stream. 

• Traversal criteria are 

well-defined, reliable, 

easy to understand and 

use 

each confluence to 

determine the true source of 

the river.  

• Computationally complex as 

it is executed over two 

passes. In the first pass, 

Strahler Stream Order is 

used to order the stream, and 

then the network is 

backtracked to assign 

Horton Order.  

• Identification of the actual 

source is difficult. 

e) Scheidegger 

Stream 

Order 

Forward/ 

Top-

Down 

One/ 

Low 

• It is intuitively simple.  

• It takes into account the 

influence of all the 

Identification of the actual 

source is difficult. 

No 
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streams in determining 

the order of the resulting 

stream. 

• Traversal criteria are 

well-defined, reliable, 

easy to understand, and 

easy to use. 

f) Order by 

path length 

method 

Backward/ 

Bottom-up 

One/ 

Low 

Traversal criteria are well-

defined, reliable, easy to 

understand, and easy to 

use. 

Identification of the actual 

source is difficult. 

No 

g) Consistent 

Stream 

Order 

Forward/ 

Top-

Down 

One/ 

Low 

• It takes into account the 

influence of all the 

streams in determining 

the order of the resulting 

stream.  

• Identification of the actual 

source is difficult. 

• Computation intensive. 

No 
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• Traversal criteria are 

well-defined, reliable, 

easy to understand, and 

easy to use. 

h) Cumulative 

Stream 

Order 

Forward/ 

Top-

Down 

One/ 

Low 

• It establishes a direct 

relationship with 

discharge as it takes into 

account the influence of 

all the streams in the 

watershed when 

deciding on the order of 

the resulting stream. 

• Traversal criteria are 

well-defined, reliable, 

easy to understand, and 

easy to use. 

Identification of the actual 

source is difficult. 

No 
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2.2.1 Inferences drawn from the existing literature 

Some of the inferences drawn from the study of associated literature are: 

a) The River Network is a hierarchical arrangement of streams of various degrees of 

influence, represented with the help of an ordinal value called Stream Order. 

b) There are identifiably eight stream ordering techniques: classical, Strahler, Horton, 

Shreve, Scheidegger, Order by Path Length, Consistent, and Cumulative. 

c) There are many attributes that may be associated with streams in a river network, some 

of which are as follows: Stream Order, Stream Number, Bifurcation Ratio, Streams 

participating in Bifurcation Ratio, Weighted Mean Bifurcation Ratio, Stream Length, 

Mean Stream Length, Streams participating in Length Ratio, Weighted Mean Length 

Ratio and Length of Main Channel. 

d) These attributes play a crucial role in studies related to river networks such as 

morphological (dynamic) change analysis, flood mapping, tracking the ecological 

health of river networks, etc. 

e) These river networks can be drawn either through the analysis of DEM or the physical 

observation of topographic sheets. 

f) Traditional research initiatives motivated by the morphological analysis of river 

networks deployed manual approaches for the digitization of river networks. 

g) Manual approaches are extremely time-consuming and expensive; moreover, the 

quality of the results of such digitization techniques is often found to be highly 

inaccurate and subjective in nature. 

h) In addition, quantifying the values of the associated attributes is also extremely labor-

intensive and time-consuming using such manual approaches. 
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i) Semi-automatic techniques overcome some of the limitations of the manual approach, 

but increased human interference makes such processes highly ineffective and 

inefficient. 

j) Therefore, it is essential to conceive and realize fully automatic techniques for 

extraction, pre-processing, morphological refining, traversal, ordering, and generating 

attributes related to a river network. 

k) Computational time and space requirements should be essential considerations while 

devising such methods for the attainment of the above-highlighted objectives. 

 

2.2.2 Research motivations 

The proposed research initiative is motivated by conceiving an efficient generic 

computational programme capable of sequentially performing the stated activities for 

addressing the research gaps identified during the review of related works, 

a) Color-segment the river network from the topographic sheet. 

b) Pre-processing the segmented image to eradicate noise. 

c) Skeletonize the pre-processed segmented image to create features with single-pixel 

width. 

d) Resolve m-connectivity to facilitate efficient processing. 

e) Determine the terminal streams using an efficient spiral traversal mechanism. 

f) Identify all the stream segments by identifying all the confluences in the river network. 

g) Order the identified streams as per the principles of Classic, Strahler, Horton, Shreve, 

Scheidegger, Order by path length, consistent, and cumulative ordering techniques. 
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h) Associate attributes with river networks such as stream order, stream number, 

bifurcation ratio, streams participating in bifurcation ratio, weighted mean bifurcation 

ratio, stream length, mean stream length, streams participating in length ratio, 

weighted mean length ratio, and length of the main channel based on the principles of 

the ordering techniques. 

 

2.3 Extraction of Contour Lines, Their Refinement, and Attribute 

Generation 

The design and development of a fully automated system for extracting contour lines and 

reconnecting broken contour lines over time has been a challenging task. There has been 

several initiatives executed in the past for the reconstruction of broken contour lines using 

unique concepts and approaches for establishing a connection between the broken ends. 

Through the review, it was witnessed that reconnection of broken contours suffers from 

three major problems: localization of broken contour endpoints, selecting the best matching 

breakpoint pair, and efficiently reconnecting end pairs to preserve the continuity of the 

contour and its integrity. Identifiably, there are three ways of connecting broken contour 

lines: pixel-adjacency-based, continuity-based, and gradient-flow-based [74]. 

 

In pixel-adjacency-based approach, the terminal points are determined based on the 

similarity of intensity values in the adjacent pixels. Further, it deploys line drawing 

algorithm for establishing continuity. This approach mandates creation an adjacency 

matrix for determining fitting neighbors. The process incurs greater time and effort in 

situation if the input image is not adequately pre-processed. 
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The continuity-based technique makes use of either geometric or topographic features, or 

both. The same has been used by Chengming Li et al [74], wherein Frechet distance is used 

for selecting a similarity-based reference line based on which the broken endpoints are 

joined. However, it proves ineffective in situations where the resemblance between a 

selected reference line and the broken contour line is considerably low. Another commonly 

used Continuity-Based approach makes use of the Euclidean distance measure to 

reconstruct broken endpoints by drawing a straight line in an auxiliary direction [75] [76]. 

This method works effectively for plain surfaces and smaller breakpoint gaps but does not 

preserve the integrity of the original contour lines. 

 

Another widely used technique in raster images for contour reconstruction that preserves 

the continuity of broken contours is the geometric-based approach. Nikita D. [77] has 

proposed a complex method that uses geometric and relative grouping, maximum 

likelihood estimation, etc. for connecting broken contours in low-quality maps. E. Hancer, 

R. Sametet, et al [78] have adopted a geometric-based approach where a hybrid method is 

proposed to increase the efficiency of reconnecting by using geometric features as a basis 

for recognition. 

 

Wang Feng et al [79] used multiple incremental back-traced pixels for computing the 

weighted average directional angle to fill the gaps between broken contours. In addition, 

an angle control mechanism was used to handle complex topographic surfaces. To identify 
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matching endpoints, the deviation angle of the endpoint and weighted Euclidean distance 

were used. 

 

One of the important aspects of reconnecting a broken contour is identifying the broken 

end-point pair through a comprehensive problem-specific search process. Pradhan et al 

[80] have designed three different search techniques for locating broken end points of 

contours based on leech movement, water-flow movement, and wiper movement. It was 

observed that in the leech approach, the search space increased exponentially with the 

increase in the distance between endpoint pairs, thereby increasing computational 

complexity. However, by creating variable-sized sectors as search spaces in the water flow 

and wiper movement techniques, the author was able to efficiently manage the 

computational complexity. Further, it was also concluded that the technique is efficient in 

a scenario where the breakage of a contour is small. 

 

Bin Xu et al. proposed a mathematical formulation for calculating the probability of the 

endpoint being connected [81]. The probability of broken contour re-connection was found 

to be inversely proportional to the angle between tangent lines and the distance between 

the breakpoints. In some situations, the Euclidean distance between various candidate end-

point pairs was defined, and those points with the minimum distance were joined. 

 

A similar approach was also adopted by Khotanzad et al., using the A* search algorithm 

[82]. This algorithm works on the principle of selecting a path from the A* adjacency graph 

based on the minimum distance to fill broken gaps [79] [83] [82]. Sadia Gul et al. proposed 



Page 39 of 329 

 

a technique for finding matching pairs and connecting them using an incremental search 

window in which the endpoints are extended using tan-1 (∆y/∆x) for reconnection [75]. 

  

Further, the Delaunay triangulation and Voronoi diagram method were used [83] to 

interpolate the contour end-points, using the concept of the medial axis. Xin et al [84] [81] 

proposed a gradient model to retrieve contours and their reconnection. But, this method 

was found to be relatively slow and complex for practical purposes. Edge linking, the 

Newton Interpolation method, the curve fitting technique based on the regression model, 

Cubic spline interpolation, etc. [85] [86] [75] may also be used for joining related 

endpoints. It was stated that [87] Chaikin’s algorithm works with control polygons directly, 

unlike Bezier, is similar to a quadratic B-spline curve method, and provides an effective 

mechanism for drawing curves [87]. However, the robustness of the algorithm lies in how 

accurately it interpolates the contour points for complex terrains or terrains with severe 

breakage in contour lines to be reconstructed [74]. 

 

Many researchers have proposed a semi-automatic approach making use of distance and 

angle as a basis for reconnection, whereas some have used geometric or topographic 

characteristics for reconnection. But it was found that such methods may demand greater 

human intervention. 

 

Mansourifar et al [88] [89] [90] have discussed the geometric problem of data fitting for 

drawing curves in the case of real-time systems, considering constraints like less power 

usage, a minimum number of segments, a lesser execution time, etc. In the case of a larger 
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dataset, the traditional approach (iterative approach) demands greater usage of time for 

fitting curve data points. However, the proposed method uses a non-iterative approach 

based on shoulder point detection and a quadratic rational Bezier curve for fitting data 

points with minimum execution time and realistic accuracy [89] [90] [91]. 

 

Amirkhani et al [88] have proposed an evaluation method based on the subject of interest 

as perceived by the human eye for estimating vision density characteristics for assessing 

the quality of the image. The proposed technique uses penalty and compensation metrics 

to make the assessment procedure more reliable. It was also stated that the assessment of 

results may be either objective or subjective based on the availability of the reference map. 

The subjective method is most useful in situations where a reference image is not available 

for assessment of the results obtained; therefore, estimated vision density characteristics of 

the human eye may be relied upon. 

 

Table 2.2 (page no 41) presented below compares the various techniques for reconnection 

of contour lines considering strategy used for detection of terminal points and reconnection 

mechanism adopted, along with computational complexity, its advantages, and 

disadvantages. 
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Table 2.2: Comparison of various techniques for reconnection of contour lines 

Sl. 

No

. 

Descriptio

n 

Strategy used 

for detecting 

terminals 

Strategy 

used for 

Reconnectio

n 

Components of 

Computational 

Complexity 

Advantage Disadvantage Motivation 

a)  Pixel-

adjacency-

based 

reconnectio

n  

Determine 

terminal points 

based on the 

similarity of 

intensity values 

in the adjacency 

matrix. 

▪ Line 

drawing 

algorithm  

 

Creating an 

adjacency matrix 

Determining 

neighbors' 

reconnection 

▪ Simple and 

easy to 

understand. 

▪ Pixels in close 

proximity 

with similar 

intensity 

values may be 

identified as 

terminal 

points. 

In this situation, 

if the input image 

is not binarized, 

determining the 

similarity of 

intensity values 

may be difficult 

and time-

consuming. 

▪ The 

determinatio

n of terminal 

points 

should be 

proximity-

based. 

▪ The image 

should be 

binarized. 
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b)  Continuity-

based  

reconnectio

n 

  

Determines 

terminal edges 

based on 

orientation 

energies, 

alignments, or 

locations of the 

edges, 

exploiting 

curvilinear 

continuity. 

Using curves 

based on the 

orientation 

reduces the 

elastic 

function. 

▪ Edge 

detection. 

▪ Determining 

the curve with 

the minimum 

elastic 

function. 

▪ Placement of 

the curve 

between the 

edges. 

Generation of 

integrity-

preserving 

curves for 

reconnecting 

broken contour 

lines. 

▪ A continuity-

based approach 

never provides 

a closed, 

connected 

region.  

▪ Hard decisions 

may lead to 

improper 

detection of 

edges for 

reconnection.  

▪ It does not 

efficiently 

handle textured 

regions. 

Hard decisions 

should be 

avoided, as 

intensity 

values are 

highly 

dynamic. 
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c)  Gradient-

flow based 

reconnectio

n 

Here, the 

Riemannian 

metric is 

defined and 

combined with 

gradient flow to 

refine the snake 

model for 

determining 

terminal points 

for 

reconnection. 

The 

Euclidean 

metric is used 

for 

reconnection. 

▪ Creating a 

Riemannian 

metric. 

Combining 

gradient 

information with 

a Riemannian 

metric 

refinement of the 

snake model. 

Determination 

of the optimal 

search space for 

locating 

terminal points. 

▪ Computational

ly complex and 

time-

consuming. 

 

▪ Backtrackin

g is essential 

for 

determining 

the nature 

and 

characteristi

cs of contour 

lines. 

▪ Directional 

information 

is essential 

for framing 

optimal 

solutions. 
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d)  Chengming 

Li et al [74]   

To ensure 

continuity of 

broken contour 

lines, geometric 

or topographic 

features or both 

neighbouring 

contours are 

considered for 

determining 

terminal points. 

Densification 

of contour 

points is 

performed to 

reduce the 

proximity 

between the 

terminal 

points. 

Subsequently

, terminal 

points within 

proximity are 

reconnected 

to ensure 

continuity. 

▪ Determining 

the geometric 

or topographic 

features of 

neighbouring 

curves. 

▪ Densification 

of contour 

points. 

▪ Reconnection 

of terminal 

points. 

▪ Integrity 

preserving. 

▪ Generates a 

greater 

number of 

control points 

through 

densification, 

resulting in 

the generation 

of smooth 

curves. 

 

▪ Computational

ly intensive. 

▪ Generates a 

greater number 

of control 

points. 

▪ Heavily relies 

on the 

morphological 

orientation of 

neighbouring 

contours. 

▪ The creation of 

a greater 

number of 

control points 

Morphological 

information 

from adjacent 

contours 

proves 

decisive in the 

design of 

reconstructed 

contour lines. 
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may lead to 

incorrect 

connections.  

e)  Geometric 

based 

method 

 

The approach is 

based on crucial 

morphological 

information of 

contours, such 

as coordinate 

and geometric 

orientation and 

gradient, for 

determining 

terminal points 

for 

reconnection. 

▪ Cubic 

Spline 

Interpolatio

n or 

Newton 

Interpolatio

n Method. 

 

▪ Determining 

geometrical 

orientation in 

contour lines. 

▪  Determining 

gradient. 

 

▪ Computation

ally simple 

and easy to 

implement. 

▪ Suitable for 

handling 

simple 

breakages 

with a smaller 

distance 

between 

terminal 

points. 

▪ Inappropriately 

handles severe 

breakage along 

contour lines. 

▪ Miss-

connections 

between the 

terminal 

points. 

The 

morphological 

orientation of 

contour 

elements can 

be pursued as 

the basis for 

determining 

terminal 

points. 



Page 46 of 329 

 

f)  Maximum-

likelihood 

based 

approach 

Here, to reduce 

the size of 

search space, a 

probability 

function is 

associated 

along the 

directional 

alignment of 

the contours as 

it is observed 

that the 

probability is 

not equally 

likely along 

Line drawing 

algorithm. 

▪ Determining 

the probability 

distribution 

along the 

various angular 

orientations. 

▪ Reconnection 

of broken 

contour lines. 

Highly accurate 

and creation of 

optimal search 

space for 

determining 

terminal points. 

▪ Computational

ly complex and 

intensive. 

▪ The search 

mechanism 

should be aided 

by a quality 

decision-

support 

system. 

▪ Highly 

subjective and 

often prone to 

bias. 

The 

association of 

probability 

distribution 

with other 

contour 

features such 

as gradient and 

orientation 

would enable 

the selection of 

optimal 

terminal 

points. 



Page 47 of 329 

 

with all 

directions. 

g)  Weightage

d-average 

directional 

angle 

Terminal points 

are determined 

based on the 

average 

directional 

movement 

among the 

adjacent 

coordinates. 

Line drawing 

algorithm. 

▪ Back-tracking 

for 

determining 

the average of 

directional 

movement. 

▪ Reconstruction 

of lines. 

▪ It takes into 

account the 

cumulative 

influence of 

the 

alignments 

along with the 

contour 

coordinates. 

▪ It creates an 

optimal 

search space 

for 

determining 

It requires 

backward 

recursion for 

determining the 

average of 

directional 

movement. 

Backtracking 

is essential for 

determining 

the nature and 

characteristics 

of contour 

lines. 
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terminal 

coordinates. 

h)  Leech 

movement 

▪ Terminal 

points are 

determined 

by expanding 

the search 

window 

incrementally 

around the 

point of 

breakage. 

▪ Inter-contour 

distance was 

set as the 

Bresenhems 

line drawing 

algorithm. 

▪ Creation of a 

search window 

for the 

determination 

of terminal 

points. 

▪ Reconstruction 

of lines. 

▪ Simple, easy 

to understand, 

and easy to 

implement. 

All possible 

adjacent 

coordinates are 

searched for in 

determining the 

terminal points. 

Computationally 

inefficient, as 

search space 

exponentially 

grows with 

distance. 

The 

localization of 

search space is 

crucial for 

managing 

computational 

complexity. 
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criteria for 

expansion. 

i)  Water-flow 

movement  

Terminal points 

are determined 

by creating 

non-uniform 

sectors formed 

by aligning the 

flow of 

direction at 

different 

angles. 

Bresenhem's 

line drawing 

algorithm. 

▪ Creation of 

non-uniform 

sectors for the 

determination 

of terminal 

points. 

▪ Reconstruction 

of lines. 

▪ Creation of a 

variable 

search space 

based on the 

angle of 

alignment. 

▪ Requires 

considerably 

less search 

time 

compared to 

the Leech 

approach. 

The creation of 

non-uniform 

sectors is 

computationally 

complex and 

intensive. 

The direction 

of alignment 

should be one 

of the 

fundamental 

basis for 

determining 

terminal points 

for 

reconstruction. 
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j)  Wiper 

movement 

Terminal points 

are determined 

by creating 

uniform sectors 

formed by 

aligning the 

wiper at 

different 

angles. 

Bresenhem's 

line drawing 

algorithm. 

▪ Creation of 

uniform 

sectors for the 

determination 

of terminal 

points. 

▪ Reconstruction 

of lines. 

▪ Creation of a 

uniform 

search space 

using a wiper 

along the 

angle of 

alignment. 

▪ Requires 

considerably 

less search 

time 

compared to 

the leech and 

water-flow 

approaches. 

The creation of 

uniform sectors 

may result in a 

non-optimal 

solution. 

The direction 

of alignment 

should be one 

of the 

fundamental 

basis for 

determining 

terminal points 

for 

reconstruction. 
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k)  Bin Xu et al 

[81] 

▪ A probability-

based 

approach is 

used for 

determining 

terminal 

points for 

reconnection.  

Here, the 

probability of 

reconnection is 

inversely 

related to the 

distance 

between the 

Reconnectio

n is based on 

proximity. 

▪ Determining 

breakage. 

▪ Determining 

terminal points 

and associated 

probabilities 

based on 

distance. 

▪ Reconnection. 

▪ The nearest 

terminal 

points will be 

selected for 

reconnection. 

▪ Suitable for 

handling 

small 

breakages. 

▪ Computational

ly intense and 

may often lead 

to the selection 

of 

inappropriate 

terminal points 

for 

reconnection. 

▪ Fails to handle 

severe 

breakage. 

Selection of 

optimal points 

based on a 

distance 

metric. 
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identified 

terminal points. 

l)  A* 

adjacency 

graph based 

approach 

Terminal points 

are determined 

based on the 

shortest 

distance 

between the 

breakage 

points. 

Line drawing 

algorithm. 

• Determining a 

set of terminal 

points with a 

distance 

vector. 

• Selecting the 

best terminal 

pair based on 

the A* 

approach. 

• Computationa

lly simple and 

easy to 

implement. 

• Significantly 

reduces 

search space 

based on 

distance 

value. 

Misconnection 

due to 

inappropriate 

selection of 

terminal points, 

as the distance 

may not only be 

deemed 

sufficient for 

reconnection. 

The designed 

approach 

should be able 

to constrict the 

list of potential 

terminal points 

for 

reconnection. 

m)  Sadia Gul et 

al [75] 

Terminal points 

are determined 

by growing the 

search space 

The shortest 

distance is 

based on 

Euclidean 

• Preprocessing 

operations 

such as 

thinning, 

Simple, easy to 

understand, and 

easy to 

implement. 

Inappropriately 

handles severe 

breakages and 

often fails to 

Preprocessing 

operations 

such as colour 

segmentation, 
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along with the 

breakage points 

incrementally. 

values and 

tangents. 

removal of 

holes, and 

bifurcation, 

and noises. 

• Determination 

of terminal 

points. 

• Determining 

the tangent or 

angle of 

alignment. 

• Reconstruction 

of lines. 

maintain contour 

continuity. 

binarization, 

thinning, 

removal of 

holes and 

bifurcation, 

and noise 

reduction are 

essential for 

reducing the 

computational 

complexity 

involved. 

n)  Delaunay 

triangulatio

n and 

Terminal points 

are determined 

based on 

Line drawing 

algorithm 

• Triangulation. 

• Selection of 

optimal points 

Effective as it 

considerably 

reduces search 

Computationally 

intense and time-

consuming. 

Geometrical 

orientation 

may be 
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Voronoi 

diagram 

based 

approach 

criteria for 

triangulation. 

for 

reconnection. 

• Reconnection 

of the line 

space for 

terminal points. 

pursued for 

determining 

the terminal 

points. 

o)  Xin et al 

[84] [81] 

A gradient is 

used for 

determining 

terminal points 

for 

reconnection. 

Reconnectio

n is achieved 

by using the 

Generalized 

Gradient 

Vector Flow 

(GGVF) 

Snake model. 

• Determination 

of search space 

based on 

gradient. 

• Reconnection 

based on the 

GGVF Snake 

model. 

• Accurate and 

effective as 

the 

determination 

of search 

space is based 

on gradient 

and 

reconstructio

n is based on 

the snake 

model. 

Computationally 

intense and time-

consuming. 

It is essential 

to preserve the 

structural 

integrity of 

contours while 

performing 

reconnection 

between 

broken 

terminal 

points. 
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• Gradient 

reduces the 

search space, 

and GGVF 

retains the 

structural 

characteristic

s of the 

contours. 

p)  B-Spline 

Curve 

Method   

Here, a B-

spline 

(polynomial) is 

used to 

appropriately 

select or 

approximate 

Spline 

technique 

• Designing a 

suitable 

function for a 

spline. 

• Determination 

of terminal 

points. 

Requires a 

limited number 

of control 

points and 

integrity 

preservation. 

Computationally 

intense. 

It is essential 

to use an 

optimal 

number of 

control points 

to retain the 

characteristics 
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terminal points 

for 

reconnection 

with the least 

number of 

control points 

and 

polynomials. 

• Reconnection 

of terminal 

points based on 

the spline. 

of contours 

during 

reconstruction. 

q)  Chaikin’s 

Algorithm 

Here, a limited 

number of 

control points 

are used to 

generate a 

smooth curve 

by cutting 

Recursive 

corner-

cutting 

approach. 

• determining 

the 

fragmentation 

point. 

• Line 

reconstruction. 

• Smoothening. 

Generates 

integrity-

preserving 

curves. 

Computationally 

intense as a 

consequence of 

the recursive 

approach. 

It is essential 

to retain the 

geometric 

structure of the 

contours 

during 

reconnection. 
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corners 

recursively. 

This approach 

may be adopted 

for determining 

terminal points 

for 

reconnection. 
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2.3.1 Inferences drawn from the existing literature 

Some of the inferences drawn from the study of associated literature are: 

a)  The efficiency of the reconnection techniques greatly varies with the tone and texture 

of the input image. 

b) To ensure continuity, the input image should be suitably pre-processed for determining 

similarity essential for establishment of connected components. 

c)   Hard decisions imposed for selection of end points to establish connection may lead 

to faulty joins. 

d) The complexity and time requirement of the reconnection technique greatly varies 

depending on the quality of the results from the pre-processing stage. 

e) The effectiveness of the shape preserving reconnection technique depends on its ability 

in determining optimal number of control points and morphological orientation of 

neighbouring contours. 

f) Presence of severe breakage along contour lines, the reconnection mechanism may fail 

to identify appropriate end points leading to Miss-connections 

g) The effectiveness of the reconnection techniques can be further advanced by 

incorporating suitable search mechanism supported by valued decisions based on 

directional movement. 

h)  It is crucial to limit the search space in order to contain the computational overhead 

which may be achieved through creation of optimal variable sized search space along 

the direction of the flow. 
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2.3.2 Research motivations 

Through a thorough analysis of relevant literature, the following important derivations 

were made: 

a) Preprocessing operations such as colour segmentation, binarization, thinning, removal 

of holes and bifurcation, and noise reduction are essential for reducing the 

computational overhead involved in processing a topographic sheet. While performing 

image segmentation, hard decisions should be avoided as intensity values are highly 

dynamic and vary from sample to sample. 

b) The strategy for determining terminal points should be proximity-based, i.e., based on 

inter-terminal point distance. 

c) Some of the crucial information that may be pursued for determining terminal points for 

reconnection may be: 

• Morphological orientation of contour elements 

• Direction of alignment of contours 

• Geometrical orientation of contours 

• Morphological information from adjacent contours proves decisive in the design of 

reconstructed contour lines 

d) While performing reconnection, it is essential to preserve: 

• Geometric structure of the contours 

• Structural integrity of contours 

e) While performing reconnection, it is essential to address the following key aspects for 

reducing computational overhead: 

• Use an optimal number of control points to retain the characteristics of contours. 
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• The design approach should be able to constrict the list of potential terminal points 

for reconnection. 

• The localization of search space is crucial for managing computational complexity. 

• Selection of optimal points based on a gradient and distance metric 

 

f) Some of the generic processes involved in similar research initiatives in the past are: 

• Backtracking is essential for determining the nature and characteristics of contour 

lines. 

• The association of probability distribution with other contour features such as 

gradient and orientation would enable the selection of optimal terminal points. 

 

2.4 Extraction of Associated Text, its Refinement, and Attribute 

Generation 

2.4.1 Text Localization  

2.4.1.1 Text Localization using image morphology 

Localization is the process of automatically detecting the presence of text features in a 

topographic sheet and presenting them using a bounding box. These features may later be 

categorized as text features, including elevation values. 

  

The computational process should be able to address critical issues like aliasing effects, 

pseudo-color, closely placed contour lines, and intersecting features. These demands lead 

to the incorporation of knowledge into the computational process and its continual 

refinement to enhance its capabilities. Li et al [92] enlightened the process by providing a 
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framework for localization and recognition of text from a topographic sheet. Also, 

localization was achieved using complex deep learning techniques; however, the basic 

principle was not discussed. Also, the major limitation of the proposed method is that it 

has been tested on a manually prepared topographic sheet using high-end software. Such 

computer-generated maps are noise-free and less complex as compared to the original 

topographic sheet. The same accuracy may not be achieved using the same framework if a 

true topographic sheet is considered for the experiment. The author in [93] highlighted the 

possibility of having an automated computational process for locating the labels in a 

topographic sheet using an artificial neural network (ANN). Using this method, 80% 

accuracy was achieved in an optimal condition. The main limitation of this method is that 

it is a semi-automatic process. 

  

Many other researchers used the linear features as a basis for extracting text features. Some 

common linear features, like contours, present in topographic sheets are represented using 

the same color as elevation values or text features, so it is difficult to separate them. 

Pezeshk and Tutwiler [94] eliminated such linear features using the modified multi-angled 

parallelism (MAP) algorithm, retaining only text features. The resultant image was 

enhanced further for recognition. Such a method is useful only if the map contains straight 

lines and linear features. However, it may fail if the geographical terrain of the map is 

complex, like a hilly region with many complex contours (curves), or if the text feature 

overlaps with other complex morphological features. The author [95] aims at extracting 

and recognizing symbols; letter matching was used to extract features of interest. The 

extracted features were further analyzed to recognize them using various shape descriptors. 
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This method retains symbols as well, in addition to elevation detail or text features that are 

unwanted. After a thorough survey, it was found that any work pertaining to the 

identification of (x, y) locations for elevation data or elevation data localization associated 

with contour has not yet been explored. 

 

This research initiatives aims at adopting a method for designing an efficient, fully 

automated computational system capable of detecting the location of elevation values or 

any text features present in a poor quality original topographic sheet using basic geometric 

and morphological image processing operations. 

 

2.4.1.2 Text Localization using Deep Learning technique 

The ability of a computational system to interpret an image, characterize it, and learn its 

essential features for enabling a decision support system to make quality decisions has to 

a great extent eased the task of human-machine interaction. Examples include facial 

recognition [96], biometric identification systems, text recognition [97], autonomous 

vehicles, mobile robotics, medical image processing, behavior analysis [98], and many 

more [99]. In order to facilitate effective recognition, it is quite essential to know the 

object's concept and its position [100]. Informative region selection, feature extraction, and 

classification are some of the crucial activities required for recognition. Challenges such 

as diversity in appearances, brightness, contract, sharpness, and varied background greatly 

influence the accuracy of the recognition process. 
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The ability of Convolutional Neural Networks (CNN) relies on their multi-layer 

perceptron, use of local perception, established connections, and variable weights assigned 

[101]. These attributes of CNN help to a great extent in managing complexity and reducing 

the number of weights [99]. Features such as color, tone, identifiable shapes, and the image 

itself can be used to prepare CNN for image classification. In applications that are expected 

to deal with visual interpretation-based business realization, the incorporation of automatic 

image classification processes becomes essential. There are various techniques proposed 

for the same, one of which is based on CNN [102]. It is not only effective, but the results 

also exhibit high confidence. It is crucial that while attributing the contribution of the 

various layers, both the top and bottom layers are given priority, as it has been often seen 

that the lower layers hold in them greater discriminative power than the layers on top [103]. 

The training can be done layer wise, for effective representation of features [104]. Fusion 

of all the layers would help elevate the performance [105]. Chauhan et al [106] in their 

research initiative have used CNN for image recognition on the CIFAR-10 and MNIST 

datasets. A very high accuracy was achieved on MNIST, and a notably high accuracy was 

achieved on CIFAR-10. It was further articulated that the accuracy achieved can be 

elevated by increasing the instances present in the learning set and the instances of hidden 

layers [107]. CNN can also be used for classifying features in a color image [108] [109]. 

Jmour et al. have used the "fine tuning technique", wherein the existing refined layers are 

reused for classifying images. Effective feature extraction is crucial for enhancing the 

recognition process [110]. This deep learning technique not only automates the process of 

extracting and learning the features but also has the ability to work with a limited number 



Page 64 of 329 

 

of training sets [111], thus reducing the time required. CNN has also proven effective in 

situations where features to be classified are under variable real-world conditions. 

  

Two essential criteria to judge classification mechanisms are their ability to identify 

features and the time within which the results are generated. Here, two different approaches 

[112], namely YOLOv1 and YOLOv2, have been proposed. In YOLOv1, for the prediction 

of multiple bounding boxes, a lone CNN is used, followed by probability estimation for 

each of the identified boxes. Here, a collection of grids represents an input image. In 

situations where the object to be classified belongs to a particular grid, it is the 

responsibility of the grid to detect the object. It is the Individual grid cells responsibility to 

determine a suitable bounding box with associated confidence and probability. YOLOv2 

improves YOLOv1, raising the mAP by using a multiscale learning mechanism. 

  

CNN in combination [113] with image un-sampling techniques and LIDAR data has been 

deployed for classifying images, and the result of the same is used for enabling an 

autonomous vehicle to navigate [114]. Such an approach would not only ensure quality but 

also allow for minimal loss. 

  

Rashid et al [115] have used the CNN model for dehazing an outdoor image, wherein for 

convolution operations, features of the dehazed image are used in the first few layers of the 

hidden network. The quality of the hazed image is also influenced by the quality of the 

features extracted as a reference from the dehazed image, i.e., the tone and texture of the 

dehazed image [116]. In order to enhance the quality of the result, maps of reduced size 
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were used in the subsequent hidden layers. It has also been observed that the overall time 

complexity increases with the dimension of the image. Wang et al [117] have improvised 

CNN by improvising the activation function for extracting the depth feature for 2D images. 

The images were classified using a combination of the Extreme Learning Machine 

technique and CNN. It has been articulated that it delivers greater accuracy with reduced 

execution time. This technique can be used in situations where the features are not obvious. 

  

A high-capacity R-CNN [118] has been proposed to identify feature vectors of known 

length. These feature vectors are then sent to a class-specific linear SVM for object 

detection. There are mainly two different aspects to an object detector, namely a feature 

extractor and a feature classifier. A neural network classifies or makes decisions using the 

aspects drawn by these two techniques. The ability of CNN, R-CNN, Fast R-CNN, and 

Faster R-CNN depends on efficient training of the network for enabling object detection, 

with implications on time, cost, and space [119] [120]. Fast and Faster R-CNN deploys 

discriminative initialized layers of Convolution for the purpose of extracting features that 

are independent of region, followed by Multi-layered Perceptron (MLP) based 

classification. The efficiency of these two techniques lies in the manner in which they 

optimize the classifier and the bounding box [121]. This research initiative tries to address 

three important aspects, such as the size of the input, the use of classification networks like 

ResNet and GoogleNet, and skip connections to speed up the training process [122] [123] 

[124]. Object detection is definitely computationally complex compared to that of 

classification, but due to the onset of ConvNets, these two tasks have been considerably 

improved and eased with increased accuracy [125] [118]. Girshick [126]  has proposed a 
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fast version of R-CNN known as Fast R-CNN that aims at increased testing speed, faster 

detection, and increased accuracy. Compared to the traditional approach of a multi-stage 

pipelined test model, which is rather slow in context to training and detection with 

increased computational cost, the proposed research initiative uses a single-stage training 

model. This model learns the objects to classify as well as refines their respective locations. 

In contrast to R-CNN, this approach has higher detection quality (mAP), multi-task loss-

based single-stage training, rapid update of network layers, and non-usage of storage for 

feature caching. With the use of a deep network, Fast R-CNN is capable of detecting 

objects at a very fast rate, nearing real time, excluding the time spent on region proposal 

[127]. For enhancing the ability of an object detector, it is essential that it have a reliable 

region proposal technique embedded in it. Currently, the running time of the detector 

networks has been reduced to a great extent due to the onset of Fast R-CNN. In this 

approach, a well-trained region proposal network is combined with Fast R-CNN for 

efficiently determining object boundaries and objectless scores [121]. Cao et al [128] have 

proven an improvisation on the existing Faster R-CNN for detecting objects in an image. 

A two stage detection approach has been conceptualized, wherein for the bounding box, an 

intersection over Union (IoU)-based improved loss function is used, followed by bilinear 

interpolation for improving the RoI. To enhance the information content present in the 

feature map, multi-scale convolution has been used, and to avoid loss due to overlapping 

objects, improved non-maximum suppression (NMS) has been used. Alamsyah et al [129] 

have devised a mechanism for detecting fingertips using Faster R-CNN and the Inception 

V2 architecture in CNN to reduce computational time [130]. This is done in order to cut 

short the preprocessing time required, therefore enhancing efficiency. Various geometric 
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structures, geometric features [131], color, and depth information [132] [133] may also be 

used for detecting various objects.  Faster R-CNN [134] takes a considerable longer time 

compared to YOLO [135] and Single Shot Multi-Box Detector [136], but Faster R-CNN 

comparatively performs better. In applications where the quality of the detection process 

is of the essence, Faster R-CNN proves effective. A faster R-CNN-based [137] improvised 

model has been conceptualized for detecting vehicles in real time using MobileNet 

architecture [138], resulting in reduced computational cost and time. Instead, in this work, 

soft non-max suppression is employed along with context-aware RoI pooling [139] [140] 

[125]. 

  

Although text detection and recognition techniques have achieved significant gains, they 

lack efficiency when it comes to real-world natural scenes containing textual information 

[141] [142] [143] [144] S. Shivajirao [141] proposed a novel framework inclusive of a pre-

processing step (deblurring and sharpening input samples) for noise reduction to enhance 

accuracy. Subsequently, a Faster RCNN based on cascading RPN (Region Proposal 

Network) was used for detection and recognition. However, N. Gandhewar [142] 

emphasized the tradeoff between speed and precision of results for discovering text in 

natural images; hence, the Yolo V5 framework was used, in contrast to the RCNN Family, 

which is a two-phase detector. The model was built with less training time and a limited 

model size, and its performance was validated on standard datasets like ICDAR 2015, 

ICDAR 2013, ICDAR 2003, SVT, MSRA-TD500, considering F-measure, Precision and 

Recall performance metrics. The model detects horizontal text as well as vertically aligned 

text but fails to support the detection of multilingual text. Text detection from natural 
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scenes is extremely challenging as text present in natural scenes or topographic sheet varies 

in scaling, color, brightness, type, and orientation, and more often than not, these features 

intersect or overlap with other features [143] [144]. Joseph Raj [143] highlighted the 

degradation of algorithm performance in natural scenes containing bilingual text. To detect 

such types of text, the author used a state-of-the-art technique consisting of three basic 

steps. Initially, extract probable text regions using Faster RCNN, followed by 

rearrangement of the text region for extracting shape features from three orthogonal planes, 

and eventually classifiers are used to predict features as textual or non-textual information. 

A notable F1 score of 0.7 on the MSRA-TD500 was achieved. Lingqian Yang [144]  

presented a summary of deep learning-based text detection algorithms for natural scene 

text detection under two broad categories: Region proposal-based and Semantic 

Segmentation. The region proposal-based algorithms are Connectionist Text Proposal 

Network (CTPN), Segment Linking (SegLink), and Attention-Based Cloud net (ABCNet), 

whereas Semantic Segmentation includes Efficient and Accurate Scene Text (EAST) 

algorithm, PixelLink, and Progressive Scale Expansion Network (PSENet). CTPN, which 

is based on basic Faster RCNN, has the ability to detect multi-scaled text features using a 

single-sized sliding window, however, it fails to detect non-horizontal text. SegLink, based 

on CTPN, which is rotation-invariant, can detect text aligned at different angles. However, 

the attainment made by ABCNet by being able to detect curved text using the Bezier Curve 

Technique is inspiring. Although deep learning has achieved impressive results in the field 

of text detection and recognition, it requires huge amounts of labeled data for modeling. X. 

Y. Ding [145] motivates us to adopt an unsupervised technique where huge amounts of 

labeled data are not available. Also, annotating data for modeling is an extremely time-
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consuming and expensive process. A framework with five different modules was used to 

develop a recognition model using Dual adaptation and Clustering (DOC). It initially 

extracts global features, then deploys a global discriminator for global level visual feature 

adaptation, followed by the extraction of local features of position. Adaptive Feature 

Clustering (AFC) is then used for performing local-level feature adaptation, and eventually, 

decoders with Recurrent Neural Network (RNN) structures are used to decode the local 

features into character sequence. 

 

2.4.1.3 Text Localization using Faster R-CNN with resnet-50/101-feature pyramid 

network 

Deep Convolutional Neural Networks (DCNN) have been applied on computer vision tasks 

like detection, segmentation and classification of objects [125] [118]. Overfeat [146] runs 

sliding windows of different scales on an image and classifies a region using a classifier 

and regress the bounding box coordinates. This method is computationally expensive and 

time consuming. Region based Convolutional Neural Network or R-CNN [147]  

incorporated region-based proposal technique for object detection which further lead to a 

family of networks like Fast R-CNN and Faster R-CNN [147] [126]. R-CNN [147] applies 

selective search [148] on an image and proposes 2000 regions that are passed through a 

Convolutional Neural Network (CNN) for feature extraction and evaluated for 

classification and bounding box regression. Selective search is not a part of the neural 

network. Graph based image segmentation method initially hypothesize set of regions 

which are then hierarchically grouped based on similarity measures like color, texture, size 

and region-filling. Bottleneck of R-CNN [147] is in computing feature maps of each 2000 
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region proposals. Fast R-CNN [126] compensates the bottleneck of R-CNN [147] by first 

generating feature map of the image through a CNN and a separate pipeline that does 

selective search on the image to produce 2000 region proposals that are mapped to the 

feature map using RoI pooling [126]. Fast R-CNN [126] reduces test time of an image by 

R-CNN [118] on a magnitude of 10. Faster R-CNN [121] is an advancement on Fast R-

CNN [126] which incorporates RPN that replaces selective search pipeline that was offline 

i.e., not trainable to reduce computation time while testing. A RPN [121] that gives region 

proposals is a fully connected neural network that does binary classification of whether a 

region is object or not and hence assigns confidence or objectness score. The regression 

end of the fully connected layer predicts offset values of the proposals from the ground 

truth region. Prior to the fully connected layer the RPN also has CNN as it takes feature 

maps as input [121]. The network in alternatively trained in a manner that CNN layers of 

RPN and detector network are shared [121]. Detector networks are not bound to just region 

proposal-based networks. Dense sampling-based networks [149] [150] [151] [136] are one 

stage detection network that detect objects over dense sampling of possible locations. Text 

detection on topographic sheet could be carried out by any above network but the choice 

of network is crucial. Dense sampling-based detector networks can fall short of accuracy 

but are much faster than region-based proposal detector networks [152]. Huang et al [152] 

have considered parameters like object size, input image resolution, number of proposals, 

memory, Graphics Processing Unit (GPU) speed that contribute towards accuracy and 

speed. The conclusion relevant to us produced by Huang et al [152] is that Faster R-CNN 

[121] using Inception Resnet [153] as feature extractor with 300 region proposals attained 
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highest mean average precision (mAP). Therefore, for detecting text on topographic sheet 

Faster R-CNN architecture is adopted. 

 

2.4.2 Text Recognition 

Text by virtue is a sequential data where every character contributes to the context. CNNs 

predict only a single label to an input and also expect the input of a fixed size. Thus, 

sequential data will require a network that predicts a series of labels over time and also 

which can accept inputs of variable lengths. DCNN were heavily used to recognize texts, 

where [154] [155] used the idea of detecting characters in a text and segmenting each to be 

classified against a DCNN model trained in on characters. Also, another plausible method 

would be to recognize texts by classifying the entire text image over a DCNN that was 

implemented by [156]. In [154] [155] [156] implementations would require a strong 

classifier that would accurately predict a class of a character. The models would likely fail 

to generalize on classifying texts belonging to vocabulary of huge number of characters. 

Jaderberg et al [156] network for predicting text for a language would require training the 

DCNN on an entire set of vocabulary which is computationally expensive as well would 

suffer accuracy. Therefore, from analysis it was noted that DCNN are not a viable option 

for text recognition. Classifications tasks on sequential data are commonly done using 

RNN. A RNN can accommodate dependence between inputs and variability in size of 

input. In case of image containing text the RNN expects to accept features of the image 

sequences. The extraction of features for image feature sequenced inputs had been 

handcrafted using image processing techniques as adopted by [157] [158]. Convolutional 

Recurrent Neural Networks (CRNN) [159] replaces the offline image processing task of 
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extracting features for image feature sequenced input with CNNs hence makes the entire 

network end to end trainable. 

 

The CRNN [159] is adopted for doing text recognition on topographic sheet. The three-

component architecture with CNN for feature extraction, RNN for predicting labels per 

frame of input feature sequence and a top transcription layer to unify the prediction labels 

into a single label. All three layers are well justified for carrying out image-based sequence 

recognition. The CNN layer encodes representations of a text image. The input size of 

CNN is fixed; however, the character representations of variable length input image 

sequence are not lost since representations are encoded depth wise through collection of 

feature maps hence making it invariant of the fact of fixed input size. The feature sequence 

is passed through a deep bi-directional RNN i.e., a stack of bidirectional Long Short-Term 

Memory (LSTM) [160] [161] [162] which stores contexts of past predictions in both 

directions thereby making it more suitable for image based text recognition. RNNs suffer 

from vanishing gradient descent problem and cannot store long range contexts hence 

LSTMs are used [163]. 

 

Table 2.3 (page no 73) presented below highlights recent techniques for localization and 

recognition of text features in an image.
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Table 2.3: Recent techniques identifying text in an image 

Sl. No Description Strategy used for 

Detection/ Recognition 

Inference Motivation 

a) Zhao Z Q, Zheng P 

[100] 

• An efficient recognition 

system relies on the 

accuracy of object 

detection. 

Efficient recognition 

activities include informative 

region selection, feature 

extraction, and classification. 

Challenging for a robust system 

in a situation where the quality 

of the input image varies in 

terms of appearance, brightness, 

contrast, sharpness, and varied 

background. 

Localization of objects is 

essential for an effective 

recognition system. 

b)  Convolutional 

Neural Networks 

(CNN) [99] [101] 

[102] [103] [104] 

[105] 

• CNN's ability relies on its 

multi-layer perceptron, use 

of local perception, 

established connections, 

• The contribution of various 

layers varies, as it has been 

often seen that lower layers 

hold in them greater 

The results of CNN in 

object detection and 

recognition are not only 

effective but also hold high 

confidence. 
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and variable weights 

assigned. 

• Image features are used to 

prepare CNN for the 

automatic classification 

task. 

 

 

discriminative power than the 

layers on top. 

• For better feature 

representation, training can 

be done layer-wise. 

• The fusion of all the layers 

would help elevate the 

performance. 

c) Chauhan et al [106] 

and Lin Liu C [107] 

CNN was adopted for image 

recognition on the CIFAR-10 

and MNIST datasets. 

• High accuracy was achieved. 

Performance can be further 

improved by increasing the 

instances in the learning set and 

the hidden layers. 

The CIFAR-10 and MNIST 

datasets are similar to text 

features present in 

topographic sheets. 

d) Redmon J [110] and 

Jmour [111] 

Effective feature extraction is 

crucial for enhancing the 

recognition process. 

• used the “fine tuning 

technique," which reuses 

There is no standard dataset 

for topographic text 

features, so a self annonated 
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existing refined layers for 

classifying images. 

• The adopted technique 

highlights the ability to work 

well with a limited number of 

training sets. 

dataset using data 

augmention may be used 

for a transcription model 

with a limited dataset. 

e) YOLOv1 and 

YOLOv2 [112] 

Draws multiple bounding 

boxes on the region of 

interest (ROI), with the 

probability estimation of 

each box indicated by mean 

average precision (mAP) 

• YOLOv1 determine a 

suitable bounding box from 

many bounding box. 

• YOLOv2 improves 

YOLOv1, raising the mAP by 

using a multiscale learning 

mechanism. 

The best possible bounding 

box containing text features 

can be identified, ensuring 

the presence of text features 

in the bounding box. 

f) Regions with CNN 

(R-CNN) [147]  

RCNN has the ability to 

detect multiple objects 

present in a single image. 

• RCNN identifies feature 

vectors of known length and 

use this object detection. 

CNN may not be suitable 

for a topographic sheet as 



Page 76 of 329 

 

 Model ability depends on 

efficient training of the network 

for object detection, with 

implications on time, cost, and 

space [119] [120]. 

many text features are 

present in the image. 

g) Fast R-CNN [164] Fast R-CNN uses single-

stage training that is capable 

of detecting object at a very 

fast rate nearing real time, 

excluding the time spend on 

region proposal [127]. 

The model has higher detection 

quality (mAP), multi-task loss 

based single-stage training, 

rapid update of network layers 

and non-usage of storage for 

feature caching. 

The fast RCNN is a reliable 

region proposal technique 

that uses single-stage 

training to efficiently 

determine objects' 

boundaries. 

h) Faster R-CNN [128] 

[134]  

It uses a two-stage detection 

approach. 

 

 

• For the bounding box, an IoU 

based improved loss function 

is used, followed by bilinear 

interpolation for improving 

the RoI. 

• The accurate detection 

and recognition of text 

features plays a vital role 

as these features are 

mapped to other 
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• Faster R-CNN [134] takes a 

considerable longer time 

compared to YOLO [149] and 

Single Shot Multi-Box 

Detector [136], but Faster R-

CNN comparatively performs 

better. 

associated geographical 

features, so the quality of 

the detection process is of 

the essence. 

• With faster R-CNN [134] 

that takes considerably 

longer, but it has a higher 

mAP value. 

i) Natural Scene Text 

Detection and 

Recognition using 

Faster RCNN based 

on Cascade RPN 

[141]  

The proposed novel 

framework is inclusive of a 

pre-processing step and a 

faster RCNN based on 

cascade RPN for detection 

and recognition of text in 

natural scenes. 

• The commonly used text 

detection algorithm lacks 

efficiency for real world 

natural scenes containing 

textual information. 

• Highlighted the use of pre-

processing steps like 

deblurring and sharpening to 

• The natural scenes are 

analogous to topographic 

sheet, where the text 

present varies in size, 

color, type, and 

orientation, and more 

often than not, these 

features intersect or 



Page 78 of 329 

 

reduce noise for attaining 

better accuracy. 

overlap with other 

features, thus making it a 

challenging task. 

• The use of preprocessing 

steps deblurring and 

sharpening. 

j) Natural Scene Text 

Detection using Yolo 

V5 framework [142]  

Optimizing the tradeoff 

between speed and precision 

of results to discover text in 

natural images using the 

Yolo V5 framework on the 

ICDAR 2013 dataset. 

• Implemented single phase 

detector, Yolo V5, for 

detecting horizontal text as 

well as vertically aligned text. 

• F-measure, precision, and 

recall metrics were used to 

analyse the performance of the 

model. 

to emphasise the tradeoff 

between speed and 

precision of results to 

discover text in natural 

images with an ability to 

build a rotation invariant 

system. To emphasise the 

tradeoff between speed and 

precision of results to 

discover text in natural 
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For the ICDAR 2013 dataset, 

the model was developed in less 

time with a limited model size. 

images with an ability to 

build a rotation invariant 

system. 

k) Bilingual  Text 

Detection in Natural 

Scene [143] 

Presented state-of-art 

technique for detecting 

bilingual text in natural 

scenes using Faster RCNN 

on MSRA-TD500 dataset. 

• Challenges highlighted due to 

different orientations, scaling, 

brightness of features of 

interest, and complex 

backgrounds. 

• Moreover, model performance 

degrades if images contain 

bilingual text. 

The use of faster RCNN for 

extracting probable text 

regions embedded in 

complex environments 

l) Natural Scene Text 

Detection using 

ABCNet for 

detetcing normal as 

Summarises deep learning 

based text detection 

algorithms for natural scenes, 

namely, region proposal-

• CTPN detects multi-scaled 

text features. 

• SegLink can detect text 

aligned at different angles. 

The topographic sheet 

contains text aligned at 

different angles, multi-

scaled, and curved as 

well.The topographic sheet 
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well as curved text 

[144] 

based and semantic 

segmentation. 

• ABCNet can detect curved 

text. 

contains text aligned at 

different angles, multi-

scaled, and curved as well. 

m) Text Recognition 

using unsupervised 

technique [145] 

Proposes an unsupervised 

technique for text detection 

using DOC. 

Highlighted the need for huge 

amounts of labelled data for 

modeling, which is an extremely 

time-consuming and expensive 

process. 

Use of unsupervised 

techniques where huge 

amounts of labelled data are 

not available. 
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2.4.2 Inferences drawn from the existing literature 

Some of the inferences drawn from the study of associated literature are: 

a) It has been observed that most of the text localization techniques fails to deliver the 

desired results with variation in qualities like tone, texture, attenuation, sharpness, and 

contrast. Orientation and scaling of the text further intensifies the problem complexity.  

b) Pre-processing is mandated in order to elevate the accuracy of the obtained results as 

it helps in effective handling of embedded noises.  

c) Text localization can be achieved either using traditional approach relying on 

morphological understanding (structural formation) or using the conventional 

approaches such as multi-layered learning methods. 

d) The effectiveness of text localization technique depends on its ability to neatly 

encapsulate the intended text within a bounded space known as bounding box.  

e) The model conceived is expected to exhibit higher detection quality, reduced data loss, 

and subsequently advance the learning ability of the network. 

f) The performance of the model can be validated using various measures such as F-

measure, precision, and recall metrics. 

g) On successful localization of intended text, recognition is performed to identify the 

information contained in localized text. 

h) The quality of the results obtained from recognition techniques used can be advanced 

if the input image is dealt with in forms of distinct layers as it has been observed that 

the lower layers contributes to the greater extent in regards to the discriminative 

powers. Therefore, it is suggested that the training of the intended model is done layer-

wise. 
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i) It has also been suggested that the performance of the model can be enhanced by 

creating a fusion of layers with relative priority. 

j) The overall efficiency of the model can be amplified by increasing the number of 

instances in the training set as well as the number of hidden layers. It is advised to 

have a planned trade-off between accuracy and resource investment as such approach 

would inherently incur greater computation time and resources. 

k) The effectiveness of the model also depends on the variation of instances in the 

training set. 

l) The complexity of recognition manifolds with variation in scale, alignment, structural 

orientation and lingual formats used. 

 

2.4.3 Research motivations 

Topographic sheet contain valuable textual information, such as place names, labels, 

symbols, and annotations, which provide crucial details about the geographic features 

represented in the map. The following are the motivations for research initiatives: 

 

a) Manual identification and recognition of text features in topographic sheets can be 

labor-intensive, time-consuming, and prone to human error. Automated techniques 

for text detection and recognition with increased efficiency and accuracy aid in map 

analysis and data extraction. Manual identification and recognition of text features in 

topographic sheets can be labor-intensive, time-consuming, and prone to human 

error. Automated techniques for text detection and recognition with increased 

efficiency and accuracy aid in map analysis and data extraction. 



Page 83 of 329 

 

 

b) Text features present in topographic sheets often intersect with other morphological 

features; in addition, these features are multi-scaled and multi-aligned. An automated 

system that can mitigate all issues is challenging. 

 

c) Manual updating and maintenance of topographic sheets can be a time-consuming 

and costly process. Automated text feature detection and recognition aids in the 

timely maintenance and updating of topographic sheets. 

 

2.5 Generation of a Digital Elevation Model from Refined and Generated 

Contour Lines 

 Elevation models are used by various audiences to attain their purpose-specific objectives. 

Some of the prominent users include researchers and administrators [165] Elevation 

models are steadily finding their relevance in different domains such as geomorphology, 

geology, agriculture and horticulture, infrastructural planning, and hydrological studies 

[166] [167] [168] and most importantly, for estimating slope and aspect. The elevation 

model is also prominently used in hazard management such as landslides, creating terrain 

profiles, delineating surface features [169] [170], and determining potential terrain for 

tapping solar energy [171] [172] [173]. 

  

It is essential for elevation models to express sufficient quality information to meet the 

emerging requirements of various morphological operations [174]. Subsequently, 

morphological operations should also be effectively designed to enable the generation of 

spatially processed features for improving the quality of elevation models [175] [176]. 
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The overall process starts with the digitization of the contours from the reference map. It 

may be performed manually or automatically. Manual digitization is time-consuming and 

often prone to errors. As per recent trends, there is a paradigm shift towards automatic 

approaches. Automatic digitization of features from reference maps can be achieved by 

deploying color-based segmentation processes that use distinctive pixel intensity values 

used for representing features on the reference map as a basis [177] [178] [179]. Further, 

it is essential to skeletonize the image for ease of data processing [180]. 

  

It has been observed that the results of the segmentation process deployed for contour line 

extraction often suffer from breakages, resulting in a loss of contour continuity. This may 

be due to a large variation in the intensity of pixels representing the contours.  Further use 

of such incomplete reference data would lead to the generation of inaccurate 3D models. 

Such inconsistencies can be avoided by establishing continuity between the broken contour 

lines with the help of knowledge-based curve drawing methods. Alternatively, a simple 

straight-line drawing algorithm may also be adapted based on the severity of breakage to 

ease complexity. 

 

The basic slope-intercept mathematical formula [181] provides a mechanism that 

iteratively calculates points between two broken points identified by a pair of coordinates. 

Since there are many pixels between broken points and the basic slope-intercept formula 

involves iterative complex calculations like division and multiplication, this may incur 

complexity. Alternatively, the simple approach for connecting broken points is to use the 
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Digital Difference Analyzer (DDA), which uses an incremental approach for identifying 

pixels that connect terminal points [182]. Although it is simple and easy to implement, it 

involves fractional calculation, resulting in the calculated points being in floating point 

format, further requiring rounding off of the calculated points as coordinate values are 

discrete. A naive line-drawing algorithm [183] may also be used, but the algorithm is not 

found to be versatile. A similar efficient technique for drawing a straight line that involves 

minimal complex computation is Bresehmen’s Line Drawing Algorithm [184]. This 

algorithm involves only integer calculations, drastically reducing the complexity of the 

process. 

  

There are many other algorithms like Xiaolin Wu's line [185] and the Gupta-Sproull 

algorithm [186], which is also an efficient line drawing technique that generates a straight 

anti-aliased line with some additional computational complexity. The simple Bezier curve 

[187] drawing technique can draw a straight line as well as a curved line based on the 

number of control points. A computationally efficient technique that uses Bresehmen’s 

Line Drawing technique for generating a straight line in an auxiliary direction [74]. The 

plotting of pixels stops when two lines intersect with each other. 

 

Table 2.4 (page no 86) presented below compares the various line drawing techniques for 

reconnecting the contour lines based on strategy used, its advantages, and disadvantages.
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Table 2.4: Comparison of the various line drawing algorithms 

Sl No Method Strategy Advantage Disadvantage 

a) Basic slope-

intercept formula 

[181]  

uses the slope-intercept 

formula iteratively to 

calculate points between 

two pixels. 

Simple and easy to 

implement. 

 Time-consuming as it involves 

multiplication and division 

operations iteratively. 

b) DDA- Digital 

Difference 

Analyzer [182] 

Draws straight using an 

incremental approach 

between terminal points 

based on multiplication 

and division operations. 

Simple and easy to 

implement. 

• Involves fractional calculation.  

• A round-off operation is 

performed. 

• Accumulated round-off of 

coordinate locations leads to a 

shift of calculated coordinate 

points away from the true line. 

c) Bresehmen’s Line 

Drawing 

Draws straight using an 

incremental approach 

between terminal points 

• Faster execution due to 

integer calculation.  

• Directional information is not 

preserved as the algorithm works 



Page 87 of 329 

 

Algorithm [184] 

[188] 

based on addition and 

subtraction operations. 

Round-off operations are not 

required. 

on the principle of slope between 

the current and previous pixels. 

• Anti-aliasing is not implemented. 

d) A naive line-

drawing algorithm 

[183]  

The technique may be 

used, if x2 > x2 and 

points are ordered, for 

drawing a line from (x1, 

y1) to (x2, y2). 

Efficient for a line if the 

gradient (slope) is less than or 

equal to one. 

• Inefficient for a line with 

gradient more than 1, generates 

gaps between pixels.A less 

efficient technique for a line with 

a gradient greater than one. It 

generates gaps between pixels. 

• May encounter an exception 

(divide by zero) situation. 

• Involves floating point number 

calculation. 

• Implementing anti-aliasing is 

extremely time-consuming. 
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e) Xiaolin Wu's line 

algorithm [185] 

Draws a line by 

straddling the 

coordinate points with 

an anti-aliasing effect. 

Comparatively faster but 

slower than Bresenham's. 

Implements an anti-aliasing effect. 

f) Gupta-Sproull 

algorithm [186] 

Draws anti-aliased lines 

by calculating the 

perpendicular distance 

from the pixel’s centre 

to the line’s centre. 

Generates an anti-aliased line. • Involves fractional calculation. 

• Additional round-off operations 

are required. 

• Accumulated round-off of 

coordinate locations leads to a 

shift of calculated coordinate 

points away from the true line. 

g) Simplest Bezier 

curve [187] 

Draws a straight line 

using three control 

points. 

Has the ability to draw lines as 

well as curves using flexible 

control points. 

Computationally Complex. 

h) Auxiliary 

direction based 

Starting from both 

terminal points in the 

• Fast and simple to 

implement. 

Aliasing effect or stair-case effect 
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Straight Line 

Drawing 

technique [74] 

auxillary direction, 

apply Bresenhem’s 

algorithm until they 

intersect. 

• The time taken to draw a 

line is reduced by half in 

comparison with 

Bresenhem’s algorithm. 
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Three important components required for the spatial processing of a dataset are knowledge, 

rules, and models. The prospect of 3D representation of features calls for effective 

identification of its notable attributes, and clear feature definitions are to be established, 

including both structural as well as dimensionally represented information with the help of 

pixel orientations [189]. It is crucial to construct suitable models by establishing 

topological as well as contextual relations between various aspects of the features. Further, 

it is also important to pre-specify a set of well-defined constraints for guiding relationships 

[190]. 

  

One of the popular approaches for the generation of 3D information is using 

photogrammetric tools, but it is often found that these techniques demand more time, 

greater investment due to the use of sophisticated equipment and increased human 

intervention [190] [191]. 

  

As per recent trends, the Structure from Motion (SfM) technique is gaining tremendous 

ground in generating a 3D dataset from a series of images and a set of ground control 

points. This technique is fast, economically viable, and requires relatively less effort and 

expertise. As a consequence, SfM is being deployed in various applications. As in the case 

of photogrammetry, SfM deploys a comprehensive matching process wherein image 

textures present in different photographs are taken into consideration. SfM is affected by 

homogeneity, image resolution, and geometry. SfM allows for the generation of 

topological images with a certain degree of quality and resolution for images of variable 

size [192] [193] [194] [195] [196]. 
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 Both mathematical modeling and spatial approaches, as well as hybrid approaches, may 

be pursued for generating interpolated points. Spatial approaches mandate the deployment 

of appropriate mechanisms for extracting the contour segment coordinates and information 

regarding their morphological orientations. It is also further stated that the generation of 

contours and maintaining continuity are difficult [197]. Upon successful generation of 

features, the reference maps may be updated for improved visual representations [198] 

[199] [200] [201] [202]. 

  

Subsequently, elevation models may be generated using Linear prediction, wherein 

covariance based on distance is used to depict spatial correlations between neighboring 

points [203] [204] [205].  Further, image analysis-based spatial processing tools relying on 

contour lines, triangular irregular networks, gridded surfaces, and parametric surfaces can 

be deployed for topographic modeling of surfaces, such as generating 3D representations 

from 2D data [206] [207]. Masataka et al articulated that the generation of elevation models 

from small scale spatial data proves very effective. The same was achieved by deploying a 

buffering-based approach for generating intermediate contours in-between existing 

contours. The elevation detail was determined using curve fitting with regards to the profile 

[208].  

   

Two crucial elements for converting contour maps into DEM are the sampling density of 

the contours and the quality of the same, which may be elevated by incorporating contour 

lines generated through interpolation techniques based on a linear or cubical relationship 

between data points [209], dilation of contour lines [210], structural orientation [211], 
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profile, proportional distance, direction, the weighted moving average combined with 

geometric relationships [212] and regionalized comprehension [213] [214]. This implies 

that the quality of the elevation model greatly depends on the capability of the interpolation 

technique [215] [216]. Hermite splines can be combined with the inverse distance 

weighting technique to generate intermediate contours in between existing contours [217] 

[218]. 

 

2.5.1 Inferences drawn from the existing literature 

Some of the inferences drawn from the study of associated literature are: 

a) Elevation model for an area of interest can be generated either using satellite imaginary 

or by using contour lines specified in the TS.  

b) The elevation model derived from satellite imaginary is subjected to relative 

positioning of pixels based on its intensity i.e., DEM based on satellite imaginary is 

relative in nature whereas elevation model derived from contours are based on absolute 

distance.  

c) Based on the difference of representation it is always preferred to construct elevation 

model from contour lines.  

d) Generation of elevation model from contour lines mandates the following inherent 

steps:  

• Digitization of contours Preprocessing for refinement  

• Reconnection for ensuring contour continuity  

• Generation of intermediate contours for enhancing the quality of elevation model  

• Association of elevation values with the contour lines  
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• Representation of contour lines in 3D space for visualizing elevation model  

e) An intensity-based color segmentation is to be deployed for digitizing the contours.  

f) Digitized contours may explicitly incorporate uncalled for features. These features 

termed as noise is to be suitably eradicated using preprocessing tools  

g) Due to lack of effective digitization and preprocessing operation, some of the 

significant content may be lost resulting in broken contour lines  

h) The broken contour lines are to be connected using purpose specific reconnection tools 

for ensuring continuity  

i) It is often observed that when the scale of representation is high the quality of elevation 

model tends to degrade. Therefore, in such situation intermediate contour lines may 

be generated based on knowledge of the adjacent contours.  

j) Thereafter, elevation values is associated or assigned with each contour to facilitate 

projection in the 3D space.  

k) Here it is important to ensure that the data structure should be aptly designed to meet 

the requirement of the processes.  

l) Subsequently, the contours are projected in the 3D space to create a visualization of 

the elevation model. 

 

 2.5.2 Research motivations 

A DEM is a 3D representation of the Earth's surface, that aids in detailed analysis, 

visualization, modelling, and decision-making processes related to terrain, water flow, 

infrastructure, and natural resources. The following are the motivations for this research 

initiative: 



Page 94 of 329 

 

a) DEMs transform contour lines and elevation points from a topographic sheet into a 

DEM, making it easier to understand and interpret terrain characteristics. 

b) The information about area between any two successive contour is missing leading to 

inadequate information for analysis and shape-preserving generation of contour is 

essential to address the issue. 

c) DEMs generated with the aid of sophisticated software are either manual or semi-

automatic and involve human intervention, making them time consuming and relying 

on the experience of the digitizer. 

d) A common method of generating DEM is using satellite images that consider relative 

mechanisms to represent earth features. In contrast, generating DEM using 

topographic sheets is more interesting because it represents earth features more 

accurately. 

e) DEMs have wide applications in GIS, which include geospatial analysis, terrain 

visualization, 3D modelling and simulation, flood modelling and risk assessment, 

infrastructure planning and engineering, natural resource management, etc. 
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Chapter 3  

Extraction of River Pattern, its Refinement and Attribute 

Generation 

 

3.1 Introduction 

River networks, as represented in 

figure 3.1 (page no 95), an integral 

part of a watershed, have been 

instrumental in shaping the very 

essence of human civilization 

since time immemorial. It is a 

complex collection of streams, 

ranging from the smallest of the 

tributaries to the largest of the streams. Mathematically, a river network may be 

perceived as an inverted hierarchical tree, with the edges as the river segments, 

peripheral sources, and confluence as nodes wherein peripheral sources have an in-

degree of 0 and confluence has an in-degree greater than 1. In a river network, the water 

flows are categorised into brooks, creeks, headstreams, medium streams, and rivers. 

 

The orientation or pattern of the river network may be either dendritic, sub-dendritic, 

trellied or lattice, radial or concentric, parallel, sub-parallel, rectangular, deranged, 

centripetal, centrifugal, annular, or violent, largely dictated by the geological and 

geomorphological characteristics as represented in figure 3.2 (page no 96) [60] [219].   

  

 
Figure 3.1: Stream Ordering 
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Dendritic Sub-Dendritic Trellied or Lattice Radial or 

Concentric 

    

Parallel Sub-Parallel Rectangular Deranged 

    

Centripetal Centrifugal Annular Violent 

Figure 3.2: Different types of river patterns 

 

3.1.1 Understanding Stream Order (Sω) and various River Ordering Techniques 

In hydrological studies, river segments are categorized based on a positive numeric 

value known as stream order [70]. Ranging from 1 to 12, stream order is an increasing 

numerical value assigned to the streams in the river network; it is a mechanism for 

associating relative priorities with the various river segments, i.e., it describes the 

relative position of a stream in the hierarchy of streams in a river network. Streams with 

order values ranging from 1 to 3 are referred to as the "headstream." These are fast, 

steep, and generally located in the peripherals. Streams with order values ranging from 

4 to 6 are referred to as "medium streams" and are slow, less steep, and generally 
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located towards the interiors of the watershed [220]. Whereas a stream with order 

values ranging greater than 7 is referred to as a river, as represented in figure 3.1 (page 

no 95). Here, it is also to be understood that river segments of the same order are 

expected to behave differently based on their topographical and physiographical 

orientations [10]. This implies that river order is more about structural classification 

[221] and relative sizing of streams and provides very little insight regarding the 

inherent geomorphological processes.  

 

The headstreams feed the medium streams and the rivers. With the progression from 

lower-order streams to higher-order streams, the river network gains in size, volume, 

and strength. Stream order plays a crucial role in studies relating to flora and fauna, 

planning development initiatives along waterways, and more importantly, in 

understanding, managing, and containing streams of different magnitudes. 

 

Some of the popular approaches proposed for ordering streams are Classic Stream 

Order (also known as Hack's or Gravelius' Stream Order), Horton Stream Order, 

Strahler Stream Order, Shreve Stream Order, Scheidegger Stream Order, and Order by 

Path Length. 

 

There are two notable ways of classifying these ordering techniques which are based 

on the traversal strategy adopted and the number of passes required for ordering the 

segments in the network. 
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The ordering methods may deploy bottom-up traversal, top-down traversal, or both for 

identifying the streams in the network.  Further, based on the number of passes required 

these methods may be classified into one pass or two-pass. 

 

The proposed research initiative is motivated by understanding the underlying 

principles of the river ordering techniques mentioned below and conceiving an 

automated computational program for the realization of the same. 

a) Classic Stream Order  

b) Strahler Stream Order 

c) Horton Stream Order 

d) Shreve Stream Order 

e) Scheidegger Stream Order 

f) Order by Path Length 

g) Consistent Stream Order 

h) Cumulative Stream Order 

 

The above-mentioned river ordering techniques have been explained in detail with the 

help of explanations, algorithms, figures, and results in serials 3.4 (f) i) to 3.4 (f) viii).  

 

3.1.2 Determination of various attributes associated with river segment 

The proposed research initiative is also motivated by understanding the significance of 

the various attributes associated with river segments, as mentioned below, and 

conceiving an automated computational program for the attainment of the same. 

a) Stream Order 

b) Stream Number 
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c) Bifurcation Ratio 

d) Streams participating in Bifurcation Ratio 

e) Weighted Mean Bifurcation Ratio 

f) Stream Length 

g) Mean Stream Length 

h) Streams participating in Length Ratio 

i) Weighted Mean Length Ratio 

j) Length of Main Channel 

 

3.1.2.1 Stream Number (Nω) 

The stream number, as represented in equation 3.1, is the number of instances of a 

segment in a particular order. As per Horton's “law of stream numbers," the instances 

of segments with a given order geometrically decrease with stream order [222]. 

As expressed by Horton,  

Nω/ Nω+1 = Rb  Or  Nω = Rb
Ω-ω………………. (Equation 3.1) 

where, 

Rb is the bifurcation ratio 

Nω is the instances of segment with order ω 

Ω is the order of the mainstream 

 

3.1.2.2 Bifurcation Ratio (Rb) 

The bifurcation ratio [223], as represented in equation 3.2, is the ratio between instances 

of segments of a given order and instances of segments of the immediate next higher 

order. Quantitatively, the bifurcation ratio is expressed as, 

Rb=Nω /Nω +1 ……………….(Equation 3.2) 
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where, Rb is the bifurcation ratio 

Nω is the instances of segment with order ω 

N 
ω+1 is the instances of segment with order ω +1 

 

As per Horton, the bifurcation ratio will have values in between 2 and 3 or 4 depending 

upon the type of landscape of the basin, ranging from plane to steep and dissected 

landscapes of the river basin. Strahler suggested that the bifurcation ratio is subjected 

to less variation, with a mean around 3 to 3.5. 

 

3.1.2.3 Number of streams participating in Bifurcation Ratio (NRb) 

As represented in equation 3.3 it is equivalent to the total number of streams 

participating in a bifurcation ratio. 

NRb = Nω +Nω +1………………. (Equation 3.3) 

 

3.1.2.4 Weighted Mean Bifurcation Ratio (Rbwmean) 

As per Strahler, the weighted mean bifurcation ratio can be determined by dividing the 

sum of the products of the bifurcation ratio and the total number of segments involved 

in the ratio by the total number of segments involved in the ratio, as represented in 

equation 3.4. 

As expressed by Strahler,  

Rbwmean=(∑ 𝐑𝐛𝐢 ∗ 𝐧𝐑𝐛𝐢

𝐦

𝐢=𝟎
)/(∑ 𝐧𝐑𝐛𝐢

𝐦

𝐢=𝟎
)   ………………. (Equation 3.4) 

where, 

Rbwmean is weighted mean bifurcation ratio 

Rbi is the ith instance of bifurcation ratio 

nRbi is the total number of segments involved in the ratio Rbi 
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3.1.2.5 Stream Length (Lω) 

Stream length, as represented in equations 3.5 and 3.6, can be determined through 

spatial processing of the river network and adding the length of segments of a particular 

order. 

Lω=(∑ 𝐧𝐢𝛚) ∗ 𝐤
𝐦

𝐢=𝟎
 ………………. (Equation 3.5) 

(in specified unit as per scale where ‘k’ is the resolution) 

or 

Lω=(∑ 𝐧𝐢𝛚)
𝐦

𝐢=𝟎
  (in pixel) ………………. (Equation 3.6) 

where, 

Lω is the total length of segments with order ω 

niω is the pixel count in all i segments with order ω 

k is the resolution of the reference image 

 

3.1.2.6 Mean Stream Length (Lωmean) 

The mean stream length can be determined by dividing stream length (Lω) by the 

number of instances of segments of a particular order, as represented in equation 3.7. 

Lωmean= Lω/ Nω ………………. (Equation 3.7) 

where, 

Lω is the total length of segments with order ω 

Lωmean is the mean length of segments with order ω 

Nω is the instances of segments with order ω 

 

3.1.2.7 Stream Length Ratio (RL)  
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As per the Horton “law of stream lengths," the mean length of a segment (Lωmean) with 

a given order geometrically increases with stream order [50], as represented in equation 

3.8. 

As expressed by Horton,  

RL=Lωmean/ Lωmean-1 Or Lωmean = L1RL
(ω-1) ………………. (Equation 3.8) 

where, 

RL is the length ratio 

Lωmean is the mean length of segment with order ω 

L1 is the mean length of segment with order 1 

 

3.1.2.8 Number of streams participating in Bifurcation Ratio (NRb) 

As represented in equation 3.9 it is equivalent to the total number of streams 

participating in a length ratio. 

NRb = Nω +Nω -1………………. (Equation 3.9) 

 

3.1.2.9 Weighted Mean Length Ratio (RLwmean) 

The weighted mean length ratio can be determined by dividing the sum of the products 

of the length ratio and the total number of segments involved in the ratio by the total 

number of segments involved in the ratio, as represented in equation 3.10. 

As expressed by Stralher,  

RLwmean=(∑ 𝐑𝐋𝐢 ∗ 𝐧𝐑𝐋𝐢

𝐦

𝐢=𝟎
)/(∑ 𝐧𝐑𝐋𝐢

𝐦

𝐢=𝟎
)   ……………….(Equation 3.10) 

where, 

RLwmean is weighted mean length ratio 

RLi is the ith instance of length ratio 

nRLi is the total number of segments involved in the ratio RLi 
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3.1.2.10 Area Ratio (RA) 

As per the Schumm “law of stream areas”, the drainage basin area (Aω) geometrically 

increases with stream order [50], as represented in equation 3.11. 

 

As expressed by Schumm,  

RA=Aω/ Aω-1 Or Aω = A1RA
(ω-1)………………. (Equation 3.11) 

where, 

RA is the area ratio 

Aω is the mean area of segment with order ω 

A1 is the mean area of segment with order 1 

 

3.1.2.11 Length of Main Channel (Cl) 

The length of the main channel, as represented in equations 3.12 and 3.13, can be 

determined through spatial processing of the river network by adding the length of all 

the segments belonging to the mainstream and eventually multiplying the same by the 

resolution of the reference image.  

Lms=(∑ 𝐧𝐢𝐦𝐬) ∗ 𝐤
𝐦

𝐢=𝟎
 ………………. (Equation 3.12) 

(in specified unit as per scale where ‘k’ is the resolution) 

Or 

Lms=(∑ 𝐧𝐢𝐦𝐬)
𝐦

𝐢=𝟎
 ………………. (Equation 3.13) 

(in pixel) 

where, 

Lms is the length of the mainstream. 

nims is the pixel count in all i segments with order ms 

k is the resolution of the reference image 
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3.1.3 Selection of appropriate data structure for maintaining values of the 

attributes 

The effectiveness of the automated computational process also depends on the efficient 

organisation of data values in the data structure; rather than relying on traditional linear 

organization, a nonlinear jagged representation would serve as a better alternative. 

 

3.2 Objectives of the proposed work 

The proposed work is motivated by the development of automated computational 

programs for effortless digitization of river networks, their ordering, and the generation 

of associated attributes, which may be of great assistance for inferential studies related 

to the understanding of river networks.  

 

The proposed work also attempts to understand and implement eight river ordering 

techniques. A comparative assessment is also planned to discuss in detail the ordering 

technique, inherent approach, number of passes required, computation cost, advantage, 

disadvantage, and extent of human intervention required. 

 

With the need for adherence to the achievement of the above-mentioned motivations, 

the objectives of the proposed research initiatives are therefore conceived as: 

a) Deploy an appropriate digitization technique for extracting the river network from 

the reference map.  

b) Refine the extracted river network by efficiently removing noise using a suitable 

filter.  

c) Skeletonize the digitized feature by applying an appropriate morphological 

operator.  
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d) Conceive and deploy an effective data traversal technique for determining the 

terminal streams.  

e) Understand the working principles of various river ordering techniques.  

f) Apply various river ordering techniques to the skeletonized river network to 

identify streams of different orders.  

g) Generate various attributes associated with the river network.  

h) Store the attributes in an efficient data structure for facilitating easy analysis. 

 

3.3 Applications of the proposed research initiative  

River order can be set as a scientific basis for: 

a) Describing the size of a particular river network and the gradient of the landscape  

b) Drawing the hydrological characteristics of the streams classification of river 

segments into headwater streams, medium-sized streams, and large rivers  

c) Determining various stream attributes such as stream length, stream count, and 

many more  

d) Describing the stream ecosystem (including nutrients, habitat, organic materials, 

and the energy cycle) and its variation with the physical gradient 

e) Determination of non-point-source pollution problems arising due to natural or 

human activity 

 

3.4 Proposed Methodology 

The proposed research initiative is motivated towards conceiving an efficient generic 

computational program capable of sequentially performing the stated activities for 

addressing the research gaps identified during the review of related works: 

a) Color segment the river network from the topographic sheet 
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b) Pre-process the segmented image to eradicate noise 

c) Skeletonize the pre-processed segmented image to create features with single-pixel 

width 

d) Resolve m-connectivity to facilitate efficient processing 

e) Determine the terminal streams using an efficient spiral traversal mechanism 

f) Identify all the stream segments by identifying all the confluences in the river 

network 

g) Order the identified streams as per the principles of Classic, Strahler, Horton, 

Shreve, Scheidegger, Order by Path Length, Consistent and Cumulative ordering 

techniques 

h) Associate attributes with river network such as Stream Order, Stream Number, 

Bifurcation Ratio, Streams participating in Bifurcation Ratio, Weighted Mean 

Bifurcation Ratio, Stream Length, Mean Stream Length, Streams participating in 

Length Ratio, Weighted Mean Length Ratio and Length of Main Channel based on 

the principles of the ordering techniques 

 

The proposed solution framework for this research initiative has in it seven identifiable 

modules as represented in figure 3.3 (page no 107): 

 

Module 3.1 River Digitization    

Module 3.2 Noise Removal    

Module 3.3 Thinning    

Module 3.4 Resolve Common Neighbors  
Module 

3.6.1 

Classic Stream 

Order  

Module 3.5 Spiral Traversal  
Module 

3.6.2 

Strahler Stream 

Order 
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Module 3.6 River Ordering  
Module 

3.6.3 

Horton Stream 

Order 

Module 3.7 Stream Characterization  
Module 

3.6.4 

Shreve Stream 

Order 

   
Module 

3.6.5 

Scheidegger 

Stream Order 

Module 3.7.1 Stream Order (Sω)  
Module 

3.6.6 

Order by Path 

Length 

Module 3.7.2 Stream Number (Nω)  
Module 

3.6.7 

Consistent 

Stream Order 

Module 3.7.3 Bifurcation Ratio (Rb)  
Module 

3.6.8 

Cumulative 

Stream Order 

Module 3.7.4 
Streams participating in 

Bifurcation Ratio (NRb) 
   

Module 3.7.5 
Weighted Mean Bifurcation 

Ratio (Rbwmean) 
   

Module 3.7.6 Stream Length (Lω)    

Module 3.7.7 
Mean Stream Length 

(Lωmean) 
   

Module 3.7.8 
Streams participating in 

Length Ratio (NRL) 
   

Module 3.7.9 
Weighted Mean Length 

Ratio (RLwmean) 
   

Module 3.7.10 Length of Main Channel (Cl)    

 

Figure 3.3: Proposed framework for the research initiative 

 

a) River Digitization 

Digitization of a feature of interest may be executed through a traditional manual 

approach, such as tracing. Manual digitization is extremely time-consuming and 

expensive, as well as does not ensure quality; moreover, confidence in the results 

greatly depends on the level of experience of the digitizer [224] [225]. 
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In order to overcome the inherent problems associated with the traditional manual 

approach, an intensity-based automated computational program may be conceived and 

realised in order to perform segmentation of the feature of interest from the reference 

map.  

 

In contrast to the manual approach, automated digitization is fast and efficient, but its 

effectiveness greatly relies on the ability to correctly appropriate the range of intensity 

values representing a feature of interest. It may be subjected to the error of commission 

(inclusion of non-contextual information) or the error of omission (exclusion of 

contextual information) if the range of intensity values is not suitably fixed. Therefore, 

digitization is a task critical activity and demands great attention [75] [226]. 

 

Rivers are explicitly represented on a reference map with the help of a distinctive color 

code for ease of visual interpretation. An intensity-based image segmentation module 

needs to be suitably scripted to digitise the same into a distinctive layer. This process 

needs to be carefully executed, as the overall capability and confidence of other 

processes depend on it. The adopted strategy is presented in algorithm 3.1. 

 

 

Algorithm 3.1: Algo_ Digitize_Network  

Consider img input image  

 row, col row size and column size  

 river output image  

 temp processing variable   
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 val1 val2 bound for threshold representing  

river 

 

Start  temp:= rgb to gray (img) 

  row,col:= size(temp) 

   for i =1 to row do 

         for j=1 to col do 

               if temp (i,j) ≥ val1 && temp (i,j) ≤val2  

                          river(i,j)=1; 

               else 

                          river(i,j)=0; 

              End if 

         End for 

End   End for 

Algorithm 3.1: Algorithm for Digitizing River Network 

 

Figure 3.4 a) (page no 110) above represents a sample of river networks taken from the 

topographic sheet, and figure 3.4 b) (page no 110) represents the result of the 

digitization process where the river network is digitized into a distinctive vector layer. 
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(a)                                                                (b) 

Figure 3.4: Sample input river network and digitized river network 

 

b) Noise Removal 

The inclusion of non-contextual information is inevitable during the automatic 

digitization of features. It may be due to the close resemblance of the non-contextual 

information with the feature of interest in terms of its intensity value. Such non-

contextual information is called "noise." Salt and pepper noises are the most suitable 

examples [227] incorporated into the dataset as a consequence of improper 

segmentation, which further has to be removed using purposive spatial processing. 

 

It is extremely crucial to weed out noise from the digitized data, as it would significantly 

hamper the results of the inferential study. Error-specific spatial filters of appropriate 

size may be conceived and deployed for the removal of the same, such as a median 

filter. 

 

Very often, it has been observed that segmented images, in addition to significant 

datasets, also express noises (e.g., salt and pepper). This can be achieved by using 
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standard, well-accepted filtering techniques or by designing a simple contextual 

morphological module. Here, a median filter of 3x3 is used for removing the salt and 

pepper noise, as detailed in algorithm 3.2. 

 

Algorithm 3.2: Algo_ Remove_Noise  

Consider river Dataset  

 row, col row size and column size  

 wind processing variable   

 win_w window width  

 win_h window height  

 i,j,k,l,ex,ey Variables  

Start  row,col:= size(river) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ex:= floor(win_w/2) 

ey:= floor(win_h/2) 

    for i:=ex to row-ex do 

          for j:=ey to col-ey  do 

                 k: = 0 

                for l:=0 to 3 do 

                     for m:= 0 to 3 do 

                             wind[k] := riv[i + l - ex][j + m 

- ey] 

                             k:= i + 1 

                    End for 

               End for 

               sort entries in wind[] 
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End 

               river[i][j] := wind[wind_w * wind_h / 2] 

        End for 

 End for 

Algorithm 3.2: Algorithm for Noise Removal 

 

 

                                       (a)                                                   (b) 

Figure 3.5: Digitized river network and pre-processed river network 

 

Figure 3.5 a) (page no 112) above represents digitized river networks that need to be 

filtered for the removal of noise or errors caused by improper digitization, and figure 

3.5 b) (page no 112) represents the result of the preprocessing performed using the 

median filter. 

 

c) Thinning  

One of the most effective strategies to reduce the extent of computation required during 

the assessment of digitized features is to create a single pixel-width integrity-preserving 

representation of the feature through the application of morphological operators [228] 

[229] [76]. The creation of such a skeletonized representation of morphological features 
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eases quick assessment as well as facilitates the generation of values for various 

attributes associated with the feature. 

 

Morphological processing can be further simplified by condensing the dimensional 

information in the digitized image. In this initiative, Zhang et al.'s thinning algorithm 

[76] is deployed to create a skeletonized representation of the river network.  

 

It is a two-pass algorithm that selects the pixel to be deleted while maintaining the 

structural appearance of an object and converting the same into a one-bit-per-pixel 

image. Assume black pixels are one and white pixels are zero, and the input image is a 

rectangular n by m array of ones and zeros. 

 

The neighbors are arranged as: 

 

 

 

 

Define A(P) = the number of transitions from white to black in the sequence P2, P3, P4, 

P5, P6, P7, P8, P9, P2. 

Define B(P) = the number of black neighbors of pixels. = sum (P2, P3, P4, P5, P6, P7, P8, 

P9). 

Pass 1:  The pixel is black and has eight neighbors. 

(0) 2≤B(P)≤6 

(1) A(P)=1 

(2) Atleast one of P2, P4 and P6 is white. 

P9 P2 P3 

P8 P P4 

P7 P6 P5 
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(3) Atleast one of P4, P6 and P8 is white. 

 

Pass 2:  All pixels are again tested 

(0) The pixel is black and has eight neighbors. 

(1) 2≤B(P)≤6 

(2) 2≤B(P)≤6 

(3) Atleast one of P2, P4 and P8 is white. 

(4) Atleast one of P2, P6 and P8 is white. 

 

These steps are repeated until no image pixels are changed as detailed in algorithm 3.3.  

Algorithm 3.3: Algo_ Thinning   

Consider River Dataset  

 row, col row size, column size  

 i,j Variables  

Start  row,col:= size(river) 

 

 

 

 

 

 

 

 

 

 

  for i=2 to row-1 do 

       for j= 2 to col-1 do 

            check for conditions stated for pass 1 to determine 

whether pixel   

             becomes a candidate for removal 

      End for 

End for 

for i=2 to row-1 do 

        for j= 2 to col-1 do 
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End 

              check for conditions stated for pass 2 to determine 

whether pixel   

               becomes a candidate for deletion 

         End for 

End for 

repeat until no new pixel is marked for deletion. 

Algorithm 3.3: Algorithm for Skeletonizing/ Thinning 

 

Figure 3.6 a) (page no 116) above represents pre-processed river networks; figure 3.6 

b) (page no 116) represents the result of the thinning processes; and figure 3.6 c) (page 

no 116) represents a demonstration of the thinning process. 

 

               

                                                                  (a) 
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                                    (b)                                                    (c) 

Figure 3.6: Digitized river network, thinned river network and demonstration of 

thinning process  

 

d) Resolve Common Neighbors 

On close observation of the digitized river network, it was found that there exist 

instances of structural orientation wherein certain pixels have common neighbors; 

although the presence of such situations would not to an extent influence the result, for 

ease of operation, the proposed research initiative simplifies the existence of all such 

instances. 

 

For simplicity, for any significant pixel, if the number of neighbours varies from 3 to 

8, then it has to be simplified. For any significant pixel with two neighbours P and Q, 

the m-Connectivity is defined as: 

N4(P) ∩ N4(Q) ≠ NULL ………………. (Equation 3.14) 

where,  

N4(P) represents four neighborhood of significant pixel P (top, down, left, and right 

pixel) 
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N4(Q) represents four neighborhood of significant pixel Q (top, down, left, and right 

pixel) i.e., there should not be any common N4 elements between pixel P and Q. 

 

The sequence of steps for resolving common neighbor is explained in algorithm 3.4 

specified below. 

 

Algorithm 3.4: Algo_ Resolve_Neighbor   

Consider river Dataset  

 row, col row size and column size  

 tmp window of size 3x3  

Start 

 

 

 

 

 

 

 

End 

  for i=2 to i_row-1 do 

       for  j=2 to col-1 do 

 for any significant pixel with two neighbors P and Q

         

                    ensure N4(P) ∩ N4(Q) ≠ NULL where 

N4(P) & N4(Q)      

                    represents four neighborhood of significant 

pixel  

              End for         

       End for 

End for 

save and display contour 

Algorithm 3.4: Algorithm for Resolving Common Neighbor 
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                                         (a)                                                                        (b) 

                      

                                       (c)                                                                        (d) 

Figure 3.7: Thinned river network with instances of m-connectivity, example of m-

connectivity and demonstration of resolution of m connectivity 

 

Figure 3.7 a) (page no 118) above represents a thinned river network with instances of 

m-connectivity and figure 3.7 b) (page no 118) explicitly reflects the presence of m-

connectivity marked with red spots. Figure 3.7 c) (page no 118) represents a 

demonstration of the resolution process for removing m-connectivity and figure 3.7 d) 

(page no 118) explicitly reflects the removal of m-connectivity. 

 

e) Spiral Traversal 
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On close observation of the different patterns of the river network, it has been found 

that the peripheral streams are radially oriented, as seen in figure 3.2 (page no 96), i.e., 

the peripheral streams in the river network radially converge to form steams of higher 

orders, as seen in figure 3.4 a (page no 110).   

 

The overall effectiveness of the various stream ordering techniques largely depends on 

the ability of the data traversal technique deployed for identifying the peripheral 

streams. The traditional row major or column major traversal mechanism is found to 

be inefficient in achieving the same [69] [230]. Therefore, an alternative spiral traversal 

mechanism is proposed for attaining the same. 

 

An adaptation of the spiral traversal proposed by 

Mohan et al [69] has been deployed here for 

determining the peripheral segments in the river 

network, as represented in figure 3.8 (page no 

119). In this situation, spiral traversal proves more 

effective than the traditional row-column 

approach for identifying the peripheral segments, as it was observed that the peripheral 

stream is located towards the four peripherals of the dataset. The workings of the spiral 

traversal technique are explained in algorithm 3.5, which is specified below. 

 

 Algorithm 3.5: Algo_Spiral_Traversal   

Consider river Dataset  

 row, col row size and column size  

 i,j Variables  

 
Figure 3.8: Spiral Traversal 
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Start   row, col= size(river); 

calculate centroid:     

 

 

 

 

 

 

 

 

 

End 

  x_c=row/2;y_c=col/2; 

for travel from 1, 1 to x_c, y_c            

            if x_c & y_c is reached  

                  break; 

            else 

                   travel right-> travel down->travel left-> 

travel up 

                   on encountering a significant pixel stop for   

                   performing desired operation   

            End if 

 End for      

Algorithm 3.5: Algorithm for Spiral Traversal 

 

f) Stream Ordering 

The proposed research initiative implements the following eight ordering techniques: 

 

i) Classic Stream Order (Hack's 

Stream Order or Gravelius' 

Stream Order) 

As proposed by John Tilton Hack 

[14], these techniques start with 

the mainstream and then traverse 

backwards to associate orders  
Figure 3.9: Classical Stream Order 
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with the river segments. It starts by assigning 1 to the mainstream, and on encountering 

a confluence while traversing backwards, either of the tributaries will continue with the 

order of the mainstream, whereas the other tributary will continue with order 2 (one 

plus the order of the mainstream). The process recursively repeats till all the segments 

are assigned an order number, as shown in figure 3.9 (page no 120). The working 

principle of the Classic Stream Ordering technique is explained in algorithm 3.6, which 

is specified below. 

 

Algorithm 3.6: Algo_Classic Stream Order  

Consider f function for stream order  

 m number of stream segments  

 i the main stream with order ‘1’  

f(i)=1 

 

 j, k the tributaries to stream i      

Start 

 

 

 

 

 

  for all ‘m’ streams while traversing backward do 

if there exist ‘j’ & ‘k’  

               f(j):= f(i); f(k):= f(i)+1; 

                                  or 

f(k):= f(i); f(j):= f(i)+1; 

 End if 

End   End For 

Algorithm 3.6: Classic Stream Order (Hack's Stream Order or Gravelius' Stream 

Order) 
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ii) Strahler Stream Order 

As proposed by Arthur Newell 

Strahler [231], this technique 

starts with the peripheral 

streams and then traverses 

forwards to associate orders 

with the river segments. It starts 

by assigning 1 to the peripheral 

stream, and on encountering a 

confluence, either of these actions may be initiated. 

 

a) The resulting stream retains the highest order of the converging tributaries in a 

situation where the orders are not the same. 

Or 

b) The resulting stream is assigned an order that is equal to 1 plus the order of either 

of the tributaries in a situation where the orders of the converging tributaries are 

the same. The process recursively repeats till all the segments are assigned an 

order number, as shown in figure 3.10 (page no 122). The working principle of 

the Strahler Stream Ordering technique is explained in algorithm 3.7, which is 

specified below. 

 

Algorithm 3.7: Algo_ Strahler Stream Order  

Consider F function for stream order  

 M number of stream segments  

 I the resulting stream  

`

Figure 3.10: Strahler Stream Order 
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 j, k the tributaries to i      

Start 

 

 

 

 

 

 

 

 

 

  for all ‘m’ streams while traversing forward do 

if there exist ‘j’ & ‘k’ 

                          if (f(k) ≠ f(j))     

                                        f(i):= max {f(k), f(j)}; 

                          else 

                                         f(i):= f(k)+1 or f(i):= f(j)+1 ; 

                          End if 

            else 

                        f(i):=1; 

            End if 

End   End for 

Algorithm 3.7: Strahler Stream Order 

 

iii) Horton Stream Order 

 

As proposed by Robert E. Horton, this technique assigns the same order for a river 

segment stretching from the source to the mainstream [231] [62]. The ordering takes 

Figure 3.11 a): Strahler Stream Order  

1st Pass 
Figure 3.11 b): Horton Stream Order  

2nd Pass 
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place over two passes. In the first pass, the ordering of the river segments is done using 

the Strahler Stream Order.  

 

On detecting the mainstream, the second pass starts. The Horton Ordering technique 

assigns the highest order to the mainstream, and on encountering a confluence while 

traversing backwards, either of the tributaries will continue with the order of the 

mainstream, whereas the other tributary will retain its Strahler Order. The process 

recursively repeats till the mainstream is tracked to its source, as represented in figures 

3.11 a) and b) (page no 123). 

 

Here, to avoid the selection of a false source at the confluence, either of the following 

criteria are adhered to: 

a)  Assign the order of the mainstream to the tributary with the highest Strahler in 

a situation where there are streams with different Strahler Order. 

Or 

b) Assign the order of the mainstream to the tributary with the highest flow rate or 

largest catchment area. This mandates the presence of an accumulation map for 

deriving quality decisions. 

 

The working principle of the Horton Stream Ordering technique is explained in 

algorithm 3.8, which is specified below. 

 

 Algorithm 3.8: Algo_ Horton Stream Order  

Consider F function for stream order  

 M number of stream segments  
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 I the resulting stream  

 j, k the tributaries to i      

Start 

 

 

 

 

 

 

 

 

 

  for all ‘m’ streams while traversing forward do 

if there exist ‘j’ & ‘k’ 

                          if (f(k) ≠ f(j))     

                                        f(i):= max {f(k), f(j)}; 

                          else 

                                          f(i):= f(k)+1 or f(i):= f(j)+1 ; 

                         End if 

            else 

                        f(i):=1; 

            End if 

   End for 

   for all ‘m’ streams while traversing backward do  

if there exist ‘j’ & ‘k’ 

                          if (f(k) ≠ f(j))     

                                      if(f(k) > f(j)) 

                                                 f(k):= f(i); 

                                     else 

                                                  f(j):= f(i); 

                                     End if 

                         else 

                                   assess the flow rate or largest 

catchment of j & k 

                                  f(k):= f(i); or f(j):= f(i); 
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              End if 

End   End for 

Algorithm 3.8: Horton Stream Order 

 

iv) Shreve Stream Order 

As proposed by Ronald L. Shreve [17] [18], this 

technique starts with the peripheral streams and 

then traverses forwards for associating orders 

with the other network segments. It starts by 

assigning 1 to the peripheral stream, and on 

encountering a confluence, it assigns the order 

that is equivalent to the sum of the orders of all 

the tributaries to the resulting segment. The process recursively repeats till all the 

segments are assigned an order number, as shown in figure 3.12 (page no 126). The 

working principle of the Shreve Stream Ordering technique is explained in algorithm 

3.9, which is specified below. 

 

Algorithm 3.9: Algo_ Shreve Stream Order  

Consider f function for stream order  

 m number of stream segments  

 I the resulting stream  

 j, k the tributaries to i      

Start 

 

 

  for all ‘m’ streams while traversing forward do 

if there exist ‘j’ & ‘k’ 

                           f(i):= f(k) + f(j); 

Figure 3.12: Shreve Stream Order  
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             else 

                            f(i):=1; 

            End if              

End   End for 

Algorithm 3.9: Shreve Stream Order 

 

v) Scheidegger Stream Order 

As proposed by Adrian E. Scheidegger 

[232] [19], this technique starts with 

the peripheral streams and then 

traverses forwards for associating 

orders with the other network 

segments. It starts by assigning 2 to the 

peripheral stream, and on encountering 

a confluence, it assigns the order that is 

equivalent to the sum of the orders of all the tributaries to the resulting segment. The 

process recursively repeats until all the segments are assigned an order number, as 

shown in figure 3.13 (page no 127). The working principle of the Scheidegger Stream 

Ordering technique is explained in algorithm 3.10, which is specified below. 

 

Algorithm 3.10: Algo_ Scheidegger Stream Order  

Consider f function for stream order  

 M number of stream segments  

 I the resulting stream  

 j, k the tributaries to i      

Figure 3.13: Scheidegger Stream Order  



Page 128 of 329 

 

Start   for all ‘m’ streams while traversing forward do 

if there exist ‘j’ & ‘k’ 

                           f(i):= f(k) + f(j); 

             else 

                            f(i):=2; 

            End if              

End   End for 

Algorithm 3.10: Scheidegger Stream Order 

 

vi) Order by Path Length method 

Also known as the topological 

ordering method [22] this method 

starts by assigning 1 to the 

mainstream, and on encountering a 

confluence while traversing 

backwards, it assigns the order that 

is equivalent to 1 plus the order of 

the mainstream to all the tributaries. 

The process recursively repeats until all the segments are assigned an order number, as 

shown in figure 3.14 (page no 128). The working principle of the Order by Path Length 

Method Stream Ordering technique is explained in algorithm 3.11, which is specified 

below. 

 

Algorithm 3.11: Algo_ Order by Path Length Method Stream Order 

Consider f function for stream order  

Figure 3.14: Order by Path Length Method 
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 m number of stream segments  

 I the main stream with order ‘1’  

F(i)=1 

 

 j, k the tributaries to i      

Start 

 

 

 

  for all ‘m’ streams while traversing backward do 

if there exist ‘j’ & ‘k’  

                           f(k):= i+1;  f(j):=i+1 ; 

              End if              

End   End for 

 Algorithm 3.11: Order by Path Length Method 

 

vii) Consistent Stream Order 

As proposed by Adrian E. Scheidegger 

in [232] and [19], this technique starts 

with the peripheral streams and then 

traverses forward to associate orders 

with the other network segments. Let Z 

be the resulting stream from the 

confluence of x and y. If n and m are the 

orders of x and y, respectively, then the 

order of stream z is calculated as: 

f(z) = 
𝐋𝐨𝐠(𝟐𝐦+𝟐𝐧)

𝐋𝐨𝐠 𝟐
 ………………. (Equation 3.15) 

The process recursively repeats till all the segments are assigned an order number, as 

shown in figure 3.15 (page no 129). The working principle of the Consistent Stream 

Ordering technique is explained in algorithm 3.12, which is specified below. 

Figure 3.15: Consistent Stream Order  
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Algorithm 3.12: Algo_ Consistent Stream Order  

Consider f function for stream order  

 m number of stream segments  

 i the resulting stream  

 x, 

y 

the tributaries to z      

Start   for all ‘m’ streams while traversing forward do 

if there exist ‘x’ & ‘y’ with order ‘m’ & ‘n’ 

respectively 

                             f(z) = 
𝐿𝑜𝑔(2𝑚+2𝑛)

𝐿𝑜𝑔 2
 

            End if              

End   End for 

Algorithm 3.12: Consistent Stream Order 

 

viii) Cumulative Stream Order 

As proposed by William L. Graf 

[71], this technique starts with the 

peripheral streams and then 

traverses forward to associate 

orders with the other network 

segments. Let Z be the resulting 

stream from the confluence of x 

and y. If n and m are the orders of 

x and y, respectively, then the order of stream z is calculated as 

f(z) = 𝐧 + 𝐦 + 𝟏 ………………. (Equation 3.16) 

Figure 3.16: Cumulative Stream Order  

4 
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The process recursively repeats till all the segments are assigned an order number, as 

shown in figure 3.16 (page no 130). The working principle of the Cumulative Stream 

Ordering technique is explained in algorithm 3.13 specified below. 

 

Algorithm 3.13: Algo_ Cumulative Stream Order  

Consider f function for stream order  

 m number of stream segments  

 i the resulting stream  

 x, 

y 

the tributaries to z      

Start   for all ‘m’ streams while traversing forward do 

if there exist ‘x’ & ‘y’ with order ‘m’ & ‘n’ 

respectively 

                             f(z) = 𝑚 + 𝑛 + 1 

            End if              

End   End for 

Algorithm 3.13: Cumulative Stream Order 

 

3.5 Considerations, Constraints, Development Environment 

3.5.1 Considerations 

To implement the various river ordering techniques, a randomly selected sample image 

of size 471 x 471 is selected and set as input. The sample input image type is BMP 

(bitmap).  
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In pursuit of attaining the objectives of the proposed research initiative, we 

implemented the following modules without the aid of predefined routines supported 

by the development platform: 

a) Digitization of river network 

b) Skeletonization of river network 

c) Noise Removal 

d) Ensuring m-connectivity 

e) Spiral Traversal for detection of peripheral streams 

f) Identification of intermediate-streams and main-stream 

g) Assignment of Stream Order using various stream ordering techniques 

h) Creation of stream attributes 

 

3.5.2 Constraints 

The following are the constraints on implementing the research initiatives: 

a) Contour map derived from topographic sheet is considered an input sample 

image. 

b) The feature of interest should hold the properties of connected components. 

c) The sample image must be a binarized image, free from noise (particularly salt-

and-pepper noise). 

d) The pixel width of the feature of interest in the sample image is considered to be 

one and ensures m-connectivity between any two pixels in the neighborhood. 

 

3.5.3 Development Environment 

The description of the development environment for the proposed research initiative is 

as detailed below, 
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      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor 11th Gen Intel(R) 

Core i7-1165G7 @ 

2.80GHz  

• Facilitates faster execution of 

programming code 

• RAM 16.0 GB (15.8 GB 

usable) 

• Sustain applications requirements 

• Operating 

System 

Windows, 64-bit • User friendly interface 

• Compatibility with application 

• Development 

Software 

MATLAB (2020a) • Easy translation of concepts to 

executables 

• Rich with in-build libraries 

• Debugging ease 

• Scalable 

 

3.6 Results and Discussions  

3.6.1 Classic Stream Order (Hack's Stream Order or Gravelius' Stream Order) 

Figure 3.17 a) (page no 134) represents the input to the Classic Stream Order algorithm. 

Figure 3.17 b) (page no 134) represents output from the Classic Stream Order. Tables 

3.1 a) and b) (page no 135) represent the various attributes generated by the algorithm. 
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Figure 3.17: Input to and output from the automated process for Classic Stream Order 

 

Although easy to understand, simple to use, and intuitive, one of the major limitations 

of this approach is the need for effective decision support capability at each confluence 

to determine the true source of the river, i.e., to decide which of the tributaries 

converging at the confluence would carry forward the order of the mainstream. The 

tributary that is placed upstream of the bifurcation generally continues with the order 

of the mainstream, and the other is assigned with the order one more than the order of 

the mainstream. This technique requires a forward recursive procedure for determining 

the actual order of the mainstream, which will definitely incur additional computational 

overhead. 

(a) 

 
(b) 
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Table 3.1 a): River Network ordering using Classic Stream Order algorithm 

 

Sl St Id 
Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 8 1 175 193 249 174 76 16 21 2 179 377 211 347 39 

2 18 1 249 174 333 164 85 17 23 2 211 347 248 295 62 

3 22 1 333 164 366 190 37 18 25 2 248 295 258 282 15 

4 24 1 366 190 373 259 69 19 27 2 258 282 380 324 125 

5 26 1 373 259 380 324 65 20 2 3 10 252 85 251 78 

6 28 1 380 324 398 353 30 21 4 3 47 462 120 416 90 

7 29 1 398 353 468 398 75 22 5 3 201 2 259 98 104 

8 3 2 94 470 120 416 56 23 9 3 179 464 179 377 89 

9 6 2 222 91 259 98 41 24 12 3 108 363 211 347 106 

10 7 2 152 113 249 174 107 25 14 3 202 246 258 282 61 

11 10 2 299 401 398 353 102 26 16 3 85 251 120 272 38 

12 11 2 389 100 366 190 92 27 20 3 120 272 248 295 130 

13 15 2 268 224 373 259 109 28 1 4 2 139 85 251 120 

14 17 2 120 416 179 377 62 29 13 4 109 232 120 272 42 

15 19 2 259 98 333 164 87  

 

Table 3.1 b): River Network characterization using Classic Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 7 - - - - 437 62.43 - - -  

4250.18 

 

2 2 12 0.58 19 11.08 897 74.75 1.20 1334 1597.29 

3 3 8 1.5 20 30 696 87 1.16 1593 1854.06 

4 4 2 4 10 40 162 81 0.93 858 798.83 

Total 29 6.08 49 81.08 2192 305.18 3.29 3785 4250.18 437 

Mean 7.25 2.03   1.65   1.10   1.12  
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3.6.2 Strahler Stream Order 

Figure 3.18 a) (page no 136) represents the sample input to the Strahler Stream Order 

algorithm. Figure 3.18 b) (page no 136) represents output from the Strahler Stream 

Order. Tables 3.2 a) and b) (page no 137) represent the various attributes generated by 

the algorithm. 

Figure 3.18: Input to and output from the automated process for Strahler Stream Order 

 

One of the advantages of this approach is that it has a sound mathematical basis, and 

the traversal criteria are well-defined, making tracking of the true source relatively easy 

compared to that of the classic order technique. Here, all the streams are directed from 

the peripheral to the mainstream. This technique is relatively easy to understand and 

computationally simple. One of the major limitations of this technique is that, if there 

are streams with different orders arriving at a confluence, it takes into account the 

influence of only the highest order stream for deciding on the order of the resulting 

stream, while it ignores the lower order streams and also does not distinguish the main 

stream from other streams.

 
(a) 

 
(b) 
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Table 3.2 a): River Network ordering using Strahler Stream Order algorithm 

 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate Len 

s_x s_y e_x e_y s_x s_y e_x e_y  

1 1 1 2 139 85 251 120 16 16 2 85 251 120 272 38 

2 2 1 10 252 85 251 78 17 17 2 120 416 179 377 62 

3 3 1 94 470 120 416 56 18 18 2 249 174 333 164 85 

4 4 1 47 462 120 416 90 19 19 2 259 98 333 164 87 

5 5 1 201 2 259 98 104 20 20 2 120 272 248 295 130 

6 6 1 222 91 259 98 41 21 21 2 179 377 211 347 39 

7 7 1 152 113 249 174 107 22 23 2 211 347 248 295 62 

8 8 1 175 193 249 174 76 23 22 3 333 164 366 190 37 

9 9 1 179 464 179 377 89 24 24 3 366 190 373 259 69 

10 10 1 299 401 398 353 102 25 25 3 248 295 258 282 15 

11 11 1 389 100 366 190 92 26 26 3 373 259 380 324 65 

12 12 1 108 363 211 347 106 27 27 3 258 282 380 324 125 

13 13 1 109 232 120 272 42 28 28 4 380 324 398 353 30 

14 14 1 202 246 258 282 61 29 29 4 398 353 468 398 75 

15 15 1 268 224 373 259 109  

 

 

Table 3.2 b): River Network characterization using Strahler Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 15 - - - 

- 

1273 84.87 - - - 

 
 

2 2 7 2.14 22 47.08 503 71.86 0.85 1776 1503.75 

3 3 5 1.40 12 16.8 311 62.20 0.87 814 704.60 

4 4 2 2.50 7 17.5  52.50 0.84 416 351.13 

Total 29 6.04 41 81.38 2192 271.42 2.56 3006 2559.48 105 

Mean  2.01   1.98   0.85   0.85  
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3.6.3 Horton Stream Order 

Figure 3.19 a) (page no 138) represents the sample input to the Horton Stream Order 

algorithm. Figure 3.19 b) (page no 138) represents output from the Horton Stream 

Order. Tables 3.3 a) and b) (page no 140) represent the various attributes generated by 

the algorithm. 

 

Figure 3.19: Input to and output from the automated process for Horton Stream Order 

 

One of the advantages is that it prioritises the river segments in a manner that closely 

resembles natural occurrences.  

 

Major limitations of this technique are: 

 
      (a) 

 
(b) 
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a) It mandates that the segment orientation in the network satisfy “Horton Net." 

Horton Net is a network of streams where 1/β (where β is the bifurcation ratio) 

rivers of order n combine to form a river of order n+1. 

b) Biasness either to the catchment area with a larger number of segments or to the 

flow accumulation may lead to the selection of a false source. 

c) Computationally, this technique requires more time as it has to be executed over 

two passes. 

d) Calls for manual intervention in deciding on the true source of the river. 
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Table 3.3 a): River Network ordering using Horton Stream Order algorithm 

 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 2 1 10 252 85 251 78 16 21 2 179 377 211 347 39 

2 3 1 94 470 120 416 56 17 23 2 211 347 248 295 62 

3 6 1 222 91 259 98 41 18 5 3 201 2 259 98 104 

4 8 1 175 193 249 174 76 19 19 3 259 98 333 164 87 

5 9 1 179 464 179 377 89 20 22 3 333 164 366 190 37 

6 10 1 299 401 398 353 102 21 24 3 366 190 373 259 69 

7 11 1 389 100 366 190 92 22 26 3 373 259 380 324 65 

8 12 1 108 363 211 347 106 23 1 4 2 139 85 251 120 

9 13 1 109 232 120 272 42 24 16 4 85 251 120 272 38 

10 14 1 202 246 258 282 61 25 20 4 120 272 248 295 130 

11 15 1 268 224 373 259 109 26 25 4 248 295 258 282 15 

12 4 2 47 462 120 416 90 27 27 4 258 282 380 324 125 

13 7 2 152 113 249 174 107 28 28 4 380 324 398 353 30 

14 17 2 120 416 179 377 62 29 29 4 398 353 468 398 75 

15 18 2 249 174 333 164 85  

 

 

Table 3.3 b): River Network characterization using Horton Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 11 - - -  852 77.45      

2 2 6 1.83 17 31.17 445 74.17 0.96 1297 1241.94 

3 3 5 1.20 11 13.20 362 72.40 0.98 807 787.78 

4 4 7 0.71 12 8.57 533 76.14 1.05 895 941.27 

Total 29 3.75 40 52.94 1340 222.71 2.99 2999 2970.99 533 

Mean  1.87   1.32   1   0.99  
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3.6.4 Shreve Stream Order 

Figure 3.20 a) (page no 141) represents the sample input to the Shreve Stream Order 

algorithm. Figure 3.20 b) (page no 141) represents output from the Shreve Stream 

Order. Tables 3.4 a) and b) (page no 142 and 143, respectively) represent the various 

attributes generated by the algorithm. 

 

Figure 3.20: Input to and output from the automated process for Shreve Stream Order 

 

One of the major advantages of this technique is that it is easy to understand and simple 

to use, and it also takes into account the influence of all the converging streams when 

deciding on the order of the resulting stream. Computationally, it requires less time and 

space. One of the major limitations is that it also does not allow for the identification 

of the actual source. 

 

 
(a) 

 
(b) 
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Table 3.4 a): River Network ordering using Shreve Stream Order algorithm 

 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 1 1 2 139 85 251 120 16 16 2 85 251 120 272 38 

2 2 1 10 252 85 251 78 17 17 2 120 416 179 377 62 

3 3 1 94 470 120 416 56 18 18 2 249 174 333 164 85 

4 4 1 47 462 120 416 90 19 19 2 259 98 333 164 87 

5 5 1 201 2 259 98 104 20 20 3 120 272 248 295 130 

6 6 1 222 91 259 98 41 21 21 3 179 377 211 347 39 

7 7 1 152 113 249 174 107 22 23 4 211 347 248 295 62 

8 8 1 175 193 249 174 76 23 22 4 333 164 366 190 37 

9 9 1 179 464 179 377 89 24 24 5 366 190 373 259 69 

10 10 1 299 401 398 353 102 25 26 6 373 259 380 324 65 

11 11 1 389 100 366 190 92 26 25 7 248 295 258 282 15 

12 12 1 108 363 211 347 106 27 27 8 258 282 380 324 125 

13 13 1 109 232 120 272 42 28 28 14 380 324 398 353 30 

14 14 1 202 246 258 282 61 29 29 15 398 353 468 398 75 

15 15 1 268 224 373 259 109  
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Table 3.4 b): River Network characterization using Shreve Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 15 - - -  1273 84.87 - - -   

2 2 4 3.75 19 71.25 272 68 0.80 1545 1237.94 

3 3 2 2 10 20 169 84.5 1.24 441 548.01 

4 4 2 1 4 4 99 49.5 0.59 268 156.99 

5 5 1 2 3 6 69 69 1.39 168 234.18 

6 6 1 1 2 2 65 65 0.94 134 126.23 

7 7 1 1 2 2 15 15 0.23 80 18.46 

8 8 1 1 2 2 125 125 8.33 140 1166.67 

9 14 1 1 2 2 30 30 0.24 155 37.20 

10 15 1 1 2 2 75 75 2.50 105 262.50 

Total 29 13.75 46 111.25 2192 665.87 16.27 3036 3788.19 75 

Mean 2.9 1.375   2.42   1.81   1.25  
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3.6.5 Scheidegger Stream Order 

Figure 3.21 a) (page no 144) represents the sample input to Scheidegger Stream Order 

algorithm. Figure 3.21 b) (page no 144) represents output from Scheidegger Stream 

Order. Table 3.5 a) & b) (page no 145 and 146, respectively) represents the various 

attributes generated by the algorithm. 

 

Figure 3.21: Input to and output from the automated process for Scheidegger Stream 

Order 

 

One of the major advantages of this technique is that it is easy to understand and simple 

to use, and it also takes into account the influence of all the converging streams when 

deciding on the order of the resulting stream. Computationally, it requires less time 

compared to the Shreve technique, as it uses even numbers to represent the order of the 

network segments. One of the major limitations is that it also does not allow for the 

identification of the actual source. 

 
(b) 
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Table 3.5 a): River Network ordering using Scheidegger Stream Order algorithm 

 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 1 2 2 139 85 251 120 16 16 4 85 251 120 272 38 

2 2 2 10 252 85 251 78 17 17 4 120 416 179 377 62 

3 3 2 94 470 120 416 56 18 18 4 249 174 333 164 85 

4 4 2 47 462 120 416 90 19 19 4 259 98 333 164 87 

5 5 2 201 2 259 98 104 20 20 6 120 272 248 295 130 

6 6 2 222 91 259 98 41 21 21 6 179 377 211 347 39 

7 7 2 152 113 249 174 107 22 23 8 211 347 248 295 62 

8 8 2 175 193 249 174 76 23 22 8 333 164 366 190 37 

9 9 2 179 464 179 377 89 24 24 10 366 190 373 259 69 

10 10 2 299 401 398 353 102 25 26 12 373 259 380 324 65 

11 11 2 389 100 366 190 92 26 25 14 248 295 258 282 15 

12 12 2 108 363 211 347 106 27 27 16 258 282 380 324 125 

13 13 2 109 232 120 272 42 28 28 28 380 324 398 353 30 

14 14 2 202 246 258 282 61 29 29 30 398 353 468 398 75 

15 15 2 268 224 373 259 109  
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Table 3.5 b): River Network characterization using Scheidegger Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 2 15 - - -  1273 84.87 - - -   

2 4 4 3.75 19 71.25 272 68 0.80 1545 1237.94 

3 6 2 2 10 20 169 84.5 1.24 441 548.01 

4 8 2 1 4 4 99 49.5 0.59 268 156.99 

5 10 1 2 3 6 69 69 1.39 168 234.18 

6 12 1 1 2 2 65 65 0.94 134 126.23 

7 14 1 1 2 2 15 15 0.23 80 18.46 

8 16 1 1 2 2 125 125 8.33 140 1166.67 

9 28 1 1 2 2 30 30 0.24 155 37.20 

10 30 1 1 2 2 75 75 2.50 105 262.50 

Total 29 13.75 46 111.25 2192 665.87 16.27 3036 3788.19 75 

Mean 2.9 1.375   2.42   1.81   1.25  
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3.6.6 Order by path length method 

Figure 3.22 a) (page no 147) represents the sample input to Order by path length Stream 

Order algorithm. Figure 3.22 b) (page no 147) represents output from Order by path 

length Stream Order. Table 3.6 a) & b) (page no 14) represents the various attributes 

generated by the algorithm. 

 

Figure 3.22: Input to and output from the automated process for Order by path length 

Stream Order 

 

This technique is relatively easy to understand and computationally requires less time 

and space. One of the major limitations is that it also does not allow for the 

identification of the actual source. 

 
(a) 

 
(b) 
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Table 3.6 a): River Network ordering using Order by Path Length Stream Order algorithm 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 29 1 398 353 468 398 75 16 16 6 85 251 120 272 38 

2 10 2 299 401 398 353 102 17 18 6 249 174 333 164 85 

3 28 2 380 324 398 353 30 18 19 6 259 98 333 164 87 

4 26 3 373 259 380 324 65 19 21 6 179 377 211 347 39 

5 27 3 258 282 380 324 125 20 1 7 2 139 85 251 120 

6 14 4 202 246 258 282 61 21 2 7 10 252 85 251 78 

7 15 4 268 224 373 259 109 22 5 7 201 2 259 98 104 

8 24 4 366 190 373 259 69 23 6 7 222 91 259 98 41 

9 25 4 248 295 258 282 15 24 7 7 152 113 249 174 107 

10 11 5 389 100 366 190 92 25 8 7 175 193 249 174 76 

11 20 5 120 272 248 295 130 26 9 7 179 464 179 377 89 

12 23 5 211 347 248 295 62 27 17 7 120 416 179 377 62 

13 22 5 333 164 366 190 37 28 3 8 94 470 120 416 56 

14 12 6 108 363 211 347 106 29 4 8 47 462 120 416 90 

15 13 6 109 232 120 272 42  

 

Table 3.6 b): River Network characterization using Order by Path Length Stream Order algorithm 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 1 - - -  75 75 - - -   

2 2 2 0.5 3 1.5 132 66 0.88 207 182.16 

3 3 2 1 4 4 190 95 1.44 322 463.48 

4 4 4 0.5 6 3 254 63.5 0.67 444 296.78 

5 5 4 1 8 8 321 80.25 1.26 575 726.67 

6 6 6 0.67 10 6.67 397 66.17 0.82 718 592.00 

7 7 8 0.75 14 10.5 677 84.63 1.28 1074 1373.61 

8 8 2 4 10 40 146 73 0.86 823 709.94 

Total 29 8.42 55 73.67 2192 603.54 7.22 4163 4344.65 75 

Mean 3.63 1.05   1.34   1.03   1.04  
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3.6.7 Consistent Stream Order 

Figure 3.23 a) (page no 149) represents the sample input to the Consistent Stream Order 

algorithm. Figure 3.23 b) (page no 149) represents the output from the Consistent 

Stream Order algorithm. Tables 3.7 a) and b) (page no 150 and 151, respectively) 

represent the various attributes generated by the algorithm. 

 

Figure 3.23: Input to and output from the automated process for Consistent Stream 

Order 

 

 

One of the major advantages of this technique is that it takes into account the influence 

of all the converging streams when deciding on the order of the resulting stream. 

Computationally, it requires more time and space. One of the major limitations is that 

it also does not allow for the identification of the actual source.

 
(a) 

 
(b) 
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Table 3.7 a): River Network ordering using Order by Consistent Stream Order algorithm 

 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 1 1 2 139 85 251 120 16 16 2.00 85 251 120 272 38 

2 2 1 10 252 85 251 78 17 17 2.00 120 416 179 377 62 

3 3 1 94 470 120 416 56 18 18 2.00 249 174 333 164 85 

4 4 1 47 462 120 416 90 19 19 2.00 259 98 333 164 87 

5 5 1 201 2 259 98 104 20 20 2.58 120 272 248 295 130 

6 6 1 222 91 259 98 41 21 21 2.58 179 377 211 347 39 

7 7 1 152 113 249 174 107 22 23 2.20 211 347 248 295 62 

8 8 1 175 193 249 174 76 23 22 3.00 333 164 366 190 37 

9 9 1 179 464 179 377 89 24 24 3.32 366 190 373 259 69 

10 10 1 299 401 398 353 102 25 26 3.58 373 259 380 324 65 

11 11 1 389 100 366 190 92 26 25 3.40 248 295 258 282 15 

12 12 1 108 363 211 347 106 27 27 3.65 258 282 380 324 125 

13 13 1 109 232 120 272 42 28 28 4.62 380 324 398 353 30 

14 14 1 202 246 258 282 61 29 29 4.73 398 353 468 398 75 

15 15 1 268 224 373 259 109  
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Table 3.7 b): River Network characterization using Consistent Stream Order algorithm 

 

Sl Sω Nω Rb NRb Rb * NRb Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 15 - - - 

 

1273 84.87 - - - 

 
 

2 2 4 3.75 19 71.25 272 68.00 0.80 1545 1237.94 

3 2.584 2 2 6 12 169 84.50 1.24 441 548.01 

4 2.196 1 2 3 6 62 62.00 0.73 231 169.49 

5 3 1 1 2 2 37 37.00 0.60 99 59.08 

6 3.321 1 1 2 2 69 69.00 1.86 106 197.68 

7 3.584 1 1 2 2 65 65.00 0.94 134 126.23 

8 3.403 1 1 2 2 15 15.00 0.23 80 18.46 

9 3.652 1 1 2 2 125 125.00 8.33 140 1166.67 

10 4.618 1 1 2 2 30 30.00 0.24 155 37.20 

11 4.73 1 1 2 2 75 75.00 2.50 105 262.50 

Total 29 14.75 42 101.25 2192 640.37 17.49 3036 3560.76 75 

Mean 2.636 1.475   2.41   1.75   1.17  
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3.6.8 Cumulative Stream Order 

Figure 3.24 a) (page no 152) represents the sample input to the Cumulative Stream 

Order algorithm. Figure 3.24 b) (page no 152) represents the output from the 

Cumulative Stream Order algorithm. Tables 3.8 a) and b) (page no 153 and 154, 

respectively) represent the various attributes generated by the algorithm. 

 

Figure 3.24: Input to and output from the automated process for Cumulative Stream 

Order 

 

One of the major advantages of this technique is that cumulative order has a direct 

relationship with discharge as it takes into account the influence of all the streams in 

the watershed when deciding on the order of the resulting stream. It is also relatively 

easy to understand and, computationally, requires less time and space. One of the major 

limitations is that it also does not allow for the identification of the actual source.

 
(b) 
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Table 3.8 a): River Network ordering using Order by Cumulative Stream Order algorithm 

Sl 
St 

Id 

Order 

(Sω) 

Coordinate 
Len Sl 

St 

Id 

Order 

(Sω) 

Coordinate 
Len 

s_x s_y e_x e_y s_x s_y e_x e_y 

1 1 1 2 139 85 251 120 16 16 3 85 251 120 272 38 

2 2 1 10 252 85 251 78 17 3 3 120 416 179 377 62 

3 3 1 94 470 120 416 56 18 18 3 249 174 333 164 85 

4 4 1 47 462 120 416 90 19 19 3 259 98 333 164 87 

5 5 1 201 2 259 98 104 20 20 5 120 272 248 295 130 

6 6 1 222 91 259 98 41 21 21 5 179 377 211 347 39 

7 7 1 152 113 249 174 107 22 23 7 211 347 248 295 62 

8 8 1 175 193 249 174 76 23 22 7 333 164 366 190 37 

9 9 1 179 464 179 377 89 24 24 9 366 190 373 259 69 

10 10 1 299 401 398 353 102 25 26 11 373 259 380 324 65 

11 11 1 389 100 366 190 92 26 25 13 248 295 258 282 15 

12 12 1 108 363 211 347 106 27 27 15 258 282 380 324 125 

13 13 1 109 232 120 272 42 28 28 27 380 324 398 353 30 

14 14 1 202 246 258 282 61 29 29 29 398 353 468 398 75 

15 15 1 268 224 373 259 109  
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Table 3.8 b): River Network characterization using Cumulative Stream Order algorithm 

 

Sl Sω Nω Rb NRb 
Rb * 

NRb 
Rbwmean Lω Lωmean RL NRL RL * NRL RLmean Cl 

1 1 15 - - - 

 

1273 84.87 - - - 

 
 

2 3 4 3.75 19 71.25 272 68 0.80 1545 1237.94 

3 5 2 2 10 20 169 84.5 1.24 441 548.01 

4 7 2 1 4 4 99 49.5 0.59 268 156.99 

5 9 1 2 3 6 69 69 1.39 168 234.18 

6 11 1 1 2 2 65 65 0.94 134 126.23 

7 13 1 1 2 2 15 15 0.23 80 18.46 

8 15 1 1 2 2 125 125 8.33 140 1166.67 

9 27 1 1 2 2 30 30 0.24 155 37.20 

10 29 1 1 2 2 75 75 2.50 105 262.50 

Total 29 13.75 46 111.25 2192 665.87 16.27 3036 3788.19 75 

Mean 2.9 1.528   2.42   1.81   1.25  
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3.6.9 Stream Characterization 

The following ten stream characteristics were determined as detailed in serials 3.2.1.1-

3.2.1.11 above: Stream Order (Sω), Stream Number (Nω), Bifurcation Ratio (Rb), 

Streams participating in Bifurcation Ratio (NRb), Weighted Mean Bifurcation Ratio 

(Rbwmean), Stream Length (Lω), Mean Stream Length (Lωmean), Length ratio (RL), 

Streams participating in Length Ratio (NRL), Weighted Mean Length Ratio (RLwmean) 

and Length of Main Channel (Cl) in all the eight ordering techniques, and the same is 

presented in tables 3.1-3.8. 

 

3.7 Limitations of the research initiative 

Below mentioned are some of the notable limitations of the proposed research initiative: 

a) Variations in the pixel intensity values of the color shade representing the feature 

of interest in the topographic sheet greatly influence the result of the digitization 

process.  

b) The overall effectiveness of the proposed method relies on the capability of the 

digitization process.  

c) Inaccurate digitization will lead to erroneous results and improper stream 

characterization.  

d) The use of inappropriate filters for the removal of noise may hamper the quality of 

the results.  

e) The inability to identify the terminal or peripheral streams would disturb the overall 

effectiveness of the river ordering process.  

f) Hydrological characterization, its simulations, and forecasting can only be achieved 

if the findings of the research initiative are combined with other datasets like DEM 

and satellite imagery.  
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g) Temporal analysis is relatively easy through the use of satellite images compared 

to topographic datasets, as these datasets are released at longer intervals. 

 

3.8 Conclusion 

This research initiative presents an effective and efficient alternative to traditional 

manual digitization by conceiving and realising knowledge-enabled automated 

computational programmes leveraging the capability of technological advancements 

for digitising river networks, their ordering, and the generation of representable 

characteristics. The intention of the research work is to limit human intervention in the 

digitization process transitively, leading to a reduction in effort, time, and cost 

requirements. In addition, it also helps in elevating the result's confidence.  

 

In pursuit of the aforementioned objective, the proposed work has conceived and 

successfully realised modules for the digitization of river patterns, elimination of 

noises, skeletonization of digitized river patterns, resolving connected neighbors, 

traversal for detecting different types of streams, various stream ordering techniques, 

and generation of stream attributes. Here skeletonization has been performed using the 

Zhang-Suen thinning algorithm, connected neighbours have been resolved using m-

connectivity, and an efficient spiral traversal has been used for traversal of the stream 

segments.  

 

This work implements eight river ordering algorithms, namely Classic Stream Order, 

Strahler Stream Order, Horton Stream Order, Shreve Stream Order, Scheidegger 

Stream Order, Order by Path Length Method, Consistent River Ordering, and 

Cumulative Stream Order. The computational programme developed was capable of 



Page 157 of 329 

 

accurately and efficiently classifying the stream segment into various classes as per the 

guiding principles of the various ordering techniques and subsequently assigning 

unique color codes to them for ease of visual interpretation. 

 

The work was further advanced to associate various stream characteristics such as 

Stream Order (Sω), Stream Number (Nω), Bifurcation Ratio (Rb), Streams 

participating in Bifurcation Ratio (NRb), Weighted Mean Bifurcation Ratio 

(Rbwmean), Stream Length (Lω), Mean Stream Length (Lωmean), Length ratio (RL), 

Streams participating in Length Ratio (NRL), Weighted Mean Length Ratio 

(RLwmean) and Length of Main Channel (Cl).  

 

The proficiency of the conceived program was tested on a few samples of river 

segments, one of which is highlighted in Figure 3.4 a) (page no 110). The program was 

able to correctly realise the motives of all the proposed modules as well as generate 

values for various attributes related to the river segments, as represented in table 3.1-

3.8.    

 

Further, a qualitative comparative assessment of all of the river ordering techniques was 

performed with regard to attributes such as the method used, the number of passes 

required, the computational cost, its advantages and disadvantages, and the need for 

human intervention. 

 

The outcome of the proposed research initiative may be combined with aspects such as 

the DEM and factual data from satellite imagery, which can be extremely useful in: 
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a) simulating hydrological processes and deriving various hydrological 

characteristics 

b) studying morphological changes in the structure of the river pattern through 

temporal analysis 

c) forecasting, planning, and containing the effect of disasters  

d) planning sustainable developmental initiatives along the river network  

e) studying geological changes due to erosion, transportation, and deposition through 

temporal analysis 
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Chapter 4  

Extraction of Contour Lines, its Refinement and Attribute 

Generation 

 

4.1 Introduction 

A typical topographical sheet represents a wide variety of details, elaborately describing 

the relief of the landscape with the help of non-intersecting lines called contours [74] 

[233]. Contour lines are lines on the topographic sheet generated by connecting points 

at the same elevation with regard to a certain reference point. The topographic sheet not 

only includes contour lines but also other crucial features such as water bodies (i.e., 

rivers, lakes), route networks, nomenclature associated with features, bridges, temples, 

boundaries, and many more [234] [86]. 

 

To efficiently manage content, these features are represented with the help of distinctive 

color codes in an overlapping manner [92]. One can easily distinguish various features 

through visual inspection. Research initiatives motivated by a morphological analysis 

of terrain demand the segregation of these features into distinctive thematic layers 

called vectors [79] [86]. It may be attained by deploying a tedious manual approach or 

by conceiving an effective automatic process. Traditional approaches demand 

tremendous effort, time and are often found to be subjected to or biased towards the 

experience and skill of the digitizer [226] [75]. 

 

On the contrary, automated processes are relatively inexpensive but demand greater 

effort and time for the conception and realization through optimal and efficient 
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computational strategies [235] [95]. Further, to elevate the quality of the result, these 

processes are expected to seamlessly integrate or employ a decision support mechanism 

for effectively handling exceptions arising due to improper segmentation. 

 

4.1.1 Problems associated with segmented contour lines 

On critically assessing the sample segmented dataset of a contour map, some of the 

pertinent problems identified are highlighted below: 

a) To efficiently manage contextual information, morphological features are often 

represented in an overlapping manner [92]. It is observed that at the point of 

intersection of features, the pixel intensity abruptly changes due to color 

imposition, and as a consequence of the same, the pixels in and around the point of 

intersection cannot be categorically placed in the dataset resembling contours. 

figure 4.1 a) (page no 160) represent a sample portion of a topographic sheet with 

overlapping features and figures 4.1 b) (page no 160) breakage in contour lines, 

respectively, demarcated with the help of red circles. 

 

 

a)                                                                 b) 

Figure 4.1: a) Sample Topographic Sheet [1] b) Breakage created due to 

presence of overlapping features 
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b) To facilitate the 3D transformation of contour lines for generating elevating models 

commonly known as DEM, elevation values are associated with the contour lines 

at certain intervals  [236]. Digitization of the same results in the creation of broken 

contour lines [78]. Figure 4.2 a) (page no 161) represents the sample portion of a 

topographic sheet with elevation values and figure 4.2 b) (page no 161) represents 

breakage in contour lines due to the same, demarcated with the help of a blue 

square. 

 

  

a)                                                                 b) 

Figure 4.2: a) Sample Topographic Sheet [1] b) Breakage point due to 

presence of elevation value 

 

c) Automatic digitization greatly leverages the capabilities of the color segmentation 

process [75]. One of the key inputs to the segmentation process is the range of 

intensity values representing the feature to be segmented. To contain or limit the 

error of commission (false value), it becomes very important to certainly fix the 

range of intensity values representing the contours set as input. In the process, some 

significant pixels may be omitted (error of omission), leading to the generation of 

broken contour lines. Further, it is also to be understood that the range of intensity 

values representing contours is highly dynamic and greatly dictated or influenced 

by environmental factors such as printing provision, data capture tools, and age. 
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Figure 4.3 a) (page no 162) represents sample portions of a topographic sheet and 

figure 4.3 b) (page no 162) breakage in contour lines due to incorrect segmentation 

processes, demarcated with the help of a brown hexagon. 

 

                  

a)                                                                 b) 

Figure 4.3: a) Sample Topographic Sheet [1]  b) Breakage point due to 

incorrect segmentation process 

 

d) It has also been observed that due to restrictions on information representation, 

contours are poorly specified, leading to the generation of broken contour lines. 

Figure 4.4 a) (page no 162) represents the sample portion of a topographic sheet 

with missing content and figure 4.4 b) (page no 162) represents a contour line due 

to the same, demarcated with the help of the green triangle.  

 

 

a)                                                                 b) 

Figure 4.4: a) Sample Topographic Sheet with missing content [1] b) 

Contours with missing content  
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Above specified are some of the notable causes for breakage of contour lines adversely 

affecting the continuity of contours.  

 

4.1.2 Necessity for maintaining contour continuity 

Research initiatives motivated toward the use of contour lines for geomorphological 

analysis demand the continuity of contours for the following reasons: 

a) The contour line creates a true reflection of the very nature of the ground surface 

(reality) with its complete morphological description, such as mountains, plateaus, 

flat lands, etc.  

b) Contour lines are the fundamental basis used for generating a 3D model known as 

the DEM [236]. It is achieved by elevating the contour lines in the z-plane with 

regard to the elevation value associated with it.  

c) Further, the superimposition of satellite imaginary onto the 3D elevation models 

generated using contour lines enables the creation of the DSM.  

d) Contour lines are extremely useful for the purpose of terrain analysis [237]. It is 

crucial for determining suitability, planning, and executing sustainable earthworks 

such as route network planning: road, rail, waterways, etc. 

▪ Infrastructure development planning: engineering work, construction, mining, 

etc. 

▪ Landscape planning: utilization, urban planning, etc. 

▪ Resource planning: reservoirs, dams, watersheds, catchment, etc. 

e) Contour lines are extremely useful for gradient analysis of landscapes and 

determining geomorphological alignments. 
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f) Contour lines are also widely used for determining intervisibility between selected 

ground control points on the map. Such studies have proved effective in the design 

of overhead powerlines, ropeways, flyover bridges, and many more. 

g) Elevation maps created with the aid of contour lines are extremely useful for 

hydrological analysis of river networks or waterways. 

h) With regards to the information contained in the contour lines, integrity-preserving 

knowledge-based computational algorithms and procedures may be conceived and 

realised for the generation of additional morphological features (such as 

interpolated contour lines) useful for elevating the quality of 3D representation. 

i) By integrating contours with geological data (such as soil and rock formation), 

hydrological data (such as watershed, river network, and reservoir), and 

metrological data (such as rainfall and precipitation), vulnerability mapping of the 

landscape can be done to determine the suitability of inhabitation. 

j) An elevation model created using contour lines with satellite imaginary can be used 

for mapping and efficiently managing life stock (flora and fauna). 

 

4.1.3 Challenges encountered 

Some of the notable challenges faced during the reconstruction process were: 

a) Features having a close resemblance (in terms of pixel intensity) with contours may 

be inappropriately segmented as contours, leading to errors of commission [81]. 

b) The dynamic nature of the range of intensity values pertaining to contours may 

lead to the omission of significant values leading to errors of omission. 

c) One of the crucial factors on which the alignment of contours depends is gradient 

[238] [239]. It is observed that based on the gradient, the contours may be sparsely 
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or closely placed. In situations where the contours are placed in close proximity, 

the segmentation process becomes extremely difficult. 

d) A terminal point may be wrongly selected in the process of extending the 

continuity of contour lines due to computational lag. 

e) A contour line may be prone to severe breakages wherein the decision support 

system may not be able to select appropriate points or may even fail to do the same 

for ensuring continuity. 

 

4.1.4 Research Motivations 

Through a thorough analysis of relevant literature, the following important derivations 

were made:  

a) Preprocessing operations including color segmentation, binarization, thinning, 

removal of holes & bifurcations, and noise reduction are essential for reducing the 

computational overhead involved in processing a topographic sheet. While 

performing image segmentation, hard decisions should be avoided as intensity 

values are highly dynamic and vary from sample to sample. 

b) The strategy for determining terminal points should be proximity-based, i.e., based 

on inter-terminal point distance. 

c) Some of the crucial information that may be pursued for determining terminal 

points for reconnection may be: 

• Morphological orientation of contour elements  

• Direction of alignment of contours 

• Geometrical orientation of contours  

• Morphological information of adjacent contours  

d) While performing reconnection, it is essential to preserve: 
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• Geometric structure of the contours  

• Structural integrity of the contours  

e) While performing reconnection, it is essential to address the following key aspects 

for reducing computational overhead:  

• Use an optimal number of control points for retaining the characteristics of 

contours  

• The design approach should be able to constrict the list of potential terminal 

points for reconnection 

• Localization of the search space is crucial for managing computational 

complexity 

• Selection of optimal points based on a gradient and distance metric 

f) Some of the generic processes involved in similar research initiatives from the past 

are: 

• Backtracking is essential for determining the nature and characteristics of 

contour lines 

• The association of probability distribution with other contour features such as 

gradient and orientation would enable the selection of optimal terminal points.  

 

4.2 Objectives of the proposed work 

With regards to the above specified motivations, the objective of the proposed research 

initiative is to: 

a) Hybridize Continuity-based and Gradient-based techniques for connecting 

broken contour pairs to ensure connectivity  

b) Use gradient information to determine matching end-point pair 
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c) Apply curve drawing technique based on geometric characteristics for 

interpolating pixels between matched endpoints preserving integrity  

d) The above-mentioned task may be achieved through use of concepts such as the 

Sign of Gradient (SG), Euclidean Distance (ED), and modified Bezier Curve 

(BC) drawing technique 

 

4.3 Applications of the proposed research initiative 

Contours in topographic sheet represents a prime geographical features of earth surface. 

An automatic extraction and representation of contours from topographic sheet has 

wide variety of applications in the field of engineering, planning, environment science, 

disaster management, recreation, and many more. The contours can be used to analyse 

the terrain of earth surface and aids to understand elevation changes and steepness of 

area of interest. This is particularly useful for land use planning, construction, etc. 

Similarly, the urban planner uses it for understanding the suitability of urban 

development for habitant considering drainage pattern and other potential challenges. 

The civil engineers use contour information during infrastructural development like 

construction of roads, railways, bridges, etc. In the field of hydrology, the feature can 

be used to model watershed, forecast flood pattern, and design control mechanism. 

Likewise, contours are also used in other disaster management situation like landslide 

to perform search and rescue and operation in challenging terrain areas. With not 

limited to, contour information are also extensively used by geologist for exploring 

mineral deposits and other geographical formations and agriculturalist for planning and 

estimation of efficient farming. In the field of tourism and recreation, contours aids in 

navigation for planning hiking, camping areas, and marking wilderness areas for 

ensuring safety. 
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4.4 Proposed Methodology  

With regards to the above-specified significance of contour lines, the proposed research 

initiative is motivated towards designing and developing automatic procedures for 

elevating the quality of segmented contours through the below-mentioned sequence of 

steps:  

a) Segmentation of contour lines from the topographic sheet 

b) Determining breakage along the segmented contour lines 

c) Detecting terminal points of breakages with the objective of determining suitable 

points for reconnection 

d) Establishing connectivity between suitable points based on proximity using a cost-

effective algorithmic approach 

 

The proposed techniques adheres to the following sequence of steps, as detailed in 

figure 4.5 (page no 169). 

 

Below mentioned are the sequence of steps pursued for attaining the research 

objectives: 

a) Digitalize Topographic Sheet: Here, 24 sample portions of different topographic 

sheets were selected and digitalized for processing. 

 

b) Digitize Contour Lines: Contour lines were digitized into distinct vectors from the 

samples with the help of a color segmentation process utilizing the range of intensity 

values representing the said feature. It was found that the range of intensity values 

representing contours are dynamic and sample specific. Figures 4.6 a) and 4.6 b) 
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(page no 170) represent a sample digitalized topographic sheet and its corresponding 

digitized grayscale contour map, respectively. 

 

Module 4.1 Digitalize 

Topographic 

Sheet 

    

Module 4.2 Digitize Contour 

lines 
    

Module 4.3 Binarize     

Module 4.4 Removal of 

Noise 

 
Median Filter   

Module 4.5 Skeletonization 

using 

Morphological 

Operation 

 Thinning   

Module 4.6 Identification of 

Terminal Points 
 

Store Terminal 

Points 
  

 Pair optimal 

terminal point 

based on 

Gradient value 

and Euclidean 

distance 

 

 

 

Connect Paired 

terminal point using 

the concept of 

modified Bezier 

curve drawing 

algorithm. 

Module 4.7 For i=1 to length 

(Terminal List) 

 

 

 

Figure 4.5: Flow diagram for the proposed research initiatives 

 

c) Binarize: The digitized information was then binarized to simplify representation 

and to further ease computation. Here, the significant values are represented with ‘1’ 

and the non-significant values are represented with ’0’. Figures 4.7 a) and b) (page 
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no 170) transformation of a digitized grayscale contour map into a binarized contour 

map. 

         

a)                                                                 b) 

Figure 4.6: a) Sample Topographic Sheet [1] b) Digitized grayscale contour map 

 

         

a)                                                                 b) 

Figure 4.7:  a) Digitized grayscale contour map b) Binarized contour map 

 

d) Noise Removal:  The digitized vectors may have irrelevant content or information 

as a result of improper segmentation, the same needs to be effectively managed by 

using a purpose-specific noise removal technique. Here, median filtering has been 

used to reduce noise. Figure 4.8 a) (page no 171) represents a binarized contour map 

with noise, and figure 4.8 b) (page no 171) represents a pre-processed filtered 

contour map. 
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e) Skeletonization of contour lines: The contour lines are then skeletonized using 

morphological operators known as "thinning" to reduce the contours to a single pixel 

width. This would tremendously help in reducing execution time by effectively 

managing data complexity. Here, Zhang et al [76] thinning algorithm [239] is 

deployed to create a skeletonized representation of contour lines. Figure 4.9 a) (page 

no 171) represents a finely pre-processed contour map, and figure 4.9 b) (page no 

171) represents its corresponding skeletonized contour map. 

 

       

a)                                                                 b) 

Figure 4.8: a) Binarized contour map b) Pre-processed contour map 

 

       

a)                                                                 b) 

Figure 4.9: a) Pre-processed contour map b) Skeletonized contour map 
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f) Determination of Terminal Point: Breakage points were 

detected along the contour lines through contour traversals, and 

subsequently, all the terminal points from the breakages were 

stored to facilitate the reconstruction process. To determine the 

terminal points from the preprocessed samples, a 3x3 mask, as 

represented in table 4.1 (page no 173), was deployed. The chosen dimension was 

found to be ideal for determining breakage. Considering the centre of the 3x3 mask 

as the coordinate for contention of breakage, the sum of the product of the values at 

neighbouring coordinates of the mask and the corresponding image coordinates was 

calculated, excluding the centre coordinate. The criteria set for confirming a 

contending coordinate as the terminal point was the number of neighbours being 

exactly equal to one. All the identified terminal points were then collected in the 

terminal list by storing their corresponding coordinate values. 

 

g) Fixing criteria for Reconnections: Decisions for establishing the connection 

between terminal points were derived upon taking into consideration gradient and 

Euclidean distance. Here backtracking and gradient are used to determine the 

optimal terminal point pair.  

 

i) Determining the gradients of the terminals: The gradient at each terminal point 

was calculated to determine the direction of flow. To achieve the same the coordinate 

was backtracked by a step for determining the adjacent coordinate. Consider, (x1, 

y1) is the terminal coordinate and (x2, y2) is the adjacent coordinate, then gradient m 

was estimated using equation 4.1. 

m =  
𝐲𝟐−𝐲𝟏

𝐱𝟐−𝐱𝟏
  ………………. (Equation 4.1) 

Table 4.1: 

3x3 Mask 

1 1 1 

1 1 1 

1 1 1 
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The gradients were then stored in the gradient list.  

 

ii) Determining tan inverse: The arctangent value (i.e., the tan inverse of (Δy / Δx), 

slope) of every terminal point was maintained for lines with the same gradient and 

shortest Euclidean distance, as represented in equation 4.2. 

tan-1 = arctan (m) ………………. (Equation 4.2) 

For lines with the same gradients and the shortest Euclidean distance, the arctangent 

values of the terminal points were compared. If the arctangent value matches, the 

terminal points are connected. 

 

iii) Determining the Euclidean distance: For a Euclidean plane (in 2nd dimension), 

the distance d (p, q) between any two terminal points p and q with coordinates (px, 

py) and (qx, qy) respectively was calculated using equation 4.3. 

d(p, q)2 =  (qx-px)2+(qy-py)2 ………………. (Equation 4.3) 

 

iv) Determining optimal matches between terminal points: A terminal point was 

selected, and a best or optimal match that aligns in the same gradient and has the 

shortest distance based on the criteria specified in serial i)-iii) above (i.e., if the 

distance is found to be minimum and the gradient is found to be complementary (i.e. 

one is positive and the other negative)) was determined by executing a recursive 

search process as detailed in algorithm 4.1. 

 

This step continues until the entire terminal list has been exhausted. 

 

Algorithm 4.1: Algo_ optimal_pair_match 
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Con

sider 

terminal points 

MatchedTerminals  

Input data points 

Output optimal points 

Start For each terminal points, i do 

  distance = x ( let x be any large value) 

  currentTerminal = terminals[i] 

  if currentTerminal not in MatchedPoints(set), do 

   for k in terminals, do 

    workingTerminal = terminals[k] 

    if i!=k and workingTerminal not in 

MatchedPoints do 

     currDistance = eq. II for 

currentTerminal and workingTerminal. 

     if (currDistance<distance)and(product 

of both gradients of terminals in 

question= ‘-’)  do 

      distance = currDistance 

      

End if 

store terminals in a list 

(matched) 

     if (currDistance < distance) and 

(gradients of both terminals are equal) 

and (TanInverseValues of both 

terminals are equal) do 

       distance = currDistance 

  

 

 

 

 

 

 

 

 

End if 

store terminals in a 

list(matched) 
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End if 

 

End for 

End if 

 

 

 

end 

 

 

End 

for 

Add terminals from matched to set MatchedPoints and append to a 

list (MatchedTerminals). 

Algorithm 4.1: Determining optimal matches between terminal points 

 

Figure 4.10 a) (page no 175) represents a sample contour map with different geographic 

features like contours, and figure 4.10 b) (page no 175) represents its corresponding 

contour map with broken contours. Figure 4.10 c) (page no 175) highlights terminal 

points detected based on neighborhood operation. 

 

 

                     a)                                       b)                                             c) 

Figure 4.10 a) Sample topographic sheet [1] b) Pre-processed contour map c) 

Detection of terminal points 

 

h) Establishing Connection between Terminal Points: Here, the terminal points 

having the shortest inter-terminal point distance are determined and joined using the 

concept of a modified Bezier curve. Reconnection of broken contour lines can be 
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achieved either using knowledge of the existing neighbouring contours or simply by 

drawing a straight line between the optimal terminal pairs. The former approach is 

preferable as it maintains the integrity of contours, whereas the latter does not. For 

example, interpolating pixels between identified terminal pairs using the concepts 

of gradient direction, weighted directional angle, control points, etc. would help in 

maintaining the integrity of the generated contour with regards to existing contours.      

 

    The Bezier curve method uses the existing edge information for interpolating pixels 

[88] [89] [90], which is used for reconnecting curves. Since the curves are analogous 

to contours [89] [90], the concept adopted from the Bezier curve can be used to 

reconnect broken contours. A bezier curve is characterised by the number of control 

points [240] [222] [88], such as a two-point curve, a three-point curve, and a four-

point curve. It uses the Bernstein polynomial, B(t), as the basis function. The Bezier 

curve of degree "n" is represented by: 

 

Q(n) = ∑Pi * B(t), where, i=1 to n and 0≤t≤1 ….….…. (Equation 4.4) [240] 

 

where, B (t) is the basis function, Pi represents ith control point where ‘i' varies from 

i= 1 to ‘n’ and ‘t’ is the parametric value that lies between 0 and 1. (Here, 0 is the 

starting point and 1 is the ending point.). 

 

It is also to be noted that there are many pixels between each control point pair or 

line segment. Hence, to interpolate those pixels, De Casteljau's algorithm was used. 

This algorithm is mainly used to identify the pixel or point between any two control 
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points. De Casteljau's technique is a recursive method for the evaluation of 

polynomials in Bernstein form or Bezier curves [240] [241] [222].  

 

Furthermore, the basis function for calculating points can be expressed explicitly as 

follows: 

B (t)= ∑ (𝐧
𝐢
)(𝟏 − 𝐭)𝐧−𝐢𝐭𝐢𝐏𝐢

𝐧

𝐢=𝟎
  

=(𝟏 − 𝐭)𝐧𝐏𝟎 + (𝐧
𝐢
)(𝟏 − 𝐭)𝐧−𝟏𝐭𝟏𝐏𝟏  + ⋯ + ( 𝐧

𝐧−𝟏
)(𝟏 − 𝐭)𝐧−𝟏𝐭𝐧−𝟏𝐏𝐧−𝟏 +  𝐭𝐧𝐏𝐧, 

….….…. (Equation 4.5) [240] 

 

4.4.1 The Proposed refinement on Existing Bezier Curve Framework 

The bezier curve is mainly used for drawing shapes, curves, edges, etc. Considering 

curves or edges that are similar to contours, Bezier curve techniques may be deployed 

for reconnecting broken contours as they use the concept of control points [240] [222, 

80] [88] [89] [90] for retaining the continuity of broken contours. Through 

experimental runs, it was observed that the quality or contour continuity relies on the 

number of control points and the method used to calculate the control points [88] [89] 

[90]. It is implied that a very small number of control points leads to the creation of 

curves that do not adhere to the morphological structure of the contours, whereas a 

large number of contour points distorts the entire structure of the contours. Further, it 

was also observed that, due to effect of Bezier expansion, it is crucial to restrict the 

number of control points and their relative positioning for ascertaining the expected 

characteristics to be resembled by the contours. With regards to the above facts, in this 

research initiative, it was decided to limit the number of control points and suitably 

position them, considering gradient at terminal points and subsequent points, to 

facilitate the generation of integrity-preserving contours. 



Page 178 of 329 

 

 

Upon close examination during the experimental run, it was imperially found that the 

ideal number of control points should be exactly 4. The experiment uses four control 

points to reconnect the broken contour. The first and last control points are identified 

as terminal points to be joined. The relative positions of the second and third points are 

calculated after extending the terminal points with the help of the slope values. The 

second control point (newControlPointsX, newControlPointsY) is computed using the 

following: 

 

newControlPointsX= firstTerminalsXValue + d * firstTerminalSlopeX  

….….…. (Equation 4.6) 

newControlPointsY= firstTerminalsYValue +d * firstTerminalSlopeY 

….….…. (Equation 4.7) 

Where, d is a constant value. 

 

The same procedure is adopted for calculating the third control point. The following is 

the framework implemented for reconnecting broken contours as represented in 

algorithm 4.2. 

 

Algorithm 4.2: Algo_Contour_Reconnection 

Consider deCasteljau() 

(x, y) 

numSteps 

t 

Returns (x,y) for plotting 

Coordinate location 

No. of points to be drawn 

Temporary variable 

Start drawTheCurve(): 
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  numSteps = x ( let x be any large value), tobeDrawn = set() 

  for k in range(numSteps): 

   t = float(k) / (numSteps - 1) 

   x = (deCasteljau(coorArrX, 0, n - 1, t)) 

   y = (deCasteljau(coorArrY, 0, n - 1, t)) 

   tobeDrawn.add((x,y)) 

 def deCasteljau(coorArr, i, j, t): 

  if j == 0: 

   return coorArr[i] 

 

 

End 

 return deCasteljau(coorArr, i, j - 1, t) * (1 - t) + 

deCasteljau(coorArr, i + 1, j - 1, t) * t 

Algorithm 4.2: Reconnecting broken contours based on control point 

 

The variable ‘to_be_Drawn’ contain all the points for joining the terminal points. The 

variable ‘coorArrX’ contains ‘x’ values of the two terminals and one control point. The 

variable ‘coorArrY’ contains ‘y’ values of the two terminals and one control point. 

 

4.5 Considerations, Constraints, Development Environment 

4.5.1 Considerations 

The input reference map for the proposed work was taken from the online open library 

provided by University of Texas, Austin. The scale of representation for the map was 

1:250000. A sizable portion of 100 x 100, 24 samples were created from the 

topographic sheet and set as input.  
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4.5.2 Constraints 

The following are the constraints on implementing the research initiatives: 

• The feature of interest should hold the properties of connected components. 

• The sample image should be binarized image and free from noise (particularly 

salt-and-pepper noise). 

• The feature of interest should be skeletonized to create a single-pixel-width 

representation for ease of complexity management and should ensure m-

connectivity between any two pixels in the neighborhood. 

• The proposed methodology is currently capable of efficiently handling datasets 

of size 100 x 100 and can be further extended to work with variable-sized data. 

• The implementation is accomplished in two phases. In the first phase, all pre-

processing, including the identification of the optimal terminal point pair is 

achieved and in second phase, all optimal points are connected. 

 

4.5.3 Development Environment 

The description of the development environment for the proposed research initiative is 

as detailed below, 

      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor 11th Gen Intel(R) 

Core i7-1165G7 @ 

2.80GHz  

• Facilitates faster execution of 

programming code 

• RAM 16.0 GB (15.8 GB 

usable) 

• Sustain applications 

requirements 

• Operating System Windows, 64-bit • User friendly interface 
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• Compatibility with application 

• Development 

Software 

MATLAB (2020a) • Easy translation of concepts to 

executables 

• Rich with in-build libraries 

• Debugging ease 

• Scalable 

 Python 3.9.10 • Open-source programming 

language 

• Rich with in-build libraries 

• Optimized running time 

complexity 

 

4.6 Results and Discussions  

Contour lines in the topographic sheet are represented with shades of brown. Figure 

4.11 a) (page no 182) represents a sample topographic sheet containing contours. For 

computational ease, the image was converted into an HSV (Hue-Saturation-Value) 

model. The advantage of converting an image into an HSV image is that it reduces the 

aliasing effect. The brown contours were extracted using H (hue) values from 0.0 to 0.3 

and V (value) values from 0.0 to 0.7, as shown in figure 4.11 b) (page no 182). The 

appearance of thick contours and noise is clearly visible in the resultant image. The 

noises were removed using a median filter, and the contours were thinned using the 

Zhang-Suen thinning algorithm. The sample pre-processed image so obtained is shown 

in figure 4.11 c) (page no 182). 
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The result of the thinning process is a set of contour lines represented using singly 

connected pixels. It was observed that contours that appear continuous in the image 

may also be broken. Some contours may be broken with smaller gaps, whereas others 

may be broken with considerably larger gaps. The smaller gaps between broken 

contours can be easily filled by applying a closing morphological operation. However, 

reconnecting contours with larger gaps is a difficult task.  

 

 

a)                                              b)                                           c)  

Figure 4.11: a) Sample Topographic Sheet [1]  b) Binarized version  c) Thinned Image 

 

The proposed work established connectivity between broken contours using the concept 

of control points. Initially, the terminal points were identified, and then the gradients of 

the terminal points were calculated using backtracking. Based on the sign of the 

gradient and Euclidean distance, terminal points were matched. Finally, the matched 

terminal points were connected using the modified Bezier curve function (with the 

number of control points set to 4) that identifies the intermediate pixel based on selected 

control points. Figure 4.12 (page no 183) is the raster representation of the contour map 

extracted from the scanned topographic sheet, which contains many broken contours. 

It also highlights the different sections of broken contours that are reconnected using 

the aforementioned technique. 
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Figure 4.12: A representation of contour map and its connected broken contour 

 

The applied technique was tested on a variety of broken contours, and the results were 

found to be acceptable. Table 4.2 (page no 184) highlights the various test cases 

containing broken contour points with demarcation of breakages and corresponding 

output image segments generated through processing that reflect the status of broken 

segments (either connected, not connected, or wrongly connected) highlighted in SS 

(Segment Status). Here, for simplicity, total gaps, correctly filled gaps, wrongly filled 

gaps, unfilled gaps, and accuracy are represented using, ^, *, $, # and % respectively, 

and highlighted in the OP (output section). 24 images with 95 breakages were 

considered to test the effectiveness of the proposed technique. A total of 83 breakages 

were accurately reconnected, 12 breakages were not connected, and 1 breakage was 

miss-connected, with 86.31% accuracy and an error rate of 13.68%. The detailed 

performance of an experiment is given in table 4.3 (page no 186). The same is 

graphically depicted in figure 4.13 (page no 188).



Page 184 of 329 

 

T
a
b

le
 4

.2
: 

S
am

p
le

 T
es

t 
C

as
es

  

 

(1) (2) (3) (4) (5) (6) 

S
a

m
p

le
s 

      

B
r
ea

k
a

g
e
 d

e
te

c
te

d
 

      

C
S

 

     

 
OP 

4^  4*  0$  0#  100% 2^  2*  0$  0#  100% 2^  1*  0$  1#  50% 2^ 2*  0$  0#  100% 5^  3*  1$  1#  60% 

 

     11^  10*  0$  1#  60% 

 

(7) (8) (9) (10) (11) (12) 

S
a

m
p

le
s 

      

B
r
ea

k
a

g
e
 d

e
te

c
te

d
 

      

C
S

 

   
 

  
OP 5^ 5* 0$ 0# 100% 5^ 5* 0$ 0# 100% 2^ 2* 0$ 0# 100% 3^ 3* 0$ 0# 100% 4^ 4* 0$ 0# 100% 3^ 2* 0$ 1# 100% 

 



Page 185 of 329 

 

 (13) (14) (15) (16) (17) (18) 

S
a

m
p

le
s 

      

B
r
ea

k
a

g
e
 d

e
te

c
te

d
 

      

C
S

 

      

OP 4^  4* 0$ 0# 100% 3^ 2* 0$ 1# 66% 5^ 4* 0$ 1# 80% 5^ 4* 0$ 1# 80% 5^ 4* 0$ 1# 80% 4^ 4* 0$ 0# 100% 

 

(19) (20) (21) (22) (23) (24) 

S
a

m
p

le
s 

      

B
r
ea

k
a

g
e
 d

e
te

c
te

d
 

      

C
S

 

      
OP 4^ 3* 0$ 1# 75 % 4^ 4* 0$ 0# 100% 3^ 3* 0$ 0# 100% 4^ 2* 0$ 2# 50% 3^ 3* 0$ 0# 100% 3^ 2* 0$ 1# 66% 
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Table 4.3: Performance report of proposed modified Bezier Curve framework 

Sample No. Total 

Gaps 

(^) 

Correctly 

Filled Gaps 

(*) 

Wrongly 

Filled 

Gaps ($) 

Unfilled 

Gaps (#) 

Accuracy 

(In %) 

 1 4 4 0 0 100 

2 2 2 0 0 100 

3 2 1 0 1 50 

4 2 2 0 0 100 

5 5 3 1 1 60 

6 11 10 0 1 60 

7 5 5 0 0 100 

8 5 5 0 0 100 

9 2 2 0 0 100 

10 3 3 0 0 100 

11 4 4 0 0 100 

12 3 2 0 1 100 

13 4 4 0 0 100 

14 3 2 0 1 66 

15 5 4 0 1 80 

16 5 4 0 1 80 

17 5 4 0 1 80 

18 4 4 0 0 100 

19 4 3 0 1 75 

20 4 4 0 0 100 

21 3 3 0 0 100 

22 4 2 0 2 50 

23 3 3 0 0 100 

24 3 2 0 1 66 

Total 95 82 1 12 86.31 
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Figure 4.13: Graphical representation of Total Gaps (^), Correctly Filled Gap (*), Wrongly Filled Gap ($), Unfilled Gap (#) and 

Accuracy %. 
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4.7 Limitations of the research initiative 

The proposed research initiative successfully reconstructs broken contour lines using 

modified Bezier curve that maintains the continuity of contour but at high 

computational cost. The reconnection can also be achieved by drawing a straight line 

for situations if breakage is less and this will optimize the overall computational cost. 

However, it fails to maintain the continuity of the contour. In a situation where the 

breakage of the contour is very large, the adopted methodology fails to identify optimal 

pair and reconstruct the broken contour. In addition, the computational cost is also 

exponentially increased as search space is increased. 

 

4.8 Conclusion 

Advancements in computational support and programming paradigms have greatly 

facilitated the automation of digitization techniques, enabling faster and more accurate 

extraction of features for use in GIS-based applications. Overcoming the lags of manual 

digitization in semi-automated and automated processes requires less time and helps 

elevate the quality of the deliverables. Such techniques may be further enriched to 

perform complex operations such as broken line reconnection, the creation of various 

thematic layers, and the creation of elevation models.  

 

The proposed research initiative digitalizes contour maps, performs colour 

segmentation for extracting contours, binarizes the same, performs pre-processing 

(thinning and error removal), determines breakages and terminal points, fixes optimal 

pairs, and eventually ensures connectivity between suitable terminal pairs using 

modified Bezier curve drawing technique.  
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Drawing motivation from the previously executed initiatives, the proposed research 

work was able to efficiently manage computational complexity through the following 

inherent approaches: 

a) Firstly, the feature map was skeletonized, wherein the contour lines were 

represented using a single-pixel width to avoid the computation of a densely 

pixeled feature set. This task of skeletonizing was performed during the pre-

processing of the sample set and not during the actual processing time. 

Skeletonization also helped in determining terminal points. Further, the 

determination of control points and their linkage to maintain contour continuity 

was also facilitated.  

b) Then the ideal terminal pairs were determined based on both proximity and the 

gradient of the terminal points, thereby, improving the chances of terminal points 

being reconnected to ensure contour continuity.  

c) The initiative, based on empirical studies, was able to successfully control the 

dynamic nature of the Bezier curve for determining the ideal number of control 

points to be reconnected for ensuring contour continuity.  

d) Eventually, to ensure that the generated contour lines-maintained integrity 

(resemblance to adjacent contour lines), the control points were appropriately 

positioned relative to adjacent contours. 

 

The proposed technique was tested using 24 samples with 95 breakages; it could 

successfully establish 82 connections, 12 breakages were not connected, and 1 was 

wrongly connected. An accuracy of 86.31% was achieved with an error rate of 13.68%, 

which is appreciable. As the proposed research initiative draws its motivation from 

various directions provided by the previously executed works, purpose-specific 
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advancements were made to the individual generic techniques to best fit the problem at 

hand. However, based on a subjective assessment (through estimated vision density 

characteristics), the proposed technique stands to be 86.31% accurate.  

 

The proposed work may be further advanced to handle other linear features such as 

rivers, road networks, etc. Furthermore, the digitised data may assist in developing a 

fully automated computational system that is capable of transforming topographic sheet 

into a 3D model. 
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Chapter 5  

Extraction of Associated Text, its Refinement and Attribute 

Generation 

 

5.1 Introduction 

The topographic sheet represents various morphological features. These features are 

superimposed on one another for ease of representation and containment. Visual 

interpretation of such representations can be done with relative ease, but on the 

contrary, it may be difficult for a computational system to identify the same. This calls 

for the conceptualization and implementation of a knowledge-based abled 

computational system for efficient localization and recognition. The process of 

selecting features of interest from a topographic sheet is termed digitization. 

Digitization may be done or performed using manual, semi-automated, or completely 

automated computational processes. With the advent of systems with enhanced 

computational ability, an efficient automatic knowledge-based digitization process may 

be conceived and realized for digitizing these features. Enabling a computation process 

and identifying a feature requires training the computation process with substantial and 

volumetric reference data. Thus, it mandates the building of reference data for each and 

every identifiable feature. One of the important natural features that a topographic sheet 

represents are the contour lines. A contour line, also known as an isoline, is formed by 

joining points that are at equal elevation from a particular reference level. Generally, 

sea level is considered as the reference. Maps that represent only the information related 

to contours are known as "contour maps." The two important characteristics of a 

contour map are the contour lines and their corresponding elevation details. 
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Subsequently, a DEM can be generated from the contour map by elevating the contour 

lines in 3D with elevation detail as the variable [242], as shown in figure 5.1 (page no 

192). This 3D model may directly or indirectly contribute to many GIS applications. 

Hence, accurately understanding the elevation data based on which the contours will 

be projected in a 3D space is a critical task. 

 

To achieve the set objectives, it is crucial to first localize the elevation value and then 

recognize the same. The localization of an elevation value is important as it provides 

information based on which the corresponding contour will be projected in 3D space 

and its recognition would quantify the exact value for projection. Consequently, these 

details may also serve as a scientific basis for the generation of intermediate elevation 

values (interpolated) that are not implicitly represented on the contour map. The result 

of localization is the approximate coordinate location represented by (x, y). This 

coordinate location is then mapped to the nearest contour based on the distance 

parameter. 

 

 

Figure 5.1: Sample DEM from contour map, Sample parts of contour map containing 

contours and its corresponding elevation value [243] 
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A topographic sheet hosts various morphological features that effectively describe the 

terrain. This multi-faceted information content not only elevates human perception but 

also provides ample direction for research initiatives. Out of all possible attributes 

based on utility, contours have a wide set of applications. A contour is characterized by 

its coordinate system and, most importantly, its elevation value. Upon successful 

attainment of these two attributes, creating a fully automatic 3-D projection system may 

be achieved with relative ease. In contrast to the traditional manual approach, this 

research initiative puts forward an efficient technique for localization based on both 

morphological as well as advanced multi-layered computational model. Thereafter, the 

latest multi-layered computational model enabled with augmented data obtained 

through various transformations has been used for recognition. Further, the extracted 

details can be used to project the contours in 3-D space to create DEM.  

 

5.2 Objectives of the proposed work 

The proposed research initiative objectifies methodologies for efficient localization and 

recognition of elevation detail associated with corresponding contours in a contour map 

using basic image processing techniques like image morphology as well as advanced 

multi-layered computational model enabled with augmented data for elevating the 

performance.  

 

5.3 Applications of the proposed research initiative 

DEM is crucial for various applications such as terrain modelling, hydrological 

modelling, and path optimization, to name a few. Automatically and accurately creating 

DEMs from topographic sheets could contribute a lot to many GIS applications. The 

efficient identification of text and elevation details aids in digitization and labelling 
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contours and other topographic morphological features, thereby helps to create of 

DEM. 

 

Here, the work has been suitably portioned into two identifiable sections dedicated for 

localization and recognition as detailed below in section 5.1.3 and 5.1.4 respectively. 

 

5.4 Text Localization  

Artificial intelligence-based object localization computational processes are finding 

increasing applications in visual recognition systems. These visual recognition systems 

are used for various purpose, such as auto-navigation, facial recognition systems, 

character recognition (hand-written and typed text) [244], robotics, speech processing 

[245], and biometric-based identifications, to name a few. The ability of such a process 

is judged based on several aspects such as computational cost, space, time, accuracy, 

and suitability to the application's requirements. It is not always necessary to address 

all possible aspects highlighted above; a trade-off can be made based on the needs of 

the applications. With technological advancements and the ability of the computational 

system to handle complex networks, the inception of various deep learning-based 

architectures has been proposed with varied abilities. These architectures are basically 

improvisations on traditional networks. Some of the notable examples include CNN, 

R-CNN, Fast R-CNN, and Faster R-CNN. In initiatives related to GIS and Geological 

Studies, TS features and related attributes act as a crucial scientific basis for drawing 

quality decisions related to activities such as geo-morphological planning, 

infrastructural developments, and studies related to the earth sciences. Each of these 

notable features may be considered an object of interest. These features are not readily 

interpretable by the computational program. In order to facilitate the same, it is essential 
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to make the computational program gain knowledge about the aspects that distinguish 

one feature from another. For ease of interpretation, these features are represented using 

distinctive color codes, as represented in figure 5.2 (page no 195). This may be achieved 

by making the network learn about the aspects, enabling it to identify the features. TS 

is released in printed form, which needs to be scanned, converted, and stored in a 

computer-readable format before the features can be drawn and used for inferential 

analysis. 

 

 

Figure 5.2: Feature Set 

 

Feature extraction can be done manually, or a computer-aided automated digitization 

process may be deployed. The manual process is relatively expensive, with low 

confidence in the results obtained. The most reliable way is to conceptualize learning-

based computational processes that generate advanced trained operators that mimic the 

manual process and automatically trace different features and create a repository of the 

same. This approach will be relatively inexpensive and generate high-quality results. 

But there are several issues to be addressed, as detailed below. A simple color 

segmentation process can be executed to extract specific features into distinctive 

vectors (i.e., a vector is a thematic layer representing the feature(s) of interest). 
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Color segmentation proves effective in situations where there are no overlapping 

features. In situations where the features overlap as highlighted in figure 5.3 (page no 

196), segmentation often fails to deliver the expected results due to variations in 

intensity. Complexity intensifies when correction mechanisms are to be incorporated 

into the segmentation process. Blurring, aliasing, and mixing the colors of adjacent 

pixels further would, to a certain extent, solve the problem but lead to an increase in 

computational complexity. 

 

 

Figure 5.3: Overlapping of Feature Set 

 

This implies a cohesive feature recognition computational process is to be relied upon 

that takes into consideration multiple aspects for identifying various features. With 

regards to the above stated, this section of the research initiative aims at localizing text 

present in the TS by creating a minimum bonding box that encapsulates within it the 

text features present in the TS using different versions of CNN and then determining 

their suitability for its aid in extracting text. The model was trained on a novel dataset 

specifically prepared for the research initiative; further data augmentation was 

performed to increase the dataset size. The proposed work also substantially contributes 

to the generation of a text feature dataset from natural images applicable to TS.  
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5.4.1 Proposed methodology for Text Localization using Image Morphology 

Initially, the topographic sheet is scanned and saved in an image sample format. The 

input image is binarized and pre-processing to filter noise and protrusion. The 

binarization is performed using a simple thresholding operation. The noise is removed 

by applying median filter. The small protrusions are removed using basic 

morphological operations like erosion and dilation. Then, the structural operator is 

prepared based on the analysis of the object of interest, i.e., elevation detail. The pre-

processed image is filtered with a structural operator to retain only the object of interest. 

Finally, the result is processed to identify the location of the elevation detail. The 

proposed work may be schematically represented using figure 5.4 (page no 197). 

 

Text Localization in Topographic Sheet using Morphological Processing 
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Figure 5.4: Methodology flow diagram for overall study 
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(i) Image Acquisition: At first, a paper-based topographic sheet is scanned and stored 

on a computer in a digital format. The contour lines and associated elevation values 

in the topographic sheet are represented using brown or shades of brown. An 

intensity-based color segmentation technique has been deployed to identify the 

feature pertaining to the contour lines. Here, the accuracy of the segmentation 

process greatly relies on the value of the threshold value set. Hence, approximation 

technique is used to derive the value of the threshold. It takes into account the mean 

value of the intensity, with the range defined by µ ± σ , where σ represents the 

deviation.  

 

Since, the threshold value is influenced by different environment factors such as 

camera lens aperture setting, or object texture, so to contain the effect of these 

factors the image was transformed into an HSV color model. With the values of 

hue ranging from 0.0 to 0.3 and value ranging from 0.0 to 0.7, all brown color 

features were extracted. 

 

(ii) Image Pre−processing: The segmented image that highlighted the contour and the 

associated elevation was found to has several inherent lags, such as broken features 

and noises. A need-based pre-processing technique was deployed to binarize, thin, 

filter noise, erode, dilate, and fill the holes to elevate the quality followed by 

location of the ROI. 

 

Zhang-Suen thinning algorithm was applied to the binarized image to obtain image 

features with a single pixel width. This algorithm has been preferred over other 

algorithms as it does not generate branches and it also generate smooth curves. 
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Further, salt and pepper noise has been removed using median filter. Subsequently, 

a hole-filling algorithm has been applied to the thinned image to fill the features 

that contain holes in it. It is observed that some of the digits in the elevation detail, 

like 4, 0, 9, 8, 6, and intersecting features, were getting filled. Since the elevation 

value is represented by a mix of numbers between 0-9, there is a high probability 

that at least one of the above-identified characters will be used. 

 

After a hole-filled image is generated, a morphological erosion operation is applied 

to it using 3x3 and 5x5 structural masks iteratively, which are selected based on the 

width of contour lines. The objective of this operation is to remove the contour 

lines, thereby retaining only the elevation value. A series of erosion operations is 

called for until contours are not removed. This may result in the loss of portions of 

elevation value. To recover the same, a series of dilation operations have been 

performed using large-sized squared structural operators like 5x5, 7x7, etc. masks. 

The objective of this operation was to grow the area covered by the elevation value 

to make it a single connected component. Finally, an image was obtained with many 

blobs, and each blob represents the elevation values in an uninterpretable form. 

Each blob was considered to be a single connected component. For example, if an 

image contains five blobs, then there are five connected components representing 

the five number elevation details present in the referenced map. 

 

(iii) Text localization: The objective of this step is to determine the coordinate location 

of the elevation value. In order to validate that the blobs represent the elevation 

value, a background subtraction was performed. To subtract the background, the 

blob image was superimposed on the original binary image, and only those 
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locations (x, y) were retained in the original binary image in which blobs were 

present. The following steps were followed, as shown in algorithm 5.1, for 

subtracting the background to validate whether the blob represents an elevation 

value or not. 

 

Algorithm 5.1: Algo_ ROI_Extraction  

Consider Blob Image, 

Binary 

Image 

Input images  

 row,col row size, column size  

 i, j temporary variables  

Start  (row, col) ← Size (Binary Image) 

for i = 1 → row do 

                 for j = 1 → col do 

                      if Blob_Image(i, j)! = ObjectP ixel, then 

                                            Binary_Image(i, j) ← 0 

                            end if 

                 end for 

end for 

Display ‘Binary Image’ 

 

 

 

 

 

 

 

 

End 

 

Algorithm 5.1: Region of Interest (ROI) extraction using background subtraction 

 

After validating the identified elevation value, exact coordinate location (x, y) was 

obtained with the help of connected component concepts. Initially, a labelling algorithm 

was used to label the different connected components of the blobbed image. Based on 

the label of connected components, the centroid of a blob was determined. The centroid 

of each connected component is calculated as shown in equation 5.1: 
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 ………………. (Equation 5.1) 

 

where (Xi, Yi), represents a significant pixel, ‘n’ represents the total number of 

significant pixels for specific connected components, and (𝑋̅, 𝑌̅) represents the centroid 

of the connected component. 

 

The following are the steps followed, as shown in algorithm 5.2, to identify the location 

of the elevation values. 

 

Algorithm 5.2 Algo_ Localization_of_elevation_value_or_text_feature  

Consider binary_image Input images  

 row,col row size, column size  

 i, j, L, num, count, 

x_value, y_value 

xmean , ymean 

temporary variables 

 

Location of feature 

 

Start  Read the “binary_image”  

Extract size, [row, col] = size (ip) 

Label the connected components,  [L, num] = bwlabel 

(binary_image, 8), where L=Labelled image  and num= no. of 

connected components 

while num != 0 do 

               Temp=num 

         for i=1 to row do 

               for j=1 to col do 

                if L (i, j) = = Temp do 
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End 

    count = count+1; 

x_value = x_value + j;  

y_value = y_value + i; 

                           End if 

                  End for 

              End for 

  End while 

 Calculate the Centriod,  

xmean = x_value/count;  

ymean= y_value/count; 

     Display the centroid in image, (xmean, ymean) 

Algorithm 5.2: Localization of elevation value or text feature 

 

5.4.2 Proposed methodology for Text Localization using Deep Learning technique 

CNN [246] [118] has evolved from the traditional neural network system (as shown in 

figure 5.5, (page no 203)) wherein multiple hidden layers are replaced by multiple 

convolutional layers organized in a feed-forward structure enabled with intensive deep 

learning. Convolution is done through several purpose-specific filters of designated 

sizes that pan through the images, enhancing attributes of interest. These filters may be 

of variable sizes to inculcate a greater number of aspects of interest. The initial 

convolution layers may start with the simplest of the features, such as edges and basic 

geometric shapes, and with the progression of the network, more complex features may 

be tracked. With every progression, different aspects may be looked at by adjusting the 

filters in the convolution layers. It can also be used for efficiently handling 
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morphological disturbances of objects [247] [248]. This implies that the ability of the 

network greatly relies on the effectiveness of the convolution layers. 

 

        

a)                                                b) 

Figure 5.5: a) Traditional Neural Network         b) Convolutional Neural Network 

 

Figure 5.6: Architecture of CNN [117]  

 

As a consequence of deep architecture as shown in figure 5.6 (page no 203), optimizing 

ability and learning capacity CNN is extensively used in the domain of digital image 

processing for applications such as object recognition, feature extraction and 

reconstruction to name a few [249] [250]. 

 

This research initiative intends to investigate three different variations of CNN for 

localizing text attribute in the TS name R-CNN, Fast-R-CNN and Faster R-CNN and 

judge their efficiency and effectiveness. 
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i) Region-Based Convolution Neural Network (R-CNN) 

This approach enhances the ability of CNN by introducing regional proposals. This 

selective greedy [148] based approach starts with the selection of small regions that are 

of arbitrary dimensions for ease of localization [251]. The architecture of RCNN is 

shown in figure 5.7(page no 204). The effectiveness of the process also depends on 

how effectively these regions are selected. This step is followed by a bottom-up 

approach where, over a series of iterations, these regions are merged to create a 

cohesive region based on similarity defined in terms of texture and size. To increase 

efficiency, the entire process is iterated, taking samples from all possible regions into 

consideration. Eventually, the execution terminates with the creation of a single region. 

Preference should be given to the merger of smaller regions instead of letting a bigger 

region engulf all other smaller regions. Its ability to learn, aided by a hierarchical 

structure, enables the generation of effective regional proposals. The steps involved in 

localization of text features in topographic sheet using a R-CNN is represented in figure 

5.8 (page no 205). 

 

 

Figure 5.7: Architecture of R-CNN [117]  

 

Text Localization in Topographic Sheet using R-CNN 

Step 1  Step 2  Step 3  Step 4  Step 5 
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Figure 5.8: Text Localization in Topographic Sheet using R-CNN 

 

Once the input image is read in step 1, in step 2, a selective search mechanism is adopted 

in order to build a pool of region proposals for the input image. Its ability to group the 

region based on the suitability of the classification process enhances its capability. 

Grouping is performed based on similarity. The similarity here is in context with 

texture. The function of similarity can be expressed as: 

Similarity (region 1, region 2) =Texture (region 1, region 2) +Size (region 1, 

region 2) [252] 

………………. (Equation 5.2) 

This not only allows for the generation of suitable candidates but also reduces the 

execution time by reducing the search space for localization. In step 3, the region 

proposals are aligned into fixed resolutions. This is performed to create a suitable, 

attributed feature representation with the region proposals. In step 4, after determining 

the confidence of individual region proposals, with the aid of bounding box regression 

and greedy non-maximal suppression, a suitable bounding box is created that 

encapsulates the text appropriately. In situations where the proposals are inadequate, 
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R-CNN, instead of opting for an unsupervised approach, adopts a supervised approach 

for pre-training to refine the proposals [121].  

 

Although R-CNN enhances the ability of the traditional approach, it suffers from 

several inherent lags. Firstly, it has a pipelined architecture with multiple stages, and 

without sharing computation, it executes the convolution network for each of the 

proposals, resulting in an increased time requirement. Although the selective search 

approach generates proposals at greater speed, it proves ineffective if the proposals are 

redundant and do not involve any learning, which may in turn result in the selection of 

inappropriate region proposals. The presence of a large number of regional proposals 

leads to an increased space requirement. Subsequently, increasing the training time as 

well as the testing time leads to a slower localization rate. 

 

ii) Fast Region-Based Convolution Neural Network (Fast R-CNN) 

Fast R-CNN has evolved from R-CNN with enhanced object localization capabilities 

like single-stage training, faster localization, and the non-requirement of storage space 

for features. Contrary to R-CNN, the input image itself is sent to the CNN instead of 

the region proposals for generating the convolutional feature map. A convolution 

feature map is generated by sending the input image over several convolutions and 

pooling layers. Region proposals are then extracted from the Convolutional Feature 

Map and subsequently wrapped in squares. Eventually, the RoI pooling layers adjust 

the region proposals into fixed sizes, and later they are sent to the Fully Connected (FC) 

layers, resulting in two different output layers. The first output layer is the probability 

distribution (per RoI), which is discrete in nature, and the second output layer is the 

bounding-box regression offsets. To improve the quality of the region proposals, 
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softmax layers are used for determining the class for region proposals and to estimate 

the offset value for the bounding box. The architecture of fast RCNN is presented in 

figure 5.9 (page no 207). 

 

 

Figure 5.9: Architecture of Fast R-CNN [126]  

 

In comparison to R-CNN, this technique takes reasonably less execution time. This may 

be a consequence of the following regions: First, R-CNN performs several convolution 

operations (each for a region proposal), whereas Fast R-CNN performs only one 

convolution operation. Second, it does not require said number of region proposals and 

instead itself generates region proposals from the Convolutional Feature Map. Third, 

fast R-CNN takes considerably less time in training and testing as well. 

 

iii) Faster Region-Based Convolution Neural Network (Faster R-CNN) 

Faster R-CNN incorporates a fast neural network in its architecture in figure 5.10 (page 

no 208), which proves effective in managing the increased time requirement of search 

techniques present in R-CNN and Fast R-CNN. The architecture has two different 

components. The first component is a fully CNN-based detector for proposing regions, 

and the second component is a fast R-CNN-based detector that makes use of the 

proposed regions for detecting the object. 
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Figure 5.10: Architecture of Faster R-CNN [121] 

 

It introduces a RPN in its architecture. This RPN is placed immediately after the CNN. 

RPN maps the output of the eventual layer of CNN to a feature map. It creates region 

proposals as output with a certain objectness score after taking an image as an input. 

This objectness score is a soft-max probability that determines whether a box qualifies 

to be a region proposal or not based on a certain threshold value.  

The region proposal is created by navigating a sliding window over the feature map 

based on an arbitrary fixed-ratio anchor. Eventually, the region proposals are supplied 

to the ROI pooling layer, followed by classification and bounding box regression [121]. 

 

5.4.3 Proposed methodology for Text Localization using Faster R-CNN with 

resnet-50/101-feature pyramid network  

Dataset for text detection was curated by cropping 255x255 resolution 200 images out 

of topographic sheets available in digital format. Along with images the dataset 

contains annotations of texts on an image i.e., the minimum and maximum (x, y) 



Page 209 of 329 

 

coordinates that describe position of texts in the image which follows the standard 

Common Objects in Context (COCO) dataset format for detection. Texts annotated 

included numbers and words. Biasness in dataset is inherently not present since we just 

have one class to predict i.e., texts and no text is left unannotated. 

 

The detection model trained is a Faster R-CNN [121] with resnet-50/101-feature 

pyramid network(R-50-FPN/R-101-FPN) [122] [253] as the backbone of the detection 

model i.e., as the feature extractor. The entire model as a whole was adopted from 

Detectron2 with the backbone of the network being pretrained on Imagenet Database 

[254] with over 1000 object classes including texts. Figure 5.11 (page no 210) is a high-

level pipeline of the detector model. Since the backbone is already pretrained, hence 

just fine tuning it with the dataset curated was enough. Fine tuning the feature extractors 

along with the object classification and bounding box regression ends was part of the 

training. The alternate training method of sharing CNN weights between the RPN and 

the detector network [121] is taken care by the Detectron2 framework. The model is 

trained with 180 images and validated with 20 images. Table 5.1 (page no 210) displays 

the network and hyper parameters adjusted and experimented to get maximum average 

precision (AP) on the validation set or otherwise avoid overfitting of data. Optimizer 

used was Stochastic Gradient Descent (SGD), Cross Entropy Loss for classifier and 

Smooth L1 Loss for the bounding box regression as loss functions. 
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Figure 5.11: Detector Pipeline 

 

Table 5.1: Detector Network and Hyper-parameters 

Network Backbone Learning rate Epochs Region 

Proposals 

Faster RCNN R-50-FPN 0.001 1500 256 

Faster RCNN R-101-FPN 0.001 1500 256 

 

5.5 Considerations, Constraints, Development Environment 

5.5.1 Considerations, Constraints, Development Environment for Text 

Localization using Image Morphology 

i)  Considerations 

The input reference map for the proposed work was taken from the University of Texas, 

Austin. The scale of representation for the map was 1:250000. A sizable portion of a 

300 x 300 subset consisting of 30 images was created from the reference map and set 

as input. The sample input image type is JPG (Joint Photographic Experts Group). 

  

ii) Constraints 

The following are the constraints on implementing the research initiatives: 
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• The proposed methodology is currently capable of efficiently handling datasets 

of size 300 x 300 and can be further extended to work with variable-sized data. 

• The sample image is converted to an HSV image to mitigate environmental 

lightening issues that may arise during the scanning of topographic sheets. 

 

iii) Development Environment 

The description of the development environment for the proposed research initiative is 

as detailed below: 

      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor 11th Gen Intel(R) Core 

i7-1165G7 @ 

2.80GHz  

• Facilitates faster execution of 

programming code 

• RAM 16.0 GB (15.8 GB 

usable) 

• Sustain applications requirements 

• Operating 

System 

Windows, 64-bit • User friendly interface 

• Compatibility with application 

• Development 

Software 

MATLAB (2020a) • Easy translation of concepts to 

executables 

• Debugging ease 

• Scalable 

• Rich with in-build libraries 

 

5.5.2 Considerations, Constraints, Development Environment for Text 

Localization using Deep Learning technique 
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i) Considerations 

The input reference map for the proposed work was taken from the University of Texas, 

Austin. The scale of representation for the map was 1:250000. A sizable portion of a 

300 x 300 subset consisting of 50 images was created from the reference map and set 

as input. To increase the size of the dataset to implement deep learning techniques, a 

data augmentation was performed with varied size filters. The sample input image type 

is JPG. 

  

ii) Constraints 

The following are the constraints to implement the research initiatives: 

• unavailability of a standard dataset to train the machine learning model. To 

mitigate the issue, a custom-labeled dataset was prepared. 

• The trained model is limited to English alphabets aligned horizontally. 

• The proposed methodology is currently capable of efficiently handling datasets 

of size 300 x 300 and can be further extended to work with variable-sized data.  

 

iii) Development Environment 

The description of the development environment for the proposed research initiative is 

as detailed below: 

      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor 11th Gen Intel(R) Core 

i7-1165G7 @ 2.80GHz  

• Facilitates faster execution of 

programming code 

• RAM 16.0 GB (15.8 GB 

usable) 

• Sustain applications requirements 
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• Operating 

System 

Windows, 64-bit • User friendly interface 

• Compatibility with application 

• Development 

Software 

Python 3.9.10 in Google 

Colab 

• Open-source programming 

language 

• Rich with in-build libraries routines 

for implementing deep learning 

technique. 

• Provides GPU (Graphical 

Processing Unit) 

 

5.5.3 Considerations, Constraints, Development Environment for Text 

Localization using Faster R-CNN with resnet-50/101-feature pyramid network 

i)  Considerations 

The input reference map for the proposed work was taken from the University of Texas, 

Austin. The scale of representation for the map was 1:250000. A sizable portion of a 

300 x 300 subset consisting of 50 images was created from the reference map and set 

as input. To increase the size of the dataset to implement deep learning techniques, a 

data augmentation was performed with varied size filters. The sample input image type 

is JPG. 

 

ii) Constraints 

The following are the constraints to implement the research initiatives: 

• unavailability of a standard dataset to train the machine learning model. To 

mitigate the issue, a custom-labeled dataset was prepared. 

• The trained model is limited to English alphabets aligned horizontally. 
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• The proposed methodology is currently capable of efficiently handling datasets 

of size 300 x 300 and can be further extended to work with variable-sized data.  

 

iii) Development Environment 

The description of the development environment for the proposed research initiative is 

as detailed below: 

      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor • Tesla K80 GPU  

• 11th Gen Intel(R) Core 

i7-1165G7 @ 2.80GHz  

• Facilitates faster execution 

of programming code 

• RAM • 12GB NVIDIA 

• 16.0 GB (15.8 GB 

usable) 

• Sustain applications 

requirements 

• Operating 

System 

Windows, 64-bit • User friendly interface 

• Compatibility with 

application 

• Development 

Software 

Python 3.9.10  • Open-source programming 

language 

• Rich with in-build libraries 

routines for implementing 

deep learning technique. 

• Provides GPU 
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5.6 Results and Discussions  

5.6.1 Results and Discussion for Text Localization using Image Morphology  

The methods discussed earlier have been tested with different samples constructed from 

different contour maps and have proven to be effective by giving consistent and similar 

results. The following are the results obtained at different stages: 

(i) RGB (Red-Green-Blue) to gray scale conversion: The property of an input and 

output image is an 8-bit unsigned integer format, so the pixel value will range 

from 0 to 255. The RGB image is converted into a gray image by averaging the 

three planes of the input image, as shown in figure 5.12 (page no 215). 

 

               

(a) Input: Color (RGB) Image. (b) Output: Gray Image. 

Figure 5.12: Some samples of prepared input image. 

 

(ii) Binarization: For this, an RGB image is converted to an HSV color model. Then, 

the ROI was extracted based on the hue and value information of the HSV color 

model of the scanned topographic sheet (figure 5.13 (page no 216)). So, 

considering 0.0 6 hue, 60.3, and 0.0 6 value, 6 0.7, all ROI were extracted. 

 

(iii) Hole filling: A hole is a set of connected components that cannot be reached by 

starting the traversal from the edge of an image. Such connected components are 

replaced with significant pixels, as shown in figure 5.14 (page no 216). This 
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operation is performed in order to retain information that may be lost due to 

erosion. 

 

(a) Input: Gray Image. (b) Output: Binary Image. 

Figure 5.13: Conversion of gray scale image to binary. 

 

 

(a) Input: Binary Image. (b) Output: Filled Image. 

Figure 5.14: Filling holes of the features. 

 

 

(a) Input: Filled Image.  (b) Output: Eroded Image. 

Figure 5.15: Result of series of erosion operation using 3x3 mask or 5x5 

 

(iv) Erosion operation: The region of interest lies in areas where the density of 

significant pixels is considerably high as it represents elevation value, and the 

areas with lower densities of significant pixels represent contours. Such contour 
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areas are truncated by iteratively applying 3x3 square erosion morphological 

operations as shown in figure 5.15 (page no 216). 

 

(v) Dilation operation: The lost information of elevation value was recovered by 

iteratively using morphological dilation operations with higher-order structural 

operators of sizes 5x5 and 7x7 and of arbitrary shapes. The main objective of this 

operation is to achieve a single connected component for each elevation value, as 

shown in figure 5.16 (page no 217). 

 

    

 (a) Input: Eroded Image.            (b) Output: DilatedImage (or LabelledImage). 

Figure 5.16: Result of series of dilation operation using 5x5 mask 

 

(vi) Background subtraction operation: It is important to ensure that the connected 

components represent elevation values. To validate it, the areas of connected 

components are not manipulated; however, the remaining areas in the input image 

are nullified. Sometimes during background subtraction, a few unwanted features 

appear (as shown in figure 5.17 (page no 218)), which are removed based on the 

area of the features, i.e., features with a lower pixel count are nullified. 

 

(vii) Localization of elevation value: The location of the elevation value is represented 

by a pair of coordinates. A sample of labelled connected components is shown in 

figure 5.18 (page no 218), which contains two components labelled as 1 and 2, 
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respectively. Hence, based on the value of the labelled connected component, the 

centroid is easily calculated by collecting all (xi, yi) and then averaging it by the 

number of pixels for the respective connected components. 

 

 

 (a) Input: Binary Image.     b) Output: Background Subtracted Image. 

Figure 5.17: Result of background subtraction using masked image 

 

 

Figure 5.18: Result of background subtraction using masked image 

 

The same procedure was applied to “Labelled Image” as shown in figure 5.19 (page no 

219) below: 
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(a) Input: Labelled Image. (b) Output: Localized Image. 

Figure 5.19: Result of localized text feature 

 

The same procedure was applied randomly to sub-images of similar topographic sheets 

that contain many such elevation values or text features. The results obtained were 

considerably sound, as shown in figure 5.20 (page no 220). The identified features are 

encircled with red on a map. An experiment was conducted by randomly selecting 30 

samples of topographic sheets from a dataset of topographic sheets. There were 100 

features present in these sub-images, out of which 85 have been correctly classified. 

The details of the experiment are given in table 5.2 (page no 220). Furthermore, it is to 

be noted that the result obtained contains some misclassification, which may be due to 

improper segmentation arising due to the overlapping of elevation value with other 

morphological features. Figure 5.21 (page no 220) highlights the performance of the 

adopted method for localizing elevation values or text features. 

 

 

(a) Sample Output 1. 
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(b) Sample Output 2    (c)  Sample Output 3 

Figure 5.20: Results obtained from different samples of TS 

The localized elevation values are then associated with the nearest contour. This may 

be performed using any distance metric, like Euclidean distance. This association is 

important as it acts as a basis for projecting the contours in a 3D space. 

 

Table 5.2: Feature extraction results for different samples of topographic sheet. 

No. of features Classified correctly Unclassified Misclassified 

100 85 15 58 

 

 

 

Figure 5.21: Performance for localizing the Features in TS 
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5.6.2 Results and Discussion for Text Localization using Deep Learning  

An experiment was conducted by building a model based on faster R-CNN architecture 

which was trained using 52 different samples of raw topographic sheets with 15-20 text 

features in each image. Altogether, the Faster R-CCN model was trained with 1200 text 

feature. To increase the size of the dataset for modeling, data augmentation was 

performed where filters of various sizes (3x3, 5x5, and 7x7) were used. The coefficient 

values of the filter determine the nature of the operation to increase the dataset size. 

The nature of the operation includes smoothing and sharpening. The advantage of 

processing is that it not only generates multiple samples, thereby increasing the dataset 

size, but also normalizes the noise present in the raw image. The designed model’s 

efficiency was tested with 15 different, unknown samples of topographic sheets, each 

of which had 15-20 text features in all possible orientations. 

 

To validate the performance of Faster R-CNN, the result of the same is compared with 

the R-CNN model with the set of training and testing data. The details of the experiment 

are highlighted in table 5.3 (page no 223). It has been observed that out of 243 text 

features in test samples, 125 text features were correctly classified by R-CNN and 176 

text features were correctly classified by Faster RCNN. This reflects that the accuracy 

of the faster R-CNN model is 72.42%, whereas the accuracy of R-CNN is 51.44. This 

performance was achieved using a limited dataset. It is to be noted that the data for 

training and test samples were of poor quality and from a complex environment. 

Furthermore, by increasing the size of training samples and applying various 

preprocessing techniques, the performance is expected to improve. The performance 

comparison between R-CNN and Faster R-CNN is shown in figure 5.22 (page no 226). 
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Through experimental results, it has been observed that the various CNN models 

effectively detect objects in an image. Out of various existing versions of the CNN 

model, like basic CNN, R-CNN, Fast R-CNN, and Faster R-CNN, it was observed that 

Faster R-CNN, amongst all the models, is the most effective model in terms of its 

localization capability with minimal error. In addition, it was also observed from 

figures 5.23 (page no 226) and 5.24 (page no 226) that the unclassified and 

misclassified error counts are comparatively lower in faster RCNN than in RCNN.
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Table 5.3: Performance Comparison of RCNN and Faster RCNN for Text Feature Localization in Topographic Sheet 

Sample Image 1 2 3 4 5 

Input Image 

 

     

RCNN Output 

     

FRCNN Output 

     

Total Text 12 12 8 16 15 

Unclassified 
RCNN 2 6 2 6 3 

FRCNN 2 2 2 6 3 

Misclassified 
RCNN 2 3 6 4 1 

FRCNN 0 1 0 0 0 

Classified 

Correctly 

RCNN 10 6 6 10 12 

FRCNN 10 6 6 10 12 
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Sample Image 6 7 8 9 10 

Input Image 

     
RCNN Output 

     

FRCNN Output 

     

Total Text 18 17 26 24 12 

Unclassified RCNN 9 9 15 13 5 

FRCNN 4 7 4 9 4 

Misclassified RCNN 0 2 4 0 0 

FRCNN 0 1 0 0 0 

Classified 

Correctly 

RCNN 9 8 11 11 7 

FRCNN 14 10 22 15 8 
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Sample Image 11 12 13 14 15 

Input Image 

     

RCNN Output 

     

FRCNN Output 

     

Total Texts 17 21 14 15 16 

Unclassified 
RCNN 2 0 0 3 0 

FRCNN 0 0 0 0 1 

Misclassified 
RCNN 7 12 3 9 8 

FRCNN 3 5 1 4 6 

Classified 

Correctly 

RCNN 10 9 11 4 8 

FRCNN 14 15 13 11 10 
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Figure 5.22: Comparative analysis for correctly classified text features using RCNN 

and Faster RCNN 

 

 

Figure 5.23: Comparative analysis for unclassified text features using RCNN and 

Faster RCNN 

 

 

Figure 5.24: Comparative analysis for misclassified text features using RCNN and 

Faster RCNN
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5.6.3 Results and Discussion for Text Localization using Faster R-CNN with 

resnet-50/101-feature pyramid network 

Table 5.4 (page no 227) displays network vs metrics. The inference in table 5.4 (page 

no 227) is according to the COCO metric evaluation standard for detection. Other than 

AP on validation set, it is also relevant to calculate the total loss and false negative 

classification on the training set. Faster R-CNN [121] incorporates multitask loss hence 

total loss is the combination of loss on object classifier and bounding box regression 

ends. False negative metric gives the idea of how many regions in actual were texts 

were not classified as texts. Figures 5.25 (page no 228), 5.26 (page no 229), 5.27 (page 

no 229), and 5.28 (page no 229) are the total loss vs epoch, false negative score vs 

epoch for Faster RCNN R-50-FPN and Faster RCNN R-101-FPN networks, 

respectively. The oscillating value of total loss seen in figure 5.27 (page no 228) could 

be avoided by scheduling learning rate to decay for consequent epochs and is left for 

further experimentation. Training time with R-50-FPN (50 layers) took around 14 

minutes and with R-101-FPN (101 layers) took around 35 minutes on a 12GB NVIDIA 

Tesla K80 GPU with 4 workers. Faster RCNN + R-101-FPN returns best AP value of 

79.6% against IoU value >= 0.7. 

 

Table 5.4: Average Precision (IoU >= 0.7) 

Network 

Metrics 

AP AP50 AP75 APs APm APl 

Faster RCNN + R-50-FPN 76.042 98.947 94.076 76.124 76.300 80.00 

Faster RCNN + R-101-FPN 79.609 98.998 97.890 80.300 78.767 90.00 
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Figure 5.25: Total Loss Vs Epoch 

(Faster RCNN + R-50-FPN) 

Figure 5.26: False Negative Vs 

Epoch (Faster RCNN + R-50-FPN) 

 

  

Figure 5.27: Total Loss Vs Epoch 

(Faster RCNN + R-101-FPN) 

Figure 5.28: False Negative Vs 

Epoch (Faster RCNN + R-101-FPN) 

 

 

Figure 5.29: Recognizer Pipeline[121] 
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5.7 Text Recognition  

In this research initiative, various deep learning models have been pursued and 

thoroughly assessed considering referenced data specifically built to serve the purpose 

of research objectives. The cross-sectional assessment was performed to determine the 

optimal recognition model best fit for the problem in hand. Further, the reference data 

was subjected to various transformations for increasing the volume and variety of the 

dataset. 

 

5.7.1 Text Recognition using Convolutional Recurrent Neural Network (CRNN) 

Dataset for text recognition was curated by cropping out regions on topographic sheet 

only containing text. 500 images were collected and annotated. Annotation of an image 

is a single word containing combination of characters.  

 

Model of CRNN (Convolutional Recurrent Neural Network) [159] is adopted for 

recognizing text. Images of variable dimension are resized to 50X200 pixel. 450 images 

are used for training and remaining 50 for validation. A pretrained Resnet-18 [255] 

without classifier head is used as the feature extractor layer. The feature sequence is 

broken down into a set number of frames i.e., the input size of the consequent RNN 

layer. A forward and a backward LSTM are stacked together to form a bidirectional 

LSTM which supplies contexts in both directions. This layer predicts a series of labels 

corresponding to per frame of feature sequence input. The LSTM has 256 hidden layers 

which is set as a hyper parameter while training. In between the feature extractor and 

sequence predictor layers is a map to sequence network as described in [159] for turning 

feature sequence into feature maps for propagating error differentials from recurrent to 

convolutional layers. The top layer is a lexicon free based transcription layer that unifies 
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per frame feature sequence prediction into a single label. The single label will be the 

recognition of text in image. Predicting a label sequence adopts a Connectionist 

Temporal Classification (CTC) loss as proposed in [256]. CTC basically maximizes the 

likelihood of a label sequence i.e., the ground truth conditioned over per frame 

predicted label. The network is designed to be end to end trainable. Error differentials 

in recurrent layers are calculated using Back Propagation through time (BPTT), in 

convolutional neural network layers using back propagation and in transcription layer 

using a forward backward algorithm [256]. SGD is used as the optimizer with 

momentum and the objective function is the CTC loss [256]. Table 5.5 (page no 230) 

displays the best hyper parameters experimented over multiple trainings to achieve 

maximum accuracy on validation set. The network is limited to English vocabulary of 

capital, small alphabets and a blank. Figure 5.29 (page no 228) shows the recognizer 

pipeline. 

 

Table 5.5: CRNN Hyper-parameters 

Learning 

Rate 

Epochs Weight 

Decay 

Momentum Drop 

out 

Clip 

Norm 

Bi-

directional 

Hidden 

Size 

0.02 

 

1000 

 

1e-5 

 

0.9 

 

0.1 

 

5 

 

True 

 

256 

 

 

Table 5.6: CRNN Accuracy 

Accuracy 

Validation set 45% 

Train set 60% 
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Table 5.6 (page no 230) displays the train and validation set accuracy. On training the 

network for more than 1000 epochs the validation accuracy remained unchanged while 

the training loss plateaued (Figure 5.30 (page no 231)). From figure 5.31 (page no 231) 

the validation loss seemed to oscillate with no significant change. The cropped images 

from topographic sheets were low resolution and required to be resized to higher 

dimension for training. The dataset contains low dimensional images having few 

characters which might get pixelated on resizing to the extent that receptiveness of 

characters might get lost and may work as wrong representations which further suffers 

accuracy of model. Increasing training data would possibly increase training and 

validation accuracy. Training time was around 30 minutes on 12GB NVIDIA Tesla 

K80 GPU with 2 workers. 

 

 

Figure 5.30: Training Loss vs 

(Epoch*Epoch Length) (CRNN) 

 

 

Figure 5.31: Validation Loss vs 

(Epoch*Epoch Length) (CRNN) 

 

5.7.2 Text Recognition using YOLOv8  

YOLO, which stands for You Look Only Once, divides the input image into a grid 

consisting of cells. Each cell in the grid is used for the purpose of predicting bounding 

boxes and class probabilities for objects present within that cell. YOLO uses 
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predefined boxes of different sizes and aspect ratios called anchor boxes. These anchor 

boxes are used by the grid cell for predicting multiple bounding boxes by adjusting the 

coordinates and dimensions of the anchor boxes. The number of anchor boxes per grid 

cell is fixed beforehand. For each grid cell, YOLO predicts multiple bounding boxes. 

Each bounding box is characterized by its center coordinates, width, height, and 

confidence score. The confidence score represents the probability of containing an 

object and the accuracy of the bounding box. Additionally, each bounding box predicts 

class probabilities for different object classes. After predictions, non-maximum 

suppression is applied to remove redundant bounding boxes by considering their 

overlap and selecting the ones with higher confidence scores. It ensures that each 

object is represented by only one bounding box, eliminating duplicates. YOLO is 

trained using labelled images with bounding box annotations. During the course of 

training, the network learns to predict bounding box coordinates, confidence scores, 

and class probabilities. The loss function combines localization loss (box coordinate 

regression), confidence loss, and classification loss. During inference, the trained 

YOLO model takes an input image and performs forward propagation. It generates 

predictions for bounding boxes, confidence scores, and class probabilities. Non-

Maximum Suppression is then applied to obtain the final object detection results. The 

architecture of YOLO is shown in figure 5.32 (page no 233). 

 

YOLOv8n, YOLOv8s, and YOLOv8m are different versions of YOLOv8 architecture. 

These models are distinctly identified by suffixes indicating their size - "n" for nano, 

"s" for small, and "m" for medium. Different variations aim to achieve a balance 

between model dimensions, mean Average Precision (mAP), and inference time, 

customizing each to specific requirements. YOLOv8n is tailored for edge devices with 
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limited computational resources, providing a balance between model size and 

inference speed. YOLOv8s is designed for scenarios where a compact model is 

essential, ensuring faster inference times. YOLOv8m strikes a balance between model 

size and accuracy, making it suitable for applications with a moderate amount of data. 

Choosing the appropriate model size hinges on specific requirements, taking into 

account factors such as model size vs. mAP, inference time, and data availability. 

Generally, larger models achieve higher mAP, while smaller models prove more 

efficient for storage and real-time applications. 

 

 

Figure 5.32: Recognition of numeric data using Yolo Architecture 

 

5.7.2.1 Data Augmentation  

The automatic vectorization of elevation values demands enough data to build a 

detection and recognition machine learning model. Since, the elevation values in 

topographic map intersects with other morphological features, the existing dataset may 

not adequately extract the significant feature automatically at the time of training the 



Page 234 of 329 

 

model, thereby degrading the performance of model. Hence, a customed dataset is 

essential that aids in automatic vectorization process for digitizing elevation values 

present in topographic map. 

 

To address the aforementioned, this section presents an effort towards building a 

comprehensive reference dataset for numeric data (0-9) used for building various 

quantitative values represented in the topographic sheet. A variety of topographies 

were carefully inspected, and 1322 different variations of numeric data (0-9) were 

detected, as shown in table 5.7 (page no 234). Thereafter, these 1322 variations were 

appropriately resized and pre-processed to facilitate augmentation through various 

transformation measures. Transformation was achieved through smoothing, 

sharpening, rotation, noise elimination, logarithmic, power, exponential, and gamma 

operations on the 1322 initial, resulting in the generation of 26400 additional 

variations. This dataset may be of great use for training localization and recognition 

model. 

 

Table 5.7: Samples of elevation digits extracted from localized topographic map 
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5.7.2.1.1 Proposed Methodology  

Figure 5.33 (page no 236) elaboratively discusses the various steps involved in the 

generation of synthesized dataset using various transformation operations. The input 

topographic sheet is suitably pre-processed, followed by localization of text features 

using a deep network model based on ROI. The process starts with localization, 

followed by segmentation to identify the individual digits. The segmented digits are 

then suitably labelled. The labelled digits are then pre-processed for resizing, 

background subtraction, and grayscale conversion. Thereafter, transformations are 

performed, including smoothing, sharpening, rotation, noise elimination, logarithmic, 

power, exponential, and gamma operations.  

 

Text resembling numeric data was searched for, and vertical segmentation was 

performed to segment the individual digits. The individual digits were then resized to 

28x28 pixels to ensure uniformity of representation. The images were assigned tags 

resembling the value depicted by the image. Irrelevant information was selectively 

removed using the global thresholding technique for ease of processing. The pixel 

averaging technique was used for converting all the images to grey. Smoothening of 

the dataset has been performed using 3x3 and 5x5 masks. Sharpening of the dataset 

has been performed using the Laplacian filter. Rotation has been performed in degrees. 

Gaussian noise was induced to further alter the dataset. Logarithmic transformation of 

the dataset was performed considering c=1 and c=3. A power transformation of the 

dataset was performed by empirically considering c=1 with γ =1.2 and c=2 with γ =0.3. 

An exponential transformation of the dataset was performed by empirically 

considering c=1 with α=0.5 and c=2 with α=0.5. Gamma transformation of the dataset 

was performed by empirically considering γ=2 and γ=0.5. For accessing the dataset, 
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commence by downloading and extracting the contents of the “Topographic Number 

Dataset.zip” file from the Mendeley data link. The details of various transformation 

technique realized are highlighted in table 5.8 (page no 236). 

 

 

Figure 5.33: A schematic representation of various steps involved in the process of 

generating the augmented referenced dataset from the localized numeric values in the 

sample topographic sheets.  

 

Table 5.8: Description of the transformation steps 

Step Description Steps Involved 

a)  Prepare sample topographic sheet Preprocessing 

b)  Localize text using deep architecture • Annotate the region of interest 

(ROI) 

• Training the model using Deep 

architecture like Faster RCNN 
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• Detect text for all samples and 

extract the ROI 

c)  Perform vertical segmentation of 

character sequences in the numeric data 

segments to extract individual digits 

Segment individual digits in the 

localized numeric data 

d)  Resize the segmented digits for 

facilitating operations 

Create uniform representation of 

all individual digits by resizing it to 

28x28 pixels 

e)  Label each digit logically (file extension: 

*.png) 

Suitably tag the images with the 

corresponding unique numeric 

labels resembling the value 

f)  Apply background subtraction to extract 

only feature on interest 

Remove irrelevant information 

using global thresholding 

technique 

g)  Convert all image dataset to gray scale 

image 

Using pixel averaging technique 

h)  Apply following transformation [17]:   

 i)  Smoothening Operation  

Resultant pixel value=(∑xi.wi )/ n, 

where xi is the image element and wi 

is the coefficient value of the mask 

and n is the total number of 

coefficient values in mask. 

𝐠(𝐱, 𝐲) =
𝟏

𝐦𝐧
∑ 𝐟(𝐬, 𝐭)

(𝐬,𝐭)∈𝐒𝐱𝐲

 

Description of the mask 

• 3x3 sized mask 

1 1 1 

1 1 1 

1 1 1 
 

• 5x5 sized mask 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 
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…… (Equation 5.3) 

where,  

• g(x, y) is the resultant image 

• f(s, t) is input image 

• m x n is the size of the mask  

• s x t is the size of the image 

   

ii)  Sharpening operation using 

Laplacian filter 

g(x,y)=5f(x,y)-f(x+1,y)+f(x-

1,y)+f(x,y+1)+ f(x,y-1)  

                 … (Equation 5.4) 

where,  

• g(x, y) is the resultant image 

• f(x, y) is input image 

Description of the mask 

0 -1 0 

-1 A+4 -1 

0 -1 0 

A is variable dictating the degree of 

sharpness 

   

iii)  Rotation 

In order to rotate any point present in 

the image, the generic equation used 

in implementation is: 

x'  cos(θ) -sin(θ) 0  x 

y' = sin(θ) cos(θ) 0 x y 

1  0 0 1  1 

Where, (x, y) is a significant pixel 

location, , (x’, y’) is a rotated pixel 

Where θ=00, 450,900, 1350, 1800, 

2250,2700, 3150 

Description of the mask 

cos(θ) -sin(θ) 0 

sin(θ) cos(θ) 0 

0 0 1 
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location, and θ is the angle for 

rotation.  

Using this strategy, 8 different 

datasets were generated. 

 

iv)  Transformation by inducing 

Gaussian Noise  

Initially, a gaussian noise is induced 

and removed using smoothening 

filter, particularly, arithmetic mean 

filter. The function for gaussian 

noise with random variable, z, is: 

𝐩(𝐳) =
𝟏

√𝟐𝛑𝛔
𝐞−(𝐳−𝛍)𝟐/𝟐𝛔𝟐

 

…..… (Equation 5.5) 

where z represents gray level, μ is 

the mean value of z and σ is the 

standard deviation. 

 

 

v)  Logarithmic Transformation  

 To transform the given dataset, the 

following transformation equation 

was applied to every pixel of every 

images. 

s = c log(1 + r ) 

By empirically considering c=1 

and c=3, two set of datasets was 

generated 
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…..… (Equation 5.6) 

where c is the constant, and r≥0 is a 

pixel value. 

Using this strategy, 2 different 

datasets were generated. 

 

vi)  Power Transformation  

 To transform the given dataset, the 

following transformation equation 

was applied to every pixel of every 

images. 

x = crγ ..… (Equation 5.7) 

where c is the constant, r≥0 is a pixel 

value, and γ is the variable. 

By empirically considering c=1 

with γ =1.2 and c=2 with γ =0.3, 

two set of datasets was generated 

 

 Using this strategy, 2 different 

datasets were generated. 

 

 

vii)  Exponential Transformation  

 To transform the given dataset, the 

following transformation equation 

was applied to every pixel of every 

images. 

s=c*((1+ α)r -1) 

….. (Equation 5.8) 

By empirically considering c=1 

with α=0.5 and c=2 with α=0.5, 

two set of datasets was generated 
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where c is the constant, r≥0 is a pixel 

value, and α is a variable. 

Using this strategy, 2 different 

datasets were generated. 

   

viii)  Gamma Transformation  

  To transform the given dataset, the 

following transformation equation 

was applied to every pixel of every 

images. 

x = rγ….. (Equation 5.9) 

where r≥0 is a pixel value and γ is the 

variable. 

Using this strategy, 8 different 

datasets were generated. 

 

By empirically considering γ=2 

and γ=0.5, two set of datasets was 

generated 

 

 

 

This initiative successfully generates a comprehensive dataset consisting of two 

subsets. The first subset has 1322 original images recorded from various topographic 

sheets, and the second dataset has 26440 images created through various 

transformations resulting from smoothing, sharpening, rotation, noise elimination, 

logarithmic, power, exponential, and gamma operations. Table 5.9 (page no 242) 

represents the original image and the synthesized images obtained through the various 

transformations. 
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Table 5.9: Description of original and synthesized data 

Dataset Type Amount Description 

Pia Original 1322 Obtained through segmentation of localized 

numeric data in the topographic sheet 

Sia Synthesized 1322 Obtained through application of Smoothening 

Operation on the original dataset with a 

window of 3x3 

Sia Synthesized 1322 Obtained through application of Smoothening 

Operation on the original dataset with a 

window of 5x5 

S’ia Synthesized 1322 Obtained through application of Sharpening 

Operation on the original dataset  

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=00 

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=450 

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=900 

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=1350 

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=1800 

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=2250 
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Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=2700  

Ria Synthesized 1322 Obtained through application of Rotation 

Operation on the original dataset with θ=3150 

Gia Synthesized 1322 Obtained through application of Gaussian 

Noise on the original dataset  

Lia Synthesized 1322 Obtained through application of Logarithmic 

Transformation on the original dataset with c=1 

Lia Synthesized 1322 Obtained through application of Logarithmic 

Transformation on the original dataset with c=3 

P’ia 

 

Synthesized 1322 Obtained through application of Power 

Transformation on the original dataset with c=1 

and γ =1.2 

P’ia 

 

Synthesized 1322 Obtained through application of Power 

Transformation on the original dataset with c=2 

and γ=0.5 

Eia Synthesized 1322 Obtained through application of Exponential 

Transformation on the original dataset with c=1 

and α=0.5 

Eia Synthesized 1322 Obtained through application of Exponential 

Transformation on the original dataset with c=2 

and α=0.5 

Gia Synthesized 1322 Obtained through application of Gamma 

Transformation on the original dataset with γ=2  
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Gia Synthesized 1322 Obtained through application of Gamma 

Transformation on the original dataset with 

γ=0.5 

 

where, 

Dataset Description 

Pia Original numeric data from topographic map 

Sia Smoothening Operation on the original dataset with a window of 3x3 

Sia Smoothening Operation on the original dataset with a window of 5x5 

S’ia Sharpening Operation on the original dataset  

Ria Rotation Operation on the original dataset with θ=00 

Ria Rotation Operation on the original dataset with θ=450 

Ria Rotation Operation on the original dataset with θ=900 

Ria Rotation Operation on the original dataset with θ=1350 

Ria Rotation Operation on the original dataset with θ=1800 

Ria Rotation Operation on the original dataset with θ=2250 

Ria Rotation Operation on the original dataset with θ=2700  

Ria Rotation Operation on the original dataset with θ=3150 

Gia Gaussian Noise on the original dataset  

Lia Logarithmic Transformation on the original dataset with c=1 

Lia Logarithmic Transformation on the original dataset with c=3 

P’ia Power Transformation on the original dataset with c=1 and γ =1.2 

P’ia Power Transformation on the original dataset with c=2 and γ=0.5 

Eia Exponential Transformation on the original dataset with c=1 and α=0.5 

Eia Exponential Transformation on the original dataset with c=2 and α=0.5 

Gia Gamma Transformation on the original dataset with γ=2  

Gia Gamma Transformation on the original dataset with γ=0.5 

 

 

The subset of the synthesized dataset is presented in figure 5.34 (page no 245). The 

complete dataset has been uploaded in Mendeley data and can be accessed using the 
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direct link specified: (https://data.mendeley.com/preview/jxnfmkkpj3?a=c45ee09b-

0586-4d4a-8b94-bb4f7b1214cc) 

 

 

 
Figure 5.34: Subset of synthesised dataset. 

 

5.7.2.2 Performance of the YOLOv8 models on augmented dataset 

The YOLO architecture can train the model to recognize the elevation digits in one 

pass. Hence, it saves the time and cost. To recognize the elevation digits, three version 

of YOLOv8 algorithm namely, YOLOv8n, YOLOv8s and YOLOv8m have been 

considered.  

 

5.7.2.2.1 Model Evaluation of Yolov8n 

Summary for evaluation of Yolov8n is specified in table 5.10 (page no 245). 

Table 5.10: Model Summary for Yolov8n 

Attribute Value 

Total Layers 168 

Total Parameters 3,007,598 

Gradients 0 

GFLOPs 8.1 
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Summary of evaluated results from Yolov8n is specified in table 5.10 (page no 245). 

Here, 

F1=2. 
𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧∗𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥
………………. (Equation 5.10) 

 

Precision= 
𝐓𝐏

𝐓𝐏+𝐅𝐏
………………. (Equation 5.11) 

 

Recall= 
𝐓𝐏

𝐓𝐏+𝐅𝐍
………………. (Equation 5.12) 

 

The table 5.11 (page no 246) provides a detailed breakdown of the model's 

performance, including precision, recall, mAP (mean Average Precision) at various 

confidence thresholds (mAP@50 and mAP@50-95), and the number of images and 

instances processed for each class. These metrics offer a comprehensive evaluation of 

the model's ability to recognize characters in topographical maps across different 

classes and confidence levels. 

 

Table 5.11: Evaluation Results for Yolov8n 

Class Images Instances 

Precision 

(P) 

Recall 

(R) 

mAP@50 

mAP@50-

95 

F1 

Score 

All 387 387 0.957 0.932 0.98 0.979 0.944 

0 387 61 0.959 0.967 0.98 0.98 0.963 

1 387 72 0.922 0.98 0.982 0.982 0.95 

2 387 47 0.953 0.872 0.977 0.977 0.911 

3 387 29 0.965 0.95 0.983 0.969 0.957 

4 387 28 0.95 0.964 0.991 0.991 0.957 
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5 387 33 1 0.907 0.976 0.976 0.951 

6 387 22 0.889 0.909 0.981 0.981 0.899 

7 387 35 0.971 0.955 0.992 0.992 0.963 

8 387 32 1 0.904 0.985 0.985 0.941 

9 387 28 0.962 0.916 0.958 0.958 0.938 

 

Evaluation speed for Yolov8n is specified in table 5.12 (page no 247). 

Table 5.12:  Speed of Yolov8n 

Attribute Value 

Pre-process 0.1 ms per image 

Inference 0.7 ms per image 

Loss Calculation 0.0 ms per image 

Post-process 2.7 ms per image 

 

The figure 5.35 (page no 247) represents confusion matrix for Yolov8n model. 
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0 0.90     0.03     0.05     0.04 0.11 

1 0.03 0.99 0.04         0.03     0.11 

2     0.91         0.03   0.04 0.02 

3     0.02 0.83   0.06         0.18 

4         0.96           0.13 

5     0.02 0.07   0.94         0.07 

6 0.02       0.04   0.91   0.06 0.04 0.16 

7               0.94     0.07 

8       0.07     0.05   0.87   0.11 

9 0.05 0.01             0.06 0.89 0.04 

 BG 0 1 2 3 4 5 6 7 8 9 BG 

  True  
 

Figure 5.35: Confusion matrix for Yolov8n model 

The F1 curve, P curve, R curve and PR curve for Yolov8n presented in figure 5.36-5.39 

(page no 248). 
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Figure 5.36: F1 Curve Figure 5.37: P Curve 

  

Figure 5.38: R Curve Figure 5.39: PR Curve 

 

The different losses, precision, recall and mAP for Yolov8n presented in figure 5.40 

(page no 248). 

 

Figure 5.40: Losses, Precision, Recall and mAP for Yolov8n 
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5.7.2.2.2 Model Evaluation of Yolov8s 

Model Summary for evaluation of Yolov8s is specified in table 5.13 (page no 249). 

Table 5.13: Model Summary for Yolov8s 

Attribute Value 

Total Layers 168 

Total Parameters 11,129,454 

Gradients 0 

GFLOPs 28.5 

 

The table 5.14 (page no 249) provides a detailed breakdown of the model's 

performance, including precision, recall, mAP (mean Average Precision) at various 

confidence thresholds (mAP@50 and mAP@50-95), and the number of images and 

instances processed for each class. These metrics offer a comprehensive evaluation of 

the model's ability to recognize characters in topographical maps across different 

classes and confidence levels. The F1 score, calculated from precision and recall, 

provides an additional measure of the model's overall performance for each class. 

 

Table 5.14: Evaluation Results for Yolov8s 

Class Images Instances Precision 

(P) 

Recall 

(R) 

mAP@50 mAP@50-

95 

F1 

Score 

All 387 387 0.971 0.973 0.993 0.992 0.972 

0 387 61 0.970 0.967 0.993 0.993 0.969 

1 387 72 0.951 0.986 0.987 0.987 0.968 

2 387 47 1.000 0.925 0.990 0.990 0.961 

3 387 29 0.978 1.000 0.995 0.987 0.989 

4 387 28 0.950 1.000 0.994 0.994 0.974 

5 387 33 0.977 0.970 0.993 0.993 0.974 
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6 387 22 0.919 1.000 0.993 0.993 0.957 

7 387 35 1.000 0.959 0.995 0.995 0.979 

8 387 32 1.000 0.968 0.995 0.995 0.984 

9 387 28 0.964 0.953 0.992 0.992 0.958 

 

Evaluation speed for Yolov8s is specified in table 5.15 (page no 250). 

Table 5.15:  Speed of Yolov8s 

Attribute Value 

Pre-process 0.0 ms per image 

Inference 3.4 ms per image 

Loss Calculation 0.0 ms per image 

Post-process 0.5 ms per image 

 

The figure 5.41 (page no 250) represents confusion matrix for Yolov8s model. 
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Figure 5.41: Confusion matrix for Yolov8s model 

 

The F1 curve, P curve, R curve and PR curve for Yolov8s presented in figure 5.42-5.45 

(page no 251). 
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Figure 5.42: F1 Curve Figure 5.43: P Curve 

  

Figure 5.44: R Curve Figure 5.45: PR Curve 

 

The different losses, precision, recall and mAP for Yolov8s presented in figure 5.46 

(page no 251). 

 

Figure 5.46: Losses, Precision, Recall and mAP for Yolov8s 
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5.7.2.2.3 Model Evaluation of Yolov8m 

Model Summary for evaluation of Yolov8m is specified in table 5.16 (page no 252). 

 

Table 5.16: Model Summary for Yolov8m 

Attribute Value 

Total Layers 218 

Total Parameters 25,845,550 

Gradients 0 

GFLOPs 78.7 

 

The table 5.17 (page no 252) provides a detailed breakdown of the model's 

performance, including precision, recall, mAP (mean Average Precision) at various 

confidence thresholds (mAP@50 and mAP@50-95), and the number of images and 

instances processed for each class. These metrics offer a comprehensive evaluation of 

the model's ability to recognize characters in topographical maps across different 

classes and confidence levels, given the summary details of the model's architecture 

and performance. 

 

Table 5.17: Evaluation Results for Yolov8m 

Class Images Instances Precision 

(P) 

Recall 

(R) 

mAP@50 mAP@50-

95 

F1 

Score 

All 387 387 0.983 0.972 0.992 0.991 0.978 

0 387 61 0.962 1.000 0.993 0.991 0.980 

1 387 72 0.959 0.975 0.991 0.987 0.967 

2 387 47 1.000 0.898 0.993 0.993 0.946 

3 387 29 0.995 0.966 0.989 0.986 0.980 

4 387 28 0.953 1.000 0.995 0.992 0.976 

5 387 33 1.000 0.980 0.995 0.995 0.990 
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6 387 22 0.985 1.000 0.995 0.995 0.992 

7 387 35 1.000 0.971 0.983 0.983 0.986 

8 387 32 0.988 1.000 0.995 0.995 0.994 

9 387 28 0.990 0.929 0.993 0.993 0.959 

 

Evaluation speed for Yolov8m is specified in table 5.18 (page no 253). 

Table 5.18:  Speed of Yolov8m 

Attribute Value 

Pre-process 0.1 ms per image 

Inference 1.9 ms per image 

Loss Calculation 0.0 ms per image 

Post-process 1.9 ms per image 

 

The figure 5.47 (page no 253) represents confusion matrix for Yolov8m model. 
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Figure 5.47: Confusion matrix for Yolov8m model 

 

The F1 curve, P curve, R curve and PR curve for Yolov8m presented in figure 5.48-

5.51 (page no 254). 
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Figure 5.48: F1 Curve Figure 5.49: P Curve 

  

Figure 5.50: R Curve Figure 5.51: PR Curve 

 

The different losses, precision, recall and mAP for Yolov8m presented in figure 5.52 

(page no 254). 

 

 

Figure 5.52: Losses, Precision, Recall and mAP for Yolov8m 
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5.7.2.2.4 Comparative analysis of Yolov8n, Yolov8s and Yolov8m 

Table 5.19 (page no 255) provides a comparative analysis of the three YOLOv8 models 

in terms of their architecture, performance metrics, and speed during inference. The 

differences can be prominently observed in parameters, GFLOPs, precision, recall, 

mAP50, mAP50-95, and inference speed for each model. These metrics provides a 

valuable insight into how different model sizes impact character recognition in 

topographical maps. 

 

Table 5.19: Comparative analysis of Yolov8n, Yolov8s and Yolov8m 

Model Total 

Parameters 

GF

LO

Ps 

Precis

ion 

(all) 

Recal

l (all) 

mAP

@50 

(all) 

mAP

@50-

95 

(all) 

Speed 

(Inference) 

(In 

ms/image) 

YOLOv8n 30,07,598 8.1 0.957 0.932 0.98 0.979 0.7 

YOLOv8s 1,11,29,454 28.5 0.971 0.973 0.993 0.992 3.4 

YOLOv8m 2,58,45,550 78.7 0.983 0.972 0.992 0.991 1.9 

 

5.8 Limitations of the research initiative 

The proposed methodologies implement localization of elevation values present in 

topographic sheet with the aid of limited dataset. In addition, the intersection of 

different morphological features dilutes the quality of output, hence, making it more 

challenging. Due to limited dataset, the accuracy rate achieved for localization is not 

appreciable. To recognize the evaluation values using supervised technique requires 

annotation of extracted features which in itself is a very time-consuming process.  

 



Page 256 of 329 

 

5.9 Conclusion 

Automated feature extraction from poor-quality topographic sheets poses quite a 

challenge as several relief features are often represented in an overlapped manner. The 

computational engine must be tuned to enable effective identification and further 

interpretation. In addition, the quality of the topographic sheet also plays a crucial role 

in the determination of the performance measure. On close analysis, it was observed 

that in a given representation, the elevation value was represented with a similar font 

and size but may have different orientation. In some instances, the elevation value 

intersected with other morphological features, which made the background 

segmentation process difficult. It may be noted that filling the holes with elevation 

values majorly contributed to retain the information during the erosion process, and a 

similar idea was used for the localization of elevation values. The results have been 

tested with a variety of sample inputs, and the approach was found to be effective. 

Localization is difficult in situations where the elevation data is encompassed by 

different geographic regions or intersects with other morphological features. It is also 

noted that the segmentation of a character with an intersecting elevation value with 

other morphological values and its recognition are also big challenges. This provides 

an area for future research initiatives in order to make a fully automatic computational 

system for the vectorization of topographic sheets and their representation. 

 

Although the DEM can be constructed from many other sources, like satellite data, 

creating the DEM from a scanned topographic sheets will be more accurate and less 

expensive [257] [258]. In this research initiative, a novel approach based on 

morphological and image processing operations has been realized to identify the 

location (x, y) of elevation values present in a topographic sheet.  
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This work aims at locating text representing different relief features like, landmark 

name or elevation value, using the faster R-CNN technique. The model was trained 

using a variety of poor-quality samples of topographic sheets, which had in them many 

text features in different orientations, to check the robustness of the trained model. An 

accuracy of 72.42% was achieved using the faster R-CNN model. To check the 

performance of the results as reflected by the faster R-CNN model, a pre-trained R-

CNN was trained using the same training set. An accuracy of 51.44% was obtained by 

R-CNN. This proves that the faster RCNN performs well for the localization of not 

only elevation values but also any text features present in the topographic sheet. The 

overall accuracy achieved was 85%. 

 

With a detector and recognizer model trained and validated on datasets of topographic 

sheet, these can be further used to achieve the task of retrieving information from 

topographic sheet, thereby removing human intervention. In addition to the 

aforementioned technique, a faster RCNN with R-101-FPN as a backbone was also 

trained for text detection or localization. An accuracy of 79.6% against Intersection 

over Union (IoU) value >= 0.7 is achieved using Faster RCNN+R-101-FPN.  

 

For text recognition, CRNN model was trained with localized elevation detail. An 

accuracy of 60% was achieved for the training set and 45% accuracy was achieved for 

validation set. One major issue with this trained model is the limited dataset. Hence, 

the volume of dataset was increased using various data augmentation techniques, like 

smoothing, sharpening, rotation, noise elimination, logarithmic, power, exponential, 

and gamma operations. The dataset which was originally 1322 was increased to 26440. 

Then, YOLOv8 models were trained using the augmented dataset to recognize the 
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elevation values of topographic sheet. Three versions of YOLOv8 namely, YOLOv8n, 

YOLOv8s and YOLOv8m were trained and compared. YOLOv8n was found to be the 

lightest and smallest model during execution, with the lowest GFLOPs and total 

parameters. Its inference speed of 0.7 ms per image was found to be relatively rapid 

and demonstrated good recall and precision. YOLOv8s was found capable in 

successfully balancing performance and size. It performed better in terms of precision, 

recall, and mAP than YOLOv8n since it has larger total parameters and GFLOPs. At 

3.4 ms per image, the inference speed was found to be relatively slower. With the 

greatest GFLOPs and total parameters, YOLOv8m is the largest and most accurate 

model. Out of the three models, YOLOv8m attains the highest precision, recall, and 

mean average precision (mAP); nonetheless, its inference speed was found to be 1.9 ms 

per image. YOLOv8n works well in situations where processing power is scarce. 

YOLOv8s strikes a decent mix of performance and size, making it a viable option for 

a general-purpose model. Although YOLOv8m has a slower inference speed and 

demands more computer resources, it gives the best accuracy. The application-specific 

requirements determine which model is best, taking into account things like accuracy, 

processing speed in real time, and computational capacity. YOLOv8m is regarded as 

the best model since it recognizes elevation digits on a topographical map, which is a 

non-time-critical activity. 

 

There remains a big challenge of producing a robust, high-performance detector and 

especially a recognizer network. The current recognizer model is limited to just English 

alphabet and needs to be expanded to numbers and some non-English alphabet 

characters commonly seen on topographic sheets of Indian region. The recognizer 

model has low validation as well as training accuracy which could be attributed to the 
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low-quality images in the recognition dataset. Data is driving these models hence 

having data that is engineered to correctly represent what a model must learn and in 

enough numbers is important and almost necessary. Though work on generalizing over 

small dataset is in research and also probably shown in [259], currently state of the art 

deep learning models performs well on large amount of data. Specific to topographic 

sheets, engineering a model for images containing texts with line strides of contours 

passing over and around could be heavily challenging. Wrong representations of 

characters could be learned that would suffer on testing. The next most plausible step 

would be to create handcrafted image processing techniques to counter wrong 

representations and increase receptiveness of data to be learned. Fu et al  [260] de-

noises images with pepper like noise using CNNs. This inspires to research and work 

on removing strikes and unwanted lines from images using some variation of neural 

networks. Dataset for recognition was limited to just words in English alphabet but can 

be broadened to numbers. Detecting texts not horizontally inclined with non-horizontal 

bounding box is another sought out issues [261]. 
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Chapter 6  

Contour Generation and 3D Modelling 

 

6.1 Introduction 

Contour, also known as isoline or isopleth, are 

virtual lines (as shown in figure 6.1 (page no 260)) 

used to join points in the landscape that are 

located at the same elevation from a given 

reference point (for example, sea level). These are 

non-intersecting and may take the form of a line 

or a polygon. Attributed with numeric values 

representing its elevation, these lines are primarily used for representing a morphological 

aspect of landforms and terrain information and are also widely used for creating elevation 

models. In the topographic sheets, these lines are represented at a certain vertical distance 

value known as the contour intervals. Depending upon the scale at which the topographic 

sheet is built, the size of the contour interval may vary. This implies that if the scale of the 

map is considerably small, the contour interval should be greater and vice versa. 

 

It has been often observed that the variability in the contour interval has a tremendous 

impact on the quality of the DEM created using the contours. DEM is a 3D computer 

graphics model of an object of interest. In context of studies related to GIS, DEM refers to 

the 3D model of a landscape; figure 6.2 b) (page no 261) represents the 3D model of the 

highlighted portion of the contour map in figure 6.2 (a) (page no 261). Such a 3D model 

 

Figure 6.1: Sample Contour Map 
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finds its application in planning civil engineering projects, comprehensive terrain analysis, 

cadastral mapping, suitability mapping for the establishment of communication networks, 

and many more. DEMs built using contours with greater contour intervals generally have 

steeper curves and sharper inclinations. Reliance on such an imprecise DEM model may 

result in the generation of a low-confidence scientific basis for formulating a solution 

model for critical terrain-related problems.  

 

         

(a)                                                               (b) 

Figure 6.2: a) Portioned Sample Contour Map b) 3D model of Portioned Sample 

Contour Map 

 

In addition, such an elevation model may correlate badly with the actual ground reality. 

Figure 6.3 (page no 263) represents a sample contour map. In figure 6.4 (page no 263), a 

portion of the contours has been digitized. Figure 6.5 (page no 263) represents a set of 

cross-sectional points in the digitized contours. Figure 6.6 (page no 263) represents an 

elevation model generated by plotting the cross-sectional points at certain intervals. Here, 

it is observed that the curve generated is steep, and in this situation, it may not be able to 

correlate with the actual landscape of the geographical area. Ideally, it would be best to use 
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contour maps with lower contour intervals as a basis for generating elevation models, but 

in situations where the same is not available or difficult to procure, maps with larger 

contour intervals may be digitally processed with the help of knowledge-based 

computation programs to incorporate integrity-preserving features for elevating the quality 

of elevation maps. Figure 6.7 (page no 263) represents the incorporation of an integrity-

preserving contour into the contour map using knowledge-based computing. Figure 6.8 

(page no 263) represents a set of cross-sectional points in the existing and generated 

contours. Figure 6.9 (page no 263) represents an elevation model generated by plotting the 

cross-sectional points at certain intervals. Here, it is observed that the curve generated is 

much smoother and correlates better with the actual landscape of the geographical area, as 

represented in figure 6.10 (page no 263). 

 

6.2 Objectives of the proposed work 

The objectives of this research initiative are as follows: 

a) Identify all the structural operators prominently describing the characteristics of the 

contour lines 

b) Understand the significance of structural operators in relation to its relative position 

with respect to certain reference points 

c) Build strategies for traversal and interpolation while preserving the structural integrity 

of the contour lines 

d) Efficiently connect the interpolated elements to form continuous contour elements 

e) Associate elevation details with contours and elevate the same in the 3D plane to create 

the digital elevation model and its assessment 
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Figure 6.3: Sample Contour Map                 Figure 6.4: Digitized Contour Map 

     

Figure 6.5: Selection of cross-sectional points    Figure 6.6: Elevation model using 

cross-sectional points 

     
Figure 6.7: Incorporation of integrity preserving   Figure 6.8: Selection of cross-sectional 

contours                                                          points 

                                        

      
Figure 6.9: Elevation model using cross-sectional     Figure 6.10: Comparison of two 

elevation models 
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6.3 Applications of the proposed research initiative 

The major drawback of contour maps is the missing information about earth surface 

between contours. Due to this inadequate information, it is difficult to perceive areas of 

interest and use existing contours information effectively in varied application areas. The 

generation of contours between existing contours provides more detailed information about 

earth landscape. Hence, all applications of contours as mentioned in Chapter 4 can be used 

more effectively. 

 

The DEM derived from interpolated contour map provides better visualization with more 

adequate information about earth’s natural surface, thereby enhancing the use in variety of 

applications. The DEM is mainly used for infrastructural development during urban 

planning and architectural design. It is used during geological survey to study and analyze 

geological features like landforms, rock formation and aids in mineral exploration and 

hazard assessment. It is also commonly used in hydroelectric projects for assessing dam 

locations and reservoir capacity for planning release of water. In the field of 

telecommunication, 3D maps are used to identify optimal locations for communications 

towers and antennas. It has a potential use in disaster management for planning during 

natural hazards like flood, landslide, earthquake, etc. The other areas of application are 

environmental impact assessments due to construction and development, assessment of 

agricultural land, forest, wildlife, etc. 
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6.4 Proposed Methodology 

The research initiatives propose the following sequence of steps, presented in figure 6.11 

(page no 265), for the attainment of the aforementioned set of objectives: 

 

Module 6.1 Digitize Contours from Map 

Module 6.2 Noise Removal 

Module 6.3 Skeletonize Contours 

Module 6.4 Resolve Common Neighbor 

Module 6.5 Identify Structural Operators 

Module 6.6 Index structural operators 

Module 6.7 Store Contours 

Module 6.8 Associate Reference Point with every Identified Contour 

Module 6.9 Create Alternative Representations for Contours 

Module 6.10 Associate Traversal Direction with the Structural Operators 

Module 6.11 Devise Strategy for Cost Effective Traversal 

Module 6.12 Resolve Hit and Miss Problem 

Module 6.13 Interpolate Intermediate Points 

Module 6.14 Place the Structural Operators at the Interpolated Points 

Module 6.15 Generate Contours 

Module 6.16 Create Digital Elevation Model 

 

Figure 6.11: Framework for proposed research initiative 
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a) Digitize Contours from Map 

In a typical topographic sheet, contours are represented using a distinctive color code for 

ease of feature presentation and to facilitate visual interpretation. Research initiatives 

relying on the use of contours for drawing valuable morphological inferences mandate the 

digitization of these features into a distinct thematic layer. This can be achieved by 

realizing an intensity-based image segmentation module. The effectiveness of the 

segmentation process depends heavily on the precision with which the range of intensity 

values representing the contours is established. Although these processes are not 

computationally intensive, as they have a greater reliance on the set of reference values, 

they must be carefully executed as discussed in algorithm 6.1. In addition, the quality of 

the results of the subsequent steps depends on the outcome of the digitization process. To 

manage the computation time, the sample topographic sheet was converted from the 3D-

RGB model to the HSV color model. Likewise, the range of intensity values taken into 

account for segmentation was 0.0 to 0.3 for hue (H) and 0.0 to 0.7 for value (V). 

 

Algorithm 6.1: Algo_ Digitize_Contour  

Consider Img Dataset  

 i_r,i_c row size, column size  

 Contour Dataset  

 b1 b2 bound for threshold representing contour lines  

Start  temp:=rgb to gray (img) 

  i_r,i_c:=size(temp) 

  for i =1 to i_r do 

           for j=1 to i_c do 

                     if temp (i, j) ≥ b1&& temp (i, j) ≤ b2 

                            contour (i,j)=1; 
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                    else 

                            contour (i,j)=0; 

                   End if 

        End for 

End  End for 

Algorithm 6.1: Contour line extraction using thresholding operation 

 

Figure 6.12 a) (page no 267) represents the sample contour map taken into consideration. 

Figure 6.12 b) (page no 267) represents the digitized sample contour map. 

 

          

        Figure 6.12 a): Contour Map                    Figure 6.12 b): Segmented Contour Map 

 

b) Noise Removal 

Very often, it is observed that segmented images, in addition to significant datasets, also 

express noises (e.g., salt and pepper). In simple terms, noise may be perceived as non-

contextual data elements that have to be removed using purposeful spatial processing. This 

can be achieved by using standard, well-accepted filtering techniques or by designing a 

simple contextual module. Here, a median filter was used to remove salt and pepper noises 

as detailed in algorithm 6.2. However, it is also to be remembered that these morphology 
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filters are highly sensitive to errors. The median filter proves effective in the case of single-

point errors, but its effectiveness tremendously decreases in the presence of patches [262]. 

 

Algorithm 6.2: Algo_ Remove_Noise  

Consider Contour Dataset  

 i_r,i_c row size, column size  

 Filter processing variable   

 filter_w filter  width  

 filter_h filter height  

 i,j,k,l,ex,ey temporary variables  

Start  i_r,i_c:=size(cont) 

ex:= floor(filter_w /2) 

ey:= floor(filter_h /2) 

for i:=ex to i_r-ex do 

        for j:=ey to i_c-ey  do 

                 k: = 0 

                for l:=0 to 3 do 

                     for m:= 0 to 3 do 

                             filter[k] := cont[i + l - ex][j + m - ey] 

                             k:= i + 1 

              End for 

       End for 

       sort entries in filter[] 

       contour[i][j] := filter[filter_w * filter_h / 2] 

End for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End 

 

Algorithm 6.2: Removal of noise 
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Figure 6.13 a) (page no 269) represents the sample contour map with salt and pepper noise. 

Figure 6.13 b) (page no 269) represents the cleaned contour map free from salt and pepper 

noise.  

 

                

Figure 6.13 a): Before removal of noise           Figure 6.13 b): After Removal of noise 

 

c) Skeletonize Contours 

The complexity involved in the morphological processing of a feature reduces 

exponentially by condensing the dimensional information content related to the feature. 

This can be achieved through thinning, which enables the generation of features with 

single-pixel width. The proposed research initiative relies on the Zhang-Suen Thinning 

Algorithm [263] for creating a skeletonized (single-pixel) representation of the contours in 

the digitized contour map, as shown in figures 6.13 a) and b) (page no 269). 

 

Here, the ROI in the image is considered to have a pixel value of "1," whereas the 

background's pixel value is "0." It is executed over 2 passes, applied to a given image, in 

which a contour point is represented by a value of "1" and out of 8 neighbors, at least one 

should have a value of "0." 
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Table 6.1: 3*3 Window 

P9 P2 P3 

P8 P1 P4 

P7 P6 P5 

 

On implementation of the same using a 3x3 mask as shown in table 6.1 (page no 270), the 

8 neighbor pixels are stored in a linear array. The idea is to identify the contour pixel that 

can be removed with minimum or no influence. Consider P1 in table 6.1(page no 270) as 

the pixel under consideration. 

 

In pass 1, a pixel becomes a candidate for removal, provided all of the following conditions 

are satisfied:   

a) 2≤N(P1) ≤6 (Count of non-zero neighbours of P1 should be in the range of 2 to 6) 

b) S(P1) =1 (Count of 0-1 transition in the ordered sequence should be exactly 1) 

c) P2*P4*P6=0 (Any one of P2 or P4 or P6 should be zero) 

d) P4*P6*P8=0 (Any one of P4 or P6 or P8 should be zero) 

 

Similarly, in pass 2, a pixel becomes candidate for deletion, provided all of the following 

conditions are satisfied:   

a) 2≤N(P1)≤6. (Count of non-zero neighbours of P1 should be in the range of 2 to 6) 

b) S(P1) =1 (Count of 0-1 transition in the ordered sequence should be exactly 1) 

c) P2*P4*P8=0 (Any one of P2 or P4 or P6 should be zero) 

d) P2*P6*P8=0 (Any one of P4 or P6 or P8 should be zero) 
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It is to be noted that the conditions a) and b) remain the same and Pass 1 followed by Pass 

2 is used iteratively until a singly connected ROI is obtained as detailed in algorithm 6.3. 

 

Algorithm 6.3: Algo_ Thinning  

 

Conside

r 

contour Dataset  

 row,col row size, column size  

 i,j Variables  

Start  row,col:=size(contour) 

 

 

 

 

 

 

 

 

 

 

 

 

End 

for i=2 to row-1 do 

      for j= 2 to col-1 do 

            check for conditions stated for pass 1 to determine whether pixel                

            becomes a candidate for removal 

      End for 

End for 

for i=2 to row-1 do 

       for j= 2 to col-1 do 

            check for conditions stated for pass 2 to determine whether pixel   

            becomes a candidate for deletion 

       End for 

End for 

repeat until no new pixel is marked for deletion. 

Algorithm 6.3: Thinning of contour lines 

 

Figure 6.14 a) (page no 272) represents the cleaned contour map that needs to be 

skeletonized using thinning morphological operators. Figure 6.14 b) (page no 272) 

represents the thinned contour map.  
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Figure 6.14 a): Before Thinning                     Figure 6.14 b): After Thinning 

 

d) Resolve Common Neighbor 

On scrutiny of the processed sample contour map in some 

exceptional instances, it was found that there exist some 

coordinates with common neighbors. For example, in figure 

6.15 a) (page no 272), pixels 2 and 3 have a common 

neighbor pixel 5, whereas in figure 6.15 b) (page no 272), 

pixels 2 and 3 have common neighbors pixel 5 and 6. 

Although such structural organizations pose no hindrances, they would increase the 

number of structural orientations and inherently increase the complexity of computational 

time. Eradicating such coordinates would ease computation and help in constricting the 

number of structural operators. Figure 6.15 c) & d) (page no 272) represents the desired 

pixel organization. 

 

For any significant pixel with two neighbors P and Q, the m-Connectivity is defined as in 

equation 6.1:  

 

Figure 6.15: Common 

neighbours 
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N4(P) ∩ N4(Q) ≠ NULL ………………. (Equation 6.1) 

where,   

• N4(P) represents four neighborhood of significant pixel P (top, down, left, and right 

pixel) 

• N4(Q) represents four neighborhood of significant pixel Q (top, down, left, and 

right pixel) 

• i.e., there should not be any common N4 elements between pixel P and Q. 

 

Algorithm 6.4: Algo_ Resolve Neighbor   

Consider contour Dataset  

 i_r,i_c row size and column size  

 tmp window of size 3x3  

Start 

 

 

 

 

 

End 

for i=2 to i_r-1 do 

        for  j=2 to i_c-1 do 

          For any significant pixel with two neighbors P and Q ensure N4(P) ∩ 

N4(Q)= 

          NULL where N4(P) & N4(Q) represents four neighborhood of 

significant pixel 

       End for 

End for 

save and display contour 

Algorithm 6.4: Removal of common neighborhood for ensuring m-connectivity 

 

Figures 6.15 a) and b) (page no 272) represent the contour maps where possible instances 

of m-connectivity need to be resolved. Figures 6.15 c) and d) (page no 272) represent the 

contour map that ensures m-connectivity achieved with the help of algorithm 6.4. 
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e) Identify Structural Operators 

In the context to the proposed 

research initiative, a structural 

operator refers to a possible 

orientation of a pixel in a matrix of 

predefined order; here, 3x3 was 

considered the ideal size for 

realizing the structural operator. It 

is possible to have variable-sized 

structural operators, and it was 

observed that increasing the size of 

the structural operators would 

increase the pixel combinations, leading to a larger number of structural operators to handle 

and consequently greater complexity. Figure 6.16 (page no 274) represents a small sample 

segment of a contour, with 3x3 as the size of the operator. 28 such orientations were 

extracted, centered at every significant pixel. It may also be possible that some of the 

operators are repeated as a consequence of the contour alignment. In order to find all 

possible structural operators that may be important in the context of contours, the proposed 

research project looked at nine sample reference images and used an unsupervised search 

process to find all unique 3x3 orientations centered at the significant pixel location. Figure 

6.17 (page no 275) highlights 24 unique structural operators determined by the search 

process from the set of sample reference images taken into consideration as detailed in 

algorithm 6.5. 

Figure 6.16: Structural Operators of 3x3 
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Algorithm 6.5: Algo_ Identify Structure Operator   

Consider contour Dataset  

Start 

 

 

 

 

 

 

 

End 

for i=1 to n  do     

       for  j=2 to row-1 do 

               for  k=2 to col-1 do 

         extract every unique 3x3 orientation centered at a significant position   

                      and store the same for reference 

 End for 

      End for 

End for 

save and display count and operator 

Algorithm 6.5:  Extraction of all possible morphological operators 

 

 

f) Index Structural Operators 

It is quite essential to assign unique identity tags to every structural operator identified by 

the unsupervised search process for ease of onward operations. 

 

Algorithm 6.6: Algo_ Assign Tag to Structure Operator   

Consider Contour Dataset  

 i, j, k, count variables, count track of the number of operator  

 Operator 3D variable of (3x3) mask x n operators   

Start for i=0 to count do 

 

Figure 6.17: Structural operators of size 3x3 with numeric tags 1-24 [230] 
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End 

       assign tag (i+1) to operator (i) 

End for          

Algorithm 6.6: Assignment of tag to morphological operators 

 

Here, the operators were assigned numeric tags from 1 to 24. The structural operators 

highlighted in figure 6.16 (page no 274) are represented in figure 6.17 (page no 275) with 

numeric tags with the help of algorithm 6.6. Every structural operator is given one of these 

numeric tags to make it easier to link the direction of traversal based in its morphological 

orientation in relation to certain feature-specific reference points. 

 

g) Store Contours 

The elementary details of each and every contour present in the sample reference map are 

to be recorded in a suitable data structure for facilitating operations. The elementary details 

include contour id, type of contour (line or polygon), (x, y) coordinates of the contour 

elements, description of the structural operators along with the coordinates, direction 

associated with the structural operators along the coordinates, coordinate count, elevation 

details, and contour reference. 

 

Algorithm 6.7: Algo_ Generate Attribute    

Consider contour dataset  

Start 

 

End 

for every detected contour do 

       store contour details                

End for          

Algorithm 6.7: Extraction of contour attributes 
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Contour details include contour id, contour type (point, line, or polygon), elevation value 

of the contour, centroid value, coordinate trail of the contour, coordinate count, direction 

of traversal, and count of contour instances, achieved through algorithm 6.7. 

 

h) Associate Reference Point with every Identified Contour 

The interpolation operation mandates the determination of two endpoints, or two end 

coordinates; thereafter, desired portioning of the distance between these two points would 

enable placement of the interpolated points. A suitable distance matrix, such as the 

Euclidian distance, may be employed for determining the distance. Among all the inherent 

tasks involved, the task of deciding where to search for the cooperating coordinate for 

interpolation from a known coordinate point requires serious attention and consideration. 

In addition, the same is to be achieved with reliance to certain well-established references. 

In this research initiative, the centroids of the various aspects are taken as reference points. 

 

The proposed research initiative aims at generating interpolated contours in between two 

types of contour elements, which are lines and enclosures. With regards to interpolation in 

between lines, the centroid of the line and the centroid of the entire data set are taken into 

consideration for deciding on the direction of traversal, whereas with regards to 

interpolation in between enclosures, the coordinates of the enclosure and the centroid of 

the individual enclosure are taken into account. The detailed process for interpolation is 

explained in algorithm 6.8. 

 

Algorithm 6.8: Algo_ Contour Reference Point  
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Consider contour 

cont_cent 

Dataset 

 

 

Start 

 

End 

for every detected contour do 

    store cont_centi =∑cont_xi /n , ∑cont_yi /n,  n coordinate instances 

End for         

Algorithm 6.8: Associate Reference Point with every Identified Contour using mean 

 

i) Create Alternative Representations for Contours 

To facilitate easy interpolation, the significant pixels are suitably replaced by numeric tags 

representing the structural orientation listed in figure 6.17 (page no 275). This transient 

step is implemented to simplify the traversal and eventually the interpolation process. Here, 

figure 6.18 (page no 278) is a representation of figure 6.16 (page no 274) with numeric 

tags with the help of algorithm 6.9. 

 

 

 

 

Algorithm 6.9: Algo_Alternative Representations  

 

Figure 6.18: Structural operators with numeric tags 
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Consider contour Dataset  

Start 

 

 

 

 

End 

for every detected contour do 

      for every detected structural operator do 

            replace every  center pixel of 3x3 window representing the structural  

            operator with the numeric tag associated with it 

      End for         

End for         

Algorithm 6.9: Assignment morphological operator identity in contours 

 

j) Associate Traversal Direction with the Structural Operators 

The detection of cooperating coordinates for interpolation mandates the association of the 

direction of traversal with each and every identified structural operator listed in figure 6.18 

(page no 278) based on its positioning relative to the respective reference point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Direction of traversal. 
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With regards to a given position, identifiably, there are eight possible directions for 

traversal, i.e., along0o, 45 o, 90 o, 135 o, 180 o, 225 o, 270 o and 315 o respectively, as 

represented in figure 6.19 (page no 279) and table 6.2 (page no 280). 

 

i) Traversal in case of lines:  

Here, the centroid of the entire image and the 

centroid of the line are taken as the reference 

points for determining the direction of traversal 

for each and every structural operator 

represented in figure 6.17 (page no 275) that 

exists in the contour line. 

 

 

Consider, 

• Xc, Yc is the centroid of the image  

• Xcl, Ycl is the centroid of the line  

 

There may be two distinct relationship that may be established in between Xc, Yc and Xcl, 

Ycl to decide on the direction of traversal with the structural operators based on whether Yc 

≥ Ycl or Yc < Ycl . 

 

 

 

Table 6.2: Operations along the 

various directions [230]
 

Sl Direction x- 

coordinate 

y- 

coordinate 

1 0o ++ No Op 

2 45 o ++ -- 

3 90 o No Op -- 

4 135 o -- -- 

5 180 o -- No Op 

6 225 o -- ++ 

7 270 o No Op ++ 

8 315 
o ++ ++ 
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Case 1: When Yc ≥ Ycl 

The direction of traversal is represented in figure 6.20 (page no 281) and table 6.3 (page 

no 281). 

 

Table 6.3: Assignment of direction with the operators when Yc ≥ Ycl 
[230]

 

Sl. No. Operation Direction 

1 1 45 o 

2 2 0o or 180 o 

3 3 135 o 

4 4 90 o 

5 5 45 o 

6 6 0o or 180 o 

7 7 135 o 

8 8 90 o 

9 9 90 o 

10 10 45 o 

11 11 0o or 180 o 

12 12 135 o 

13 13 45 o 

14 14 135 o 

15 15 135 o 

16 16 45 o 

17 17 45 o 

18 18 135 o 

19 19 135 o 

20 20 45 o 

21 21 0o or 180 o 

22 22 90 o 

23 23 0o or 180 o 

24 24 90 o 

 

 

 

 

 
 

Figure 6.20: Association of direction with the 

structural operators when Yc ≥ Ycl
 [230] 
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Case 2: When Yc < Ycl 

The direction of traversal is represented in figure 6.21 (page no 282) and table 6.4 (page 

no 282).  

 

Table 6.4: Assignment of direction with the operators when Yc < Ycl 
[230] 

Sl. Operation Direction 

1 1 225o 

2 2 0o or 180 o 

3 3 315 o 

4 4 270 o 

5 5 225o 

6 6 0o or 180 o 

7 7 315 o 

8 8 270 o 

9 9 270 o 

10 10 225o 

11 11 0o or 180 o 

12 12 315 o 

13 13 225o 

14 14 135 o 

15 15 315 o 

16 16 225o 

17 17 225o 

18 18 315 o 

19 19 315 o 

20 20 225o 

21 21 0o or 180 o 

22 22 270 o 

23 23 0o or 180 o 

24 24 270 o 

 

 

 

 

 

 
 

Figure 6.21: Association of direction with the 

structural operators when Yc < Ycl 
[230] 
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ii) Traversal in case of enclosures 

Here, the centroid of the individual enclosure and the coordinate positioning of the 

structural operator in the particular enclosure are taken into consideration for determining 

the direction of traversal to be associated with the particular structural operator represented 

in figure 6.17 (page no 275). 

 

Consider,  

• Xce, Yce is the centroid of the enclosure  

• X, Y coordinate position of the structural operator  

 

There may be two distinct relationship that may be established in between X, Yand Xce, 

Yceto decide on the direction of traversal with the structural operators based on whether Yce 

≥ Yor Yce < Y. 
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Case 3: When Yce ≥ Y 

The direction of traversal is represented in figure 6.22 (page no 284) and table 6.5 (page 

no 284). 

 

Table 6.5: Assignment of direction with the operators when Yce ≥ Y [230] 

Sl. 

No. 

Operation Direction 

1 1 45 o 

2 2 0o or 180 o 

3 3 135 o 

4 4 90 o 

5 5 45 o 

6 6 0o or 180 o 

7 7 135 o 

8 8 90 o 

9 9 90 o 

10 10 45 o 

11 11 0o or 180 o 

12 12 135 o 

13 13 45 o 

14 14 135 o 

15 15 135 o 

16 16 45 o 

17 17 45 o 

18 18 135 o 

19 19 135 o 

20 20 45 o 

21 21 0o or 180 o 

22 22 90 o 

23 23 0o or 180 o 

24 24 90 o 

 

 

 

 
 

Figure 6.22: Association of direction with the 

structural operators when Y≥ Ycl 
[230] 
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Case 4: When Yce < Y 

The direction of traversal is represented in figure 6.23 (page no 285) and table 6.6 (page 

no 285). 

 

Table 6.6: Assignment of direction with the operators when Yce < Y [230] 

 

Sl. Operation Direction 

1 1 225o 

2 2 0o or 180 o 

3 3 315 o 

4 4 270 o 

5 5 225o 

6 6 0o or 180 o 

7 7 315 o 

8 8 270 o 

9 9 270 o 

10 10 225o 

11 11 0o or 180 o 

12 12 315 o 

13 13 225o 

14 14 135 o 

15 15 315 o 

16 16 225o 

17 17 225o 

18 18 315 o 

19 19 315 o 

20 20 225o 

21 21 0o or 180 o 

22 22 270 o 

23 23 0o or 180 o 

24 24 270 o 

 

 

 

 

 
 

Figure 6.23: Association of direction with the 

structural operators when Yc < Ycl 
[230] 
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To enable the traversal module to effectively perform the desired operations, the 

knowledge regarding the traversal directions associated with the structural operators 

specified in tables 6.2–6.6 needs to be stored for future program references as detailed in 

algorithm 6.10. 

 

Algorithm 6.10: Algo_Associate Traversal Direction   

Consider contour Dataset  

Start 

 

 

 

 

 

End 

for every detected contour do 

      for every detected structural operator do 

            based on type of contour (line or enclosure), structural  

            operators and Table 6.3, 6.4, 6.5 and 6.6 associate direction with 

structural operators 

       End for         

End for 

Algorithm 6.10: Assignment of directional information for matched contour points 

 

k) Devise Strategy for Cost Effective Traversal 

Consider the sample contour line shown in figure 6.24 (page no 287), where with each 

significant coordinate a numeric tag is associated, representing the structural operator. 

Now, based on the criteria stated in serial j above, the direction for traversal is to be 

associated. 

 

On closely analyzing the numeric tags associated with contour lines, it was observed that 

there might be instances wherein there might be multiple occurrences of the same numeric 
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tag in sequence. In such situations, the direction may be associated with the numeric tags 

only when there is a transition from one numeric tag to another. As in the case of figure 

6.24 (page no 287), there are multiple instances of 11, so direction may be associated with 

the structural operators only when there is a transition in the numeric tag, as represented in 

figure 6.25 (page no 287), with the help of algorithm 6.11. 

 

Algorithm 6.11: Algo_Associate Traversal Direction   

Consider contour Dataset  

Start 

 

 

 

 

 

 

 

for every detected contour do 

        for every detected structural operator do 

                if there exist two neighbors with same numeric tag as that of  

                the significant pixel  

                        continue   

                else  

                         assign direction for traversal 

             End if 

 

Figure 6.24: Sample contour line with            Figure 6.25: Selection of numeric tags 

                       numeric tags                                       for assignment of direction 
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End 

     End for         

End for 

Algorithm 6.11: Optimization of traversal operation 

 

l) Resolve Miss Problem 

The objective of traveling along any of the 8 identified directions listed in table 6.2 (page 

no 280) is to hit any significant pixel in the adjacent contour. In doing so, the distance 

between the contours may be suitably portioned to place interpolated points. 

 

It was observed that the probability of a hit in the case of traversal along with directions 

0o, 90o, 180o and 270o is 1 whereas the probability of a hit in the case of traversal along 

with directions 45o, 135o, 225o and 315o is 0.5. 

In the situation where the probability is only 0.5 

the traversal may result in the selection of 

inappropriate coordinate points, leading to 

disturbances in the morphological structure of 

the generated contour lines, as explained below. 

 

As represented in figure 6.26 (page no 288), the 

traversal from the structural operator centered at 20 

in contour ‘a’ should have hit any of the coordinates 

in contour ‘b’ but due to the unfavourable 

orientation of the coordinates in contour ‘b’, none 

of it could be hit. On further traversal, one of the 

 
Figure 6.27: Search space [230] 

 
Figure 6.26: Problem of miss [230]  
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coordinates of contour ‘c’ is hit. Thus, the generation of interpolated points taking into 

account coordinates from contours ‘a’ and ‘b’ would disturb the morphological orientation 

of the generated contour. To avoid such a situation, special masks may be conceived as 

presented in figure 6.27 (page no 288) to ensure that the probability of a hit is 1 as discussed 

in algorithm 6.12.  

 

Table 6.7 (page no 289) represents the locations to search for, in situation, if a coordinate 

is indexed with x, y and the traversal mandated is along the diagonals. 

 

Table 6.7: Locations to search for if coordinate is indexed with (x, y) 

 

Sl Direction Coordinate to 

search 

Sl Direction Coordinate to 

search 

1 45o x+1, y and x, y-1 5 0o x+1, y 

2 135o x-1, y and x, y-1 6 90o x, y-1 

3 225o x-1, y and x, y+1 7 180o x-1, y 

4 315o x+1, y and x, y+1 8 270o x, y+1 

 

Algorithm 6.12: Algo_Resolve Miss 

 

Consider contour Dataset  

Start 

 

 

 

 

 

 

 

for every detected contour do 

      for every detected structural operator do 

 if there traversal is along diagonal  

                      look for the locations listed in table 1, 2, 3 & 4 

             else  

                      look for the locations listed in table 5, 6, 7 & 8 

             End if 

     End for         
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End End for 

Algorithm 6.12: Resolve hit and miss problem by morphological operator traversal 

 

m) Interpolate Intermediate Points 

On a successful hit traveling along any of the 8 identified directions, coordinate values of 

interpolation are to be generated in between the two cooperating coordinates. This is 

achieved by applying the following formula: 

xr = (xi+xj)/2 ………………. (Equation 6.2) 

yr = (yi+yj)/2 ………………. (Equation 6.3) 

Let xi, yi and xi, yi be the two cooperating coordinate and xi, yi be the interpolated 

coordinate.  

 

Figure 6.28 a) (page no 290) represents input sample contour map, figure 6.28 b) (page no 

290) represents generation of interpolated points, and figure 6.28 c) (page no 290) 

represents superimposition of figure 6.28 a) and figure 6.28 b).  

 

   
a) b) c) 

 

Figure 6.28: a) Represents sample contour map b) Represents interpolated points c) 

Sample contour map combined with the interpolated points. 
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n) Place the Structural Operators at the Interpolated Points 

On determining the interpolated coordinate, the structural operator resembling the source 

contour is suitably placed at the interpolated coordinate wherever found suitable, and the 

process is repeated for all the directional traversals possible for a given contour (line or 

enclosure).   

 

o) Generate Contours 

The structural operators placed in between the contour lines are then connected to build a 

continuous contour (line or enclosure). To ensure preservation of morphological 

characteristics, a gradient-based approach has been pursued. To ensure continuity of the 

broken contour lines, the following sequence of steps has been applied: 

• Identify all the terminal points (Terminal point is location on contour line, in which, 

number of neighbor is exactly one) 

• Determine gradient for every terminal points 

• Determine optimal pair based on minimal distance between terminal points and the 

positive-negative gradient of the respective terminal points 

• Apply Straight line drawing algorithm (Bresenhem's Line Drawing) between optimal 

pairs 

 

The reconnection between two terminal points of a broken contour is realized using the 

straight light drawing algorithm. The adopted techniques work on the principle of gradient 

calculation and then determine an optimal pair for reconnection, considering positive and 

negative gradients. Figure 6.29 d) (page no 292) highlights the ability of the proposed 
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technique to establish contour continuity (highlighted with the help of red pixels). 

Although found effective, there are many inherent challenges faced by the technique, such 

as: 

• The reconnection is not possible if the technique fails to identify the optimal pair.  

• In situations where the breakage is severe, the technique fails to either identify the 

optimal pair or gets wrongly connected to another contour line.  

• In situations where the inter-contour distance is very short, the chances of getting 

wrongly connected to another contour line greatly increase. 

 

  

a) b) 

 

 
c) d) 

Figure 6.29: a) Sample contour map b) Interpolated points c) Sample contour map 

combined with the interpolated points d) Creation of continuous contours 
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p) Create Digital Elevation Model 

On successfully achieving steps a)–o), the respective elevation value may be associated 

with each of the identified contours. Subsequently, the contours may be elevated in the z-

plane to have a graphical view of the 3D elevation model, as represented in figure 6.30 f) 

(page no 294). 

 

 
 

a) b) 

 
 

c) d) 
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e) f) 

Figure 6.30: a) Sample contour map b) Elevation model for sample contour map c) 

Interpolated points d) Sample contour map combined with the interpolated points e) 

Creation of continuous contours f) Elevation model for the refined contour map 

 

 

6.5 Considerations, Constraints, Development Environment 

6.5.1 Considerations 

The input reference map for the proposed work was taken from the University of Texas, 

Austin. The scale of representation for the map was 1:250000. A sizable portion of a 200 

x 200 subset consisting of six images covering a varied landscape was created from the 

reference map and set as input. The sample input image type is BMP (bitmap). 

  

6.5.2 Constraints 

The following are the constraints to implement the research initiatives: 

• The feature of interest should hold the properties of connected components. 

• The sample image must be a binarized image, free from noise (particularly salt-and-

pepper noise). 
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• The feature of interest was skeletonized to create a single-pixel-width representation 

for ease of complexity management and to ensure m-connectivity between any two 

pixels in the neighborhood. 

• The proposed methodology is currently capable of efficiently handling datasets of 

size 200 x 200 and can be further extended to work with variable-sized data. 

• Any breakage in refined contours, including interpolated contours, must be 

connected using the reconnection technique. 

 

6.5.3 Development Environment 

The description of the development environment for the proposed research initiative is as 

detailed below: 

 

      Experimental   

      Configuration  

Description Criteria for Selection 

• Processor 11th Gen Intel(R) Core 

i7-1165G7 @ 2.80GHz  

• Facilitates faster execution of 

programming code 

• RAM 16.0 GB (15.8 GB usable) • Sustain applications 

requirements 

• Operating System Windows, 64-bit • User friendly interface 

• Compatibility with application 

• Development 

Software 

MATLAB (2020a) • Easy translation of concepts to 

executables 

• Debugging ease 
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• Scalable 

• Dynamic 3D Visualization of 

Features 

 

6.6 Result and Discussion 

The proposed methodology was tested with a variety of sample images selected from the 

different contour maps, six of which are represented in column A of table 6.8 (page no 

298). Column B represents the corresponding elevation model, assuming a set of assigned 

elevation values. It is evident that the elevation model expresses greater slope and 

sharpness due to a larger inter-contour distance. The proposed work successfully 

interpolates necessary points in between the existing contour lines based on directional 

traversal associated with various identified structural operators, considering certain crucial 

reference points. The overall efficiency of the directional traversal depends on its ability 

to identify the desired ends of interpolation. In situations where the strategy fails, the 

efficiency reduces to 50%; therefore, an advanced mask has been developed to ensure the 

probability of a miss is 0. Column B in table 6.8 (page no 298) highlights the achievements 

made by the interpolation strategy deployed, where points are automatically generated, 

completely relying on the knowledge of the existing contour points and the conceived 

directional traversal. The interpolated points are represented with the help of blue-colored 

pixels. It can be observed that the points generated are not continuous in nature due to the 

fact that the steps were iterated only in situations where there was a transition in the slope 

of the contour to save computation time. Further, to ensure continuity of the generated 

contour points, they were connected using the straight line drawing algorithm by 
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determining optimal pairs. Although the strategy proves effective, it is only suitable in 

situations where the inter-point distance is relatively small. In addition, as these lines are 

not able to retain the symmetry of the existing contours, their resemblance to the same may 

not be as desired. The strategy is also not suitable if the interpoint distance is very large. 

 

Column C in table 6.8 (page no 298) represents the superimposition of the actual contour 

map with the interpolated points. Column D in table 6.8 (page no 298) represents the 

interpolated points as continuous contours obtained after reconnection. Eventually, column 

E in table 6.8 (page no 298) represents the refined elevation models.
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Table 6.8: Sample Test Cases and results obtained 

Sample Input Sample (A) DEM  of (A) 
Interpolated Points 

(B) 
(A+B) Contour Continuity 

Refined DEM of 

(A+B) 

1 

      

2 

      

3 

      

4 

      

5 

      

6 
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6.7 Limitations of the research initiative 

This research initiative transforms the 2D contours along with interpolated contours in 

3D space. This transformation is limited to only contour features of topographic sheet. 

However, the transformation is not applicable to other geo-morphological features like 

rivers, etc. which may further extended to man-made features like roads, railways. 

Also, the color intensity assigned to different contours of varied altitude is constant. 

The variation in intensity of contour as per altitude provides better understanding and 

visibility of earth landscape. The other major limitation of research initiative is to 

validate the outcome, i.e., DEM. The best possible measure to assess the quality of 

outcome is with ground truth value which is extremely time-consuming. The other 

means assessment of DEM is through digitizer and the outcome totally relies on 

expertise of the digitizer. 

 

6.8 Conclusion  

The proposed research initiative is an effort directed towards enabling the generation 

of an elevation model that closely resembles the landscape. To attain the same, sixteen 

identifiable modules were conceived. A simple intensity-based segmentation technique 

was deployed to digitize the contours from the sample reference image. The digitized 

reference map was then refined using a median filter for the removal of salt and pepper 

noise. The contours in the digitized map were then skeletonized to create a single-pixel-

width representation. This was done to reduce computation overhead. Common 

neighbors in the skeletonized dataset were resolved by identifying all m-connectivity. 

This tremendously helped in limiting the number of structural operators or 

morphological orientations to be managed. A collection of sample images was pre-

processed using an unsupervised approach for identifying all possible unique 3x3 
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structural operators. A set of 24 structural operators was identified and appropriately 

stored in the repository. These structural operators were then indexed for future 

reference. Subsequently, the sample dataset was also processed to extract various 

attributes related to the existing contours about which the new set of contours were to 

be generated. In the case of lines, the centroid of the dataset and the lines were taken 

into reference for associating direction with the structural operators. Depending on the 

relative placement of the line centroid with regards to the centroid of the dataset, two 

distinct sets of angular movements were identified. Likewise, in the case of enclosures, 

the centroid of the enclosure and the coordinate position of the enclosures were taken 

into reference for associating direction with the structural operators. Depending on the 

relative placement of the enclosure's coordinates and its centroid, two distinct sets of 

angular movements were identified. A cost-effective traversal mechanism was pursued, 

reducing the computational load. To prevent imprecise interpolation due to lag in 

directional traversal, a task-suitable mask was designed. After identifying the 

appropriate endpoints of interpolation, the coordinates of the interpolated points were 

then generated. Structural operators resembling the source contour were then placed at 

the interpolated points to maintain structural or morphological resemblance. The 

structural operators were then connected using a gradient-based approach for 

generating intermediate contours. The contours were then elevated in the z-plane by 

associating elevation details. 
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Chapter 7  

Summary and Conclusion 

 

This research initiative was motivated to overcome the shortcomings of the existing 

manual and semi-automatic approaches, deployed for digitization of geomorphological 

features crucial to GIS based applications by leveraging the capabilities of advanced 

computational support and realization of fully automated knowledge based 

computational processes. Here, some of the notable morphological features considered 

are rivers, contours and associated annotations. The work is further advanced to 

generate purpose specific attributes to all these identifiable features. These attributes 

are crucial to the studies related to these features.  

 

In pursuit of the research goals, the various objectives were drawn as specified below: 

a) Conception and realization of fully automated computational process for 

extracting river pattern and generation of associated attributes.  

b) Conception and realization of fully automated computational process for 

extraction of contours lines, its refinement and generation of associated attributes.  

c) Conception and realization of fully automated computational process for text 

localization, recognition, and mapping. 

d) Transformation of the features to 3D space for effective visualization 

 

Upon successful attainment of the aforementioned research objectives with desired 

level of precision and computational accuracy, the outcome of the research initiative is 

summarized as follows: 
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7.1 Extraction of River Pattern, its Refinement and Attribute Generation 

This module of the research work implements a fully automated knowledge-based 

computational process for extracting river network from TS, generating associated 

attributes, reducing human intervention, and consequently lowering effort, time, and 

cost requirements, thereby elevating the confidence of the research outcome. 

 

Here, color segmentation was performed to digitize the river network from the TS. The 

digitized river network was suitably preprocessed in order to b skeletonized, eliminate 

inherent noise, and resolve m-connectivity. An effective spiral traversal mechanism 

was deployed for efficient identification of terminal streams. The refined river network 

was qualitatively and quantitatively analysed with regards to eight different river 

ordering concepts, namely, Classic Stream Order, Strahler Stream Order, Horton 

Stream Order, Shreve Stream Order, Scheidegger Stream Order, Order by Path Length, 

Consistent Stream Order, and Cumulative Stream Order. In due course of analysis, the 

following ten quantitative parameters, namely stream order, stream number, bifurcation 

ratio, streams participating in bifurcation ratio, weighted mean bifurcation ratio, stream 

length, mean stream length, streams participating in length ratio, weighted mean length 

ratio, and length of main channel were derived for each of the ordering techniques 

mentioned above. The proficiency of the implemented process was tested using selected 

river samples, and it was successfully able to accurately realize the motives of all the 

conceived aspects related to the modules. 

 

A qualitative comparative assessment of all of these algorithms was performed, 

highlighting their various aspects, such as the technique used, the number of passes 

required, the computational cost, their advantages and disadvantages, and the need for 
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human intervention. The obtained results can be further combined with aspects like the 

DEM and satellite imagery for simulating hydrological processes, studying 

morphological changes, and effective disaster management. 

 

7.2 Extraction of Contour Lines, its Refinement and Attribute Generation 

This module of the research work realizes a comprehensive, fully automated 

computational process directed towards digitizing contour lines, its effective 

preprocessing, and maintaining its continuity. The contour lines were digitized using 

color segmentation, and need-based filters were deployed for skeletonization, 

eliminating noise and resolving m-connectivity. A suitable modification to the Bezier 

curve technique was conceived to ensure connectivity between broken segments of a 

contour line, determining optimal pairs based on the sign of the gradient. The efficiency 

of the process was tested on 24 samples with 95 breakages, and an accuracy of 86.31% 

was achieved with an error rate of 13.68%. The process may be further generalized by 

making suitable adaptations to handle other linear morphological features like rivers 

and transportation networks. 

 

7.3 Extraction of Associated Text, its Refinement and Attribute Generation 

This module of the research work was motivated by the localization of annotations 

present in the TS and, thereafter, pursue knowledge-guided multilayer model for 

recognition of the localized text. 

 

The aforementioned motives were successfully achieved through two distinct sub-

modules dedicated to localization and recognition. Localization was performed 

leveraging the processing capabilities of color segmentation techniques, preprocessing 
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operations, and morphological operators. The capability of the implemented model was 

tested by randomly selecting 30 samples of topographic sheets with 100 features of 

interest. The model successfully detected 85 features out of 100, delivering an accuracy 

of 85%. 

 

In addition, a multi-layer model was conceived for extending the localization 

capabilities, relying on the strength of CNN-based deep learning architectures such as 

R-CNN, Fast-RCNN, and Faster-RCNN. The two models were tested with 15 different 

unknown samples of TS with 15-20 features of interest aligned along different 

directions. The trained RCNN model was able to localize with an accuracy of 51.44%, 

whereas the faster RCNN model delivered an accuracy of 72.42%. The accuracy is 

expected to increase with an increase in the training dataset. This implies that the faster 

R-CNN can identify both elevation values and text features on topographic sheets with 

greater efficiency. Further, the accuracy of the localization was improved to 79.6% 

(against Intersection over Union (IoU) value >= 0.7) using Faster RCNN+R-101-FPN. 

  

For text recognition, an accuracy of 60% was achieved for the training set, and 45% 

accuracy was achieved for the validation set. The current recognizer model is limited 

to just english alphabet and can be further enhanced to identify numbers and special 

symbols. The accuracy is compromised due to the low quality of the images in the 

recognition dataset. The overall accuracy of the models listed above is greatly 

influenced by the relative positioning of the feature of interest with regard to other 

morphological features contained in the TS. The greater the disturbance to the feature 

of interest by other overlapping or intersecting features, the lower will be the accuracy, 

as it would greatly affect both testing as well as validation. The problem intensifies in 
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situations where non-significant representations are wrongly pursued for training the 

models. 

 

7.4 Generation of Digital Elevation Model from Refined and Generated Contour 

Lines 

In this module, a sincere effort has been made to create a refined elevation model from 

existing and automatically interpolated contour lines. The same was achieved through 

the neatly conceived sixteen distinguishable sub-modules intended for segmentation, 

preprocessing, morphological analysis, directional analysis, interpolation, generation, 

and 3D modelling. Here, 14 different samples adequately representing possible contour 

orientations were considered as input to an unsupervised search operation directed at 

identifying all unique 3x3 orientations centered on a significant pixel. The process 

successfully identifies 24 such unique orientations (operators) contained in the sample 

image. To effectively contain the number of operators, the input samples were thinned 

to a single-pixel-width representation with all instances m-connectivity. With every 

identified operator, the direction of traversal was decided based on the angular 

orientation of the operators and designated reference points. Consequently, the 

operators were suitably located at the point of interpolation and were purposefully 

connected to create interpolated contour lines using a gradient-based method. The 

actual and interpolated contour lines were then projected in a 3D space to create the 

desired elevation model by incorporating elevation details. The overall accuracy of this 

module depends on the effectiveness of all the other modules discussed in section 7.1-

7.3. 
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7.5 Limitation of Research Work 

The following represents the limitations of the research initiative: 

a) The robustness and accuracy of the conceived models may be further enhanced 

and elevated by incorporating complex scenarios with larger dimensions in the 

training set. 

b) The efficiency and effectiveness of the conceived models greatly vary with the 

quality, tone, texture, and scale of TS. Advancement may be planned towards the 

conception of comprehensive generalizable scale invariant models capable of 

efficiently handling varying datasets. 

c) The segmentation process inadequately handles poor-quality TS. It fails to 

produce the desired outcome in situations where various features intersect with 

each other, resulting in breakage. Furthermore, in situations where there is a close 

resemblance between the intensity values of different features, the segmentation 

process inappropriately inducts unnecessary values into the outcome. 

d) In situations where breakages are observed in contour lines, the use of an 

inappropriate end point selection approach may result in the establishment of the 

wrong connections. In addition, if the breakage is unexpectedly large, the end 

point selection approach may fail to deliver the expected result. Further, contours 

generated using such an approach fail to preserve the morphological 

characteristics of the contours due to uncertainty of contour orientation, an 

inadequate number of control points, and inherent computational complexity. 

e) The effectiveness of the models greatly depends on the refining ability of the 

preprocessing operations. These operations should be appropriately tied to the 

need to elevate the quality of representation. 
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f) All the models implemented mandate that the features of interest be represented 

with the help of a single pixel width for computational ease. Therefore, the 

skeletonization technique adopted should be able to preserve the morphological 

resemblance of the features of interest for effective processing. 

g) All the models implemented mandated resolution of m-connectivity before the 

onset of feature engineering operations. 

h) The overall ability of the model designed for interpolation of contour lines 

depends on its ability to identify the structural operators, its relative position 

based on a certain reference point, its ability to associate the direction of traversal 

with structural operators, and its ability to resolve hit-and-miss problems. 

i) The overall effectiveness of all the implemented models greatly relies on the 

ability of the traversal technique used and the data structures designed to store 

the details of features. 

j) Due to a lack of adequate annotated training data resembling text in the TS, the 

accuracy of localization achieved is considerably low, which adversely effects 

the recognition process. A research initiative may be planned towards automating 

the same for building up a comprehensive dataset. 

k) Inappropriate recognition of the elevation value may distort the 3D model 

obtained after projection. 

 

7.6 Future Directions 

The following represents the future directions of the research initiative: 

a) The model conceptualized for handing the river network may be carefully 

advanced to work with satellite imaginary. 
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b) Reconnection techniques preserving the morphological orientation of contours 

may be conceived for handling complex breakages. 

c) An advanced multilayer model may be pursued to enhance the accuracy of 

localization and recognition by enhancing the training dataset. 

d) The 3D projection may be used to visualize the DTM and DSM by overlapping 

satellite imaginary on top of them. 
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